Top Banner

of 60

channellization code

Apr 04, 2018

Download

Documents

awie1234
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 channellization code

    1/60

    RSCP is an acronym used in UMTS and otherCDMA cellular communications systems and stands for

    While RSCP can be defined generally for any CDMA system, it is more specifically used in UMTS. Als

    Definition: the received power on one code after de-spreading measured by UE on the pilot bits on a g

    RSCP is used in UMTS as a handover criterion and in DL and UL open loop power control, UL open lo

    Pathloss = Transmitted channel power [dBm] - RSCP [dBm]

    In UMTS FDD-mode RSCP is measured on Primary CPICH, in TDD-mode it is measured on the pilot

    In UMTS RSCP is measured in dBm (decibels relative to 1 watt power) within a bandwidth of 3.84 MH The accuracy with which RSCP is reported in UMTS FDD is in the range of 6 dB to 11 dB (absolute ac

    Reported value Measured quantity value

    CPICH_RSCP_LEV _00 CPICH RSCP

  • 7/30/2019 channellization code

    2/60

  • 7/30/2019 channellization code

    3/60

  • 7/30/2019 channellization code

    4/60

    Received Signal Code Power.

    o, while RSCP can be measured in principle on the downlink (DL) as well as on the uplink (UL), it is usually associa

    iven channel. The reference point for the RSCP is the antenna connector of the UE. If Tx diversity is applied on the

    op power control and for calculation of pathloss using the formula:

    its of Primary CCPCH.

    . In UMTS FDD messages RSCP is transmitted as an integer value in the range of -115 dBm to -25 dBm. The valucuracy) and 3 dB (relative accuracy).

    I +EcNo

    CPICH EcNo CPICH RSCP0 -24 -5 -1201 -23.5 -4 -1192 -23 -3 -1183 -22.5 -2 -1174 -22 -1 -1165 -21.5 0 -1156 -21 1 -1147 -20.5 2 -113

  • 7/30/2019 channellization code

    5/60

    8 -20 3 -1129 -19.5 4 -11110 -19 5 -11011 -18.5 6 -10912 -18 7 -10813 -17.5 8 -10714 -17 9 -10615 -16.5 10 -10516 -16 11 -10417 -15.5 12 -10318 -15 13 -10219 -14.5 14 -10120 -14 15 -10021 -13.5 16 -9922 -13 17 -9823 -12.5 18 -9724 -12 19 -9625 -11.5 20 -9526 -11 21 -9427 -10.5 22 -93

    28 -10 23 -9229 -9.5 24 -9130 -9 25 -9031 -8.5 26 -8932 -8 27 -8833 -7.5 28 -8734 -7 29 -8635 -6.5 30 -8536 -6 31 -8437 -5.5 32 -8338 -5 33 -8239 -4.5 34 -81

    40 -4 35 -8041 -3.5 36 -7942 -3 37 -7843 -2.5 38 -7744 -2 39 -7645 -1.5 40 -7546 -1 41 -7447 -0.5 42 -7348 0 43 -72

    44 -7145 -7046 -6947 -6848 -6749 -6650 -6551 -6452 -6353 -6254 -6155 -6056 -5957 -58

  • 7/30/2019 channellization code

    6/60

    58 -5759 -5660 -5561 -5462 -5363 -5264 -5165 -5066 -4967 -4868 -4769 -4670 -4571 -4472 -4373 -4274 -4175 -4076 -3977 -38

    78 -3779 -3680 -3581 -3482 -3383 -3284 -3185 -3086 -2987 -2888 -2789 -26

    90 -25

  • 7/30/2019 channellization code

    7/60

    ted only with the downlink and thus it is presumed to be measured by the UE and reported to the Node-B. It is defin

    measured channel then the received code power from each antenna is separately measured and summed togethe

    e is coded into integers from 0 to 99 according to the following table:

  • 7/30/2019 channellization code

    8/60

  • 7/30/2019 channellization code

    9/60

  • 7/30/2019 channellization code

    10/60

    ed by 3GPP as follows:

    r in watt to produce a total received code power on the measured channel.

  • 7/30/2019 channellization code

    11/60

    Figure 1 Interaction of radio network planning with other radio network activities

    SystemDimensioning

    Radio NetworkPlanning

    Pre-launchOptimisation

    Post-launchOptimisation

    3G neighbour lists

    2G neighbour lists Antenna tilts Local area

    parameter tuning

    Site selection

    Site design 3G neighbour lists 2G neighbour lists Scrambling codes Location areas Routing areas RNC areas

    Link budget analsysis

    Node B count andconfiguration

    RNC count andconfiguration

    Transmissioncapacity andconfiguration

    Performa

    3G neighbour lists

    2G neighbour lists Antenna tilts Local area

    parameter tuning Additional sites User experience

    optimisation

    Wide area parameter tuning

    SystemDimensioning

    Radio NetworkPlanning

    Pre-launchOptimisation

    Post-launchOptimisation

    3G neighbour lists

    2G neighbour lists Antenna tilts Local area

    parameter tuning

    Site selection

    Site design 3G neighbour lists 2G neighbour lists Scrambling codes Location areas Routing areas RNC areas

    Link budget analsysis

    Node B count andconfiguration

    RNC count andconfiguration

    Transmissioncapacity andconfiguration

    Performa

    3G neighbour lists

    2G neighbour lists Antenna tilts Local area

    parameter tuning Additional sites User experience

    optimisation

    Wide area parameter tuning

  • 7/30/2019 channellization code

    12/60

    RF carriers

    Sectorisation ROC to CEC Node B power Baseband proc. Transmission HSDPA Microcells

    CapacityEvolution

    ce Monitoring

    RF carriers Sectorisation ROC to CEC Node B power Baseband proc. Transmission HSDPA Microcells

    CapacityEvolution

    ce Monitoring

  • 7/30/2019 channellization code

    13/60

    chanellization code generation

    SF = 3.84Mcps / bit rateThe longer the code, the lower will be data rateThe SF correspond to the length of the code and the number of channels sending at certain bit rate

    SF=>1(20) 1

    Always remember => SF =2 (21) 1 11 -1

    SF=>4(22) 1 1 1 11 -1 1 -1

    1 1 -1 -1

    1 -1 -1 1

    SF=>8(23

    ) 1 1 1 1 1 1 1 1 a1 -1 1 -1 1 -1 1 -1 c1 1 -1 -1 1 1 -1 -1 b1 -1 -1 1 1 -1 -1 1 d

    1 1 1 1 -1 -1 -1 -1 a1 -1 1 -1 -1 1 -1 1 c1 1 -1 -1 -1 -1 1 1 b1 -1 -1 1 -1 1 1 -1 d

    SF=>16(24

    ) 1 1 1 1 1 1 1 11 -1 1 -1 1 -1 1 -1

    1 1 -1 -1 1 1 -1 -1

    1 -1 -1 1 1 -1 -1 1

    1 1 1 1 -1 -1 -1 -1

    1 -1 1 -1 -1 1 -1 1

    1 1 -1 -1 -1 -1 1 1

    1 -1 -1 1 -1 1 1 -1

    1 1 1 1 1 1 1 1

    1 -1 1 -1 1 -1 1 -11 1 -1 -1 1 1 -1 -1

    1 -1 -1 1 1 -1 -1 1

    1 1 1 1 -1 -1 -1 -1

    1 -1 1 -1 -1 1 -1 1

    1 1 -1 -1 -1 -1 1 1

    1 -1 -1 1 -1 1 1 -1

  • 7/30/2019 channellization code

    14/60

    DL SF 1(2) 2 (21) 4(22) 8(2)

    Spreading Factor (SF)=(3.84*10^6)/8 = 480 kbpsa 1 1 1 1

    1 1 1 1

    a 1 1 1 1

    1 1

    b 1 1 -1 -1

    1 1 -1 -1

    b 1 1 -1 -1

    Chip rate =3.84 Mcps 1c 1 -1 1 -1

    1 -1 1 -1

    c 1 -1 1 -11 -1

    d 1 -1 -1 1

    1 -1 -1 1

    d 1 -1 -1 1

    Figure:1 Example of the allocation of the code tree for8 users sendi

    SF 1(2) 2 (21) 4(22) 8(2)

    1 1 1 1

    1 1 1 1

    1 1 1 1

    (User with 4 x bit rate)1.92 Mbps 1 1

    1 1 -1 -1

  • 7/30/2019 channellization code

    15/60

    1 1 -1 -1

    1 1 -1 -1

    Chip rate =3.84 Mcps1

    1 -1 1 -1

    1 -1 1 -1

    1 -1 1 -11 -1

    1 -1 -1 1

    1 -1 -1 1

    1 -1 -1 1

    Figure:2 Example of the allocation of the code tree for4 users sending at SF =

  • 7/30/2019 channellization code

    16/60

    Let say SF=2bit rate= 1920000 1.92 Mbps

    Let say SF=4bit rate= 960000 960 kbps

    Let say SF=8bit rate= 480000 480 kbps

    Let say SF=16bit rate= 240000 240 kbps

    Let say SF=32bit rate= 120000 120 kbps

    Let say SF=64

    bit rate= 60000 60 kbps

    Let say SF=128 3840bit rate= 30000 30 kbps

    Let saySF=256bit rate= 15000 15 kbps

    1 1 1 1 1 1 1 1 a1 -1 1 -1 1 -1 1 -1

    1 1 -1 -1 1 1 -1 -1 c

    1 -1 -1 1 1 -1 -1 1

    1 1 1 1 -1 -1 -1 -1 b

    1 -1 1 -1 -1 1 -1 1

    1 1 -1 -1 -1 -1 1 1

    1 -1 -1 1 -1 1 1 -1

    -1 -1 -1 -1 -1 -1 -1 -1 a

    -1 1 -1 1 -1 1 -1 1-1 -1 1 1 -1 -1 1 1 c

    -1 1 1 -1 -1 1 1 -1

    -1 -1 -1 -1 1 1 1 1 b

    -1 1 -1 1 1 -1 1 -1

    -1 -1 1 1 1 1 -1 -1

    -1 1 1 -1 1 -1 -1 1

  • 7/30/2019 channellization code

    17/60

    1 1 1 1 480 kb/s

    Two codes are said to be orthogonal when their inner pr

    eg: (1,1,1,1) and ( 1,1,-1,-1) are orthogonal since (1*1)+ (1*1)+(1*-1-1 -1 -1 -1 480 kb/s

    Digital/Analog Mapping

    logic 0 analog +1

    1 1 -1 -1 480 kb/s logic 1 analog -1

    -1 -1 1 1 480 kb/s

    1 -1 1 -1 480 kb/s

    -1 1 -1 1 480 kb/s

    1 -1 -1 1 480 kb/s

    -1 1 1 -1 480 kb/s

    ng at the same rate of480 kpbs.

    1 1 1 1 unusable code space

    -1 -1 -1 -1

    1 1 -1 -1

  • 7/30/2019 channellization code

    18/60

    -1 -1 1 1

    1 -1 1 -1 480 kb/s

    -1 1 -1 1 480 kb/s

    1 -1 -1 1

    480 kb/s

    -1 1 1 -1 480 kb/s

    ( 480 kpbs) and 1 user at SF=2 (1.92 Mbps)

  • 7/30/2019 channellization code

    19/60

  • 7/30/2019 channellization code

    20/60

    32 64 128 256

    oduct is zero

    )+(1*-1)=0

  • 7/30/2019 channellization code

    21/60

    The Common Pilot Channel

    15 TS =0.01 Sec1 TS =(0.01/15)*1 =66

    2560 chip * 15 TS =380 1 2 3 4 5 6 7 8 9 10 11 12 13 14

    10 Symbols /Slot

    1 TS =2560 Chips=10 Symbols=20 bits=666.667 uSec

    1 Frame=15 TS=10 msec =0.01Sec = 38400 chips

    1. WCDMA uses 18 Shift Registers to create the SC used in DL.2. This produces a code length of 262 143( 218 -1) chips; however only the first38400 chips are used by the system.3. Since the Chip rate is 3.84 Mchip/s, it will take 10 milisec to send 38400 chips.4. This time duration is referred to as one Frame5. The Frame is sub-divided into 15 TS, each containing 2560 (38400/15) chips.6. The duration of one TS is 666.667 uSec.

  • 7/30/2019 channellization code

    22/60

    384003840000

    .667 u sec

    00 chip

  • 7/30/2019 channellization code

    23/60

    miliWatt Watt dBm Watt_dBm conversion dBm Watt miliWatt0.1 0.0001 -10.00 dBm = 10*log(mW) 0 0.00 1.00

    0.2 0.0002 -6.99 1 0.00 1.260.3 0.0003 -5.23 2 0.00 1.580.4 0.0004 -3.98 3 0.00 2.000.5 0.0005 -3.01 4 0.00 2.510.6 0.0006 -2.22 5 0.00 3.160.7 0.0007 -1.55 6 0.00 3.980.8 0.0008 -0.97 7 0.01 5.010.9 0.0009 -0.46 8 0.01 6.31

    1 0.001 0.00 9 0.01 7.942 0.002 3.01 10 0.01 10.003 0.003 4.77 11 0.01 12.594 0.004 6.02 12 0.02 15.855 0.005 6.99 13 0.02 19.956 0.006 7.78 14 0.03 25.127 0.007 8.45 15 0.03 31.628 0.008 9.03 16 0.04 39.819 0.009 9.54 17 0.05 50.129 0.009 9.54 18 0.06 63.10

    10 0.01 10.00 19 0.08 79.4320 0.02 13.01 20 0.10 100.0030 0.03 14.77 21 0.13 125.89

    40 0.04 16.02 22 0.16 158.4950 0.05 16.99 23 0.20 199.5360 0.06 17.78 24 0.25 251.1970 0.07 18.45 25 0.32 316.2380 0.08 19.03 26 0.40 398.1190 0.09 19.54 27 0.50 501.19

    100 0.1 20.00 28 0.63 630.96200 0.2 23.01 29 0.79 794.33300 0.3 24.77 30 1.00 1000.00400 0.4 26.02 31 1.26 1258.93500 0.5 26.99 32 1.58 1584.89600 0.6 27.78 33 2.00 1995.26

    700 0.7 28.45 34 2.51 2511.89800 0.8 29.03 35 3.16 3162.28900 0.9 29.54 36 3.98 3981.07

    1000 1 30.00 37 5.01 5011.872000 2 33.01 38 6.31 6309.573000 3 34.77 39 7.94 7943.284000 4 36.02 40 10.00 10000.005000 5 36.99 41 12.59 12589.256000 6 37.78 42 15.85 15848.93

  • 7/30/2019 channellization code

    24/60

    7000 7 38.45 43 19.95 19952.628000 8 39.03 44 25.12 25118.869000 9 39.54 45 31.62 31622.78

    10000 10 40.00 46 39.81 39810.7211000 11 40.41 47 50.12 50118.7212000 12 40.79 48 63.10 63095.73

    13000 13 41.14 49 79.43 79432.8214000 14 41.46 50 100.00 100000.0015000 15 41.76 51 125.89 125892.5416000 16 42.04 52 158.49 158489.3217000 17 42.30 53 199.53 199526.2318000 18 42.55 54 251.19 251188.6419000 19 42.79 55 316.23 316227.7720000 20 43.01 56 398.11 398107.1721000 21 43.22 57 501.19 501187.2322000 22 43.42 58 630.96 630957.3423000 23 43.62 59 794.33 794328.2324000 24 43.80 60 1000.00 1000000.00

    25000 25 43.98 61 1258.93 1258925.4126000 26 44.15 62 1584.89 1584893.1927000 27 44.31 63 1995.26 1995262.3128000 28 44.47 64 2511.89 2511886.4329000 29 44.62 65 3162.28 3162277.6630000 30 44.77 66 3981.07 3981071.7131000 31 44.91 67 5011.87 5011872.3432000 32 45.05 68 6309.57 6309573.4433000 33 45.19 69 7943.28 7943282.3534000 34 45.31 70 10000.00 10000000.0035000 35 45.44 71 12589.25 12589254.1236000 36 45.56 72 15848.93 15848931.9237000 37 45.68 73 19952.62 19952623.15

    38000 38 45.80 74 25118.86 25118864.3239000 39 45.91 75 31622.78 31622776.6040000 40 46.02 76 39810.72 39810717.0641000 41 46.13 77 50118.72 50118723.3642000 42 46.23 78 63095.73 63095734.4543000 43 46.33 79 79432.82 79432823.4744000 44 46.43 80 100000.00 100000000.0045000 45 46.53 81 125892.54 125892541.1846000 46 46.63 82 158489.32 158489319.2547000 47 46.72 83 199526.23 199526231.5048000 48 46.81 84 251188.64 251188643.1549000 49 46.90 85 316227.77 316227766.02

    50000 50 46.99 86 398107.17 398107170.5551000 51 47.08 87 501187.23 501187233.6352000 52 47.16 88 630957.34 630957344.4853000 53 47.24 89 794328.23 794328234.7254000 54 47.32 90 1000000.00 1000000000.0055000 55 47.40 91 1258925.41 1258925411.7956000 56 47.48 92 1584893.19 1584893192.4657000 57 47.56 93 1995262.31 1995262314.9758000 58 47.63 94 2511886.43 2511886431.51

  • 7/30/2019 channellization code

    25/60

    59000 59 47.71 95 3162277.66 3162277660.1760000 60 47.78 96 3981071.71 3981071705.5361000 61 47.85 97 5011872.34 5011872336.2762000 62 47.92 98 6309573.44 6309573444.8063000 63 47.99 99 7943282.35 7943282347.2464000 64 48.06 100 10000000.00 10000000000.00

    65000 65 48.1366000 66 48.2067000 67 48.2668000 68 48.3369000 69 48.3970000 70 48.4571000 71 48.5172000 72 48.5773000 73 48.6374000 74 48.6975000 75 48.7576000 76 48.81

    77000 77 48.8678000 78 48.9279000 79 48.9880000 80 49.0381000 81 49.0882000 82 49.1483000 83 49.1984000 84 49.2485000 85 49.2986000 86 49.3487000 87 49.4088000 88 49.4489000 89 49.49

    90000 90 49.5491000 91 49.5992000 92 49.6493000 93 49.6894000 94 49.7395000 95 49.7896000 96 49.8297000 97 49.8798000 98 49.9199000 99 49.96

    100000 100 50.00

  • 7/30/2019 channellization code

    26/60

    dBm_Watt Conversion serviceType

    DefaultPower(dBm)

    Defau

    ltPower(Watt)

    MinActivity(%)

    MinAvePower(W)

    MinA

    vePower(dBm)

    MaxA

    ctivity

    MaxA

    vePower(W)

    mW =10^(dBm/10) CPICH 36 3.98 100 3.98 36.00 100 3.98

    P-SCH 30 1 10 0.1 20.00 10 0.1S-SCH 30 1 10 0.1 20.00 10 0.1

    PCCPCH 28 0.63 90 0.567 27.54 90 0.567SCCPCH 33 2 25 0.5 26.99 115 2.3

    PICH 25 0.32 96 0.3072 24.87 96 0.3072AICH 25 0.32 0 0 80 0.256TOTAL 5.5542 37.45 7.6102

    The Power ofCommonPhysical

    Channel areset relative to

    CPICH

  • 7/30/2019 channellization code

    27/60

  • 7/30/2019 channellization code

    28/60

  • 7/30/2019 channellization code

    29/60

    MaxA

    vePower(dBm)

    Remarks

    36.00 CPICH as Ref

    20.00 -620.00 -627.54 -833.62 -324.87 -1124.08 -11

    38.8139607

    The Power ofCommonPhysical

    Channel areset relative to

    CPICH

  • 7/30/2019 channellization code

    30/60

    Watt40 2.398797736 Max OVERLOAD

    0.398797736 Min OVERLOAD

    39.60120226 PtxTargetMax+PtxOffset

    39 39.6 PtxTarget Max38 37.60120226 PtxTargetMin+PtxOffset37 37.6 Ptx Target Min363534333231302928

    27262524232221201918171615

    141312111098 7.6 Max76 5.6 Min543

    210

    Total DL Common CH PWR

    FEASIBLE AREA

    MARGINAL AREA

    OVERLOAD AREA

  • 7/30/2019 channellization code

    31/60

    0.001202 PtxOffset =0.8 dBm=0.0012 Watt

    80%

    19%

    14%

  • 7/30/2019 channellization code

    32/60

    ISHO 2G -> 3G Parameters

    GSM ISHO example

    (

    MIN_ECNO_THRESHOLDminimum CPICH Ec/Io level

    qQsearch_Cthreshold for multi-RAT MS

    MIN_INTERVAL_BETWEEN_UNSUCC_ISHO_ATTE

    min interval between unsucc ISHO

    uLOAD_THRESHOLD_FOR_SC_IS_HO

    min traffic load for speech call

    NSpecification nameParameter

    Changeable Parameter

    Qsearch_C_Initial

    FDD_MULTIRAT_REPORTING

    3G_SEARCH_PRIO

    FDD_REP_QUANT

    Specification name

    Indicates the Qsearch valu

    connected mode before Qs

    The number of cells from thtechnology/mode FDD that

    Indicates if 3G cells may b

    Indicates the reporting qua

    Parameter explanation

    Hidden Parameter

  • 7/30/2019 channellization code

    33/60

    Load Threshold for Speech Calls inter-RAT HanutranHoThScTpdc = 80%

    Min Ec/No threshold for a handover to the UTRA

    minEcnoThreshold = -15 dBqSearchC = 7 (measure UTRAN adjacent cells al1Load of the serving cell = 45% and the measure

    --> Handover to the UTRAN not possible due t2Load of the serving cell = 45% and the measure

    --> Handover to the UTRAN not possible due t

    3Load of the serving cell = 95% and the measure--> Handover to the UTRAN possible

  • 7/30/2019 channellization code

    34/60

    -15 dB-240.5 dBinEcnoThresholdET)

    15 (never) rec.015SearchC (QSRC)

    3 s0255 sinIntUnsuccIsHo

    80%0-100%tranHoThScTpdc

    Default valueRangeokia parameter

    Not tunable,

    Fixed value 0

    0 = use Qsearch_I,

    1 = (always)

    to be used in

    earch_C is

    Not tunable,Fixed value 2

    03e accessshall be

    Not tunable,0 = no,searched

    Not tunable,0=RSCP,tity for

    NoteValue range

  • 7/30/2019 channellization code

    35/60

    over

    N adjacent cell

    lways)

    Ec/No = - 20 dBlow load and low Ec/NoEc/No = - 10 dBlow load

    Ec/No = -10 dB

  • 7/30/2019 channellization code

    36/60

    >>With RAS05.1, a new BTS called Flexi BTS is available>>The system module provide up to 192 CEs with 1-3 cells configuration - require 16 CEs for CCCH proces>> For HW point 240 CEs Capacity(with 26 CE for common channel processing)>> Basic HSDPA needs 32 CEs per cell ,thus enabling 16 HSDPA users/cell>>With RAS05.1 ED, the Baseband Extension Module is available, increasing Flexi BTS to 2*192=384 CE

    >> Example on, System module capacity with 192CEs, 1-3 cells, with option:-1. 16 HSDPA users/BTS (only 1 cell) -->>32 CE s only2. 16 HSDPA users/cell -->>32 CEs /cell or 96 CEs /site/BTS (32*3)3. Without HSDPA activated.

    user data rate/kbps

    (BEARER)

    (1) system module

    max cap, with 1-3 cells

    CCCHs and HSDPA

    activated in BTS ( only

    1 cell)

    (2) system module max

    cap, with 1-3 cells CCCHs

    and HSDPA activated in 3

    cells

    (3) system module max

    cap, with 1-3 cells CCCHs

    ( HSDPA not activated)

    AMR Voice (12.2) 192 - 16 - 32 = 144 192 - 16 - 96 = 80 192 -16 =176PS 16 192 -16 -32 =144 192 - 16 -96 =80 192 -16 =176PS 32 (192 - 16 -32) / 2= 72 (192 -16 -96)/2 =40 (192 -16)/2 = 89

    PS64 and CS64(video) (192 -16 -32) /4 =36 (192 -16 -96) / 4=20 (192 -16)/4 =44PS 128 (192 -16 -32) /4 =36 (192 -16 -96) / 4=20 (192 -16)/4 =44PS 256 (192 -16 -32) / 8 =18 (192 -16 -96) / 8 =10 (192-16) / 8= 22PS 384 (192 -16 -32) / 16 =9 (192 -16 -96) /16 =5 (192 -16)/16 = 11

    >> CE consumption with Flexi BTS

    Bearer CEs Needed

    AMR 1

  • 7/30/2019 channellization code

    37/60

    ing

  • 7/30/2019 channellization code

    38/60

    OverView

    >> RNC dimensioning is based on RNC throughput requirement in :-1. Mbps and Erlangs2. No of BTS/cells to be connected to RNC3. Total sum of AAL2 ( ATM Adaptation Layer Type 2) connectivity for Iub, Iur and Iu-CS inte

    Therefore, the RNC dimensioning requires preliminary dimensioning of BTSs, Uu, Iub, Iur an

    With RAS05.1, the new RNC450 with enhanced capacity is availableThis RNC450 can be delivered in 3 capacity step with Iub throughput of 150, 300 and 450 MThe max capacity for RNC450 is 8000 Erlangs, OR 450 Mbps PS data, OR 112.5Mbps CS

    Eg:- RNC Dimensioning

    There are 1000 BTSs, with an average busy hour traffic per BTS and SHO traffic also includ

    1. 20 Erlang AMR voice

    2. 2*64 CS Data3. 6*64 PS Data4. 500 kbps HSDPA data

    On the FP (Framing Protocol) Level, the throughput per BTS are:-

    services # users FP rate, kbps

    AMR 20 ErlangCS 64 2 66.1PS 64 6 69.5

    HSDPA 550

    sum

    Thus, traffic per BTS is 20 Erlang AMR + 1100 kbps data.Traffic for all 1000 BTSs is:-

    (20 *1000)/1.4 (BH traffic + SHO traffic) =14 285 Erlangs AND 1100kbps*1000BTSs =1100

    FROM NED,The max capacity for RNC450 is 8000 Erlangs, OR 450 Mbps PS data, OR 11

    The traffic mix rule indicates that:-

    14 285 / 8000 + 132 / 450 +(417+ 550) / 450 = 4.2 RNCs are needed

    Normally dimension the RNCs to be filled up to 70% by their launch phase in order to have cfor increasing traffic

  • 7/30/2019 channellization code

    39/60

    Since, 100% required 4.2 RNCs , thus 70% required ONLY 6 RNCs

    So the average services is as follows:-

    services average

    AMR (traffic) 2381CS 64 22PS 64 70

    HSDPA 92

    CROSS CHECK:_

    RNC LOAD:= 2381/800 + 22/ 450 + (70+92)/450 =0.71

  • 7/30/2019 channellization code

    40/60

    RNC450 (FROM NED)

    Table: Capacity and reference call mix model

    High capacity RNC RNC450/150 defaultNumber of subscribers 181 000Busy hour call attempts 240 000

    face Erlangs 4 000

    d Iu interfaces Iub throughput Mbit/s 150Number of carriers 600Number of BTSs 200

    AAL2UP Connectivity Mbits/sec 1 950ps RRC connected mode users 35 000data on Iub.

    Table: Voice Service Call mixProperty Value

    d:- Mean holding time (MHT)1 90sProportion of UE originating calls (UOC) 70%Proportion of UE terminating calls (UTC) 30%For terminating call attempts, the proportion

    of no-answer call attempts to paging request(NAC)

    63%

    Proportion of handovers 40%- hard handovers 0.1 per call- soft handovers 3 per callBearer 16 kbit/sTraffic per user 22 mErl

    Sum Kbps

    132.2 Table: HSDPA capacity figures417 RNC450/150550 Max HSDPA peak rate per UE [Mbit/s]

    1100 HSDPA active users per cellHSDPA active users perRNC 360Iu-ps HSDPA net bit rate [Mbit/s] 135HSDPA BTS 200HSDPA carriers 600

    bps to IubTable: Interfaces

    Configuration.5Mbps CS data on Iub.

    Max number of cards

    RNC450/1504 or 6

    1

    RNC450/300 8 or 102

    RNC450/450 12

    pacity availableTRAFFIC MIX RULE FORMULA

    STM-1 /

  • 7/30/2019 channellization code

    41/60

    AMR traffic(Erlang) /max AMR traffic (Erl) + CS traffic( Mbps)/ max Iub

  • 7/30/2019 channellization code

    42/60

    RNC450/300 RNC450/450284 000 360 000375 000 576 0006 250 8 000

    300 450900 1 152300 512

    2 800 3 59470 000 100 000

    RNC450/300 RNC450/450

    720 1620270 405300 512900 1152

    Nbr of int unprot. /

    Protected

    Max number

    of cards

    Nbr of int unprotected

    16 / (8+8 or 12+121)

    1 optional 16

    24 / (16+16 or

    20+20 2)

    1 optional 16

    24 / (24+24) 1 optional 16

    3.6

    16

    Interfaces

    C-3 E1 / T1

  • 7/30/2019 channellization code

    43/60

    hroughput (Mbps) + PS traffic (Mbps)/max Iub throughput (Mbps)

  • 7/30/2019 channellization code

    44/60

    Find HSPDSCHcode set enable and code combination description as per below, please check the ABH1RNC01

    HSPDSCHCodeSet Code Combination Binary32 5 100000 basic

    1312 5,8,10 101001000001440 5,7,8,10 10110100000

    2016 5,6,7,8,9,10 111111000008160 5,6,7,8,9,10,11,12 1111111100000

    50464 5,8,10,14,15 110001010010000054560 5,8,10,12,14,15 1101010100100000 NSN Global standard54688 5,7,8,10,1,14,15 110101011010000054752 5,6,7,8,10,12,14,15 110101011110000065312 5,8,9,10,11,12,13,14,15 1111111100100000

    to calculate this, convert the HSDPSCHcodeset value to Binary, then leave first five ZE

  • 7/30/2019 channellization code

    45/60

    dump to clearify R6 sites with code license key installed part of RU10 RNC upgarde, also check CE No./WCell.

    ROs from right to left, then if the 6th digit is 1 it means 5 codes is activated. If 7th digit i

  • 7/30/2019 channellization code

    46/60

    s 1/0 it means 7th code is activated/deactivated.... it goes on ....

  • 7/30/2019 channellization code

    47/60

    Frequency Bands and ARFCNFrequency Band Uplink/Downlink

    Separation

    Uplink Frequency Range

    (Transmit Device = Mobile)

    Downlink Frequency

    Range (Transmit Device =

    Base)

    ARFCN

    GSM 450 10 MHz 450.4 to 457.6 MHz 460.4 to 467.6 MHz 259 to 293

    GSM 480 10 MHz 478.8 to 486 MHz 488.8 to 496 MHz 306 to 340

    GSM 750 30 MHz 747 to 762 MHz 777 to 792 MHz 438 to 511

    GSM 850 45 MHz 824 to 849 MHz 869 to 894 MHz 128 to 251

    P-GSM 900 45 MHz 890 to 915 MHz 935 to 960 MHz 1 to124

    0 to124and

    975 to 1023

    0 to124and

    955 to 1023

    DCS 1800 45 MHz 1710 to 1785 MHz 1805 to 1880 MHz 512 to 885

    PCS 1900 45 MHz 1850 to 1910 MHz 1930 to 1990 MHz 512 to 810

    ARFCN to Frequency Calculator / TableARFCN stands for Absolute Radio Frequency Channel Number. ARFCN is a radio channel numbering schem

    To calculate ARFCN channel frequency, enter Absolute Radio Frequency Channel Number (ARFCN) below.

    UL DL

    ARFCN Frequency

    (MHz) ARFCN Frequency (MHz)975 880.2 975 925.2976 880.4 976 925.4

    977 880.6 977 925.6978 880.8 978 925.8979 881 979 926980 881.2 980 926.2981 881.4 981 926.4982 881.6 982 926.6983 881.8 983 926.8984 882 984 927985 882.2 985 927.2986 882.4 986 927.4987 882.6 987 927.6988 882.8 988 927.8

    989 883 989 928990 883.2 990 928.2991 883.4 991 928.4992 883.6 992 928.6993 883.8 993 928.8994 884 994 929995 884.2 995 929.2996 884.4 996 929.4997 884.6 997 929.6

    E-GSM 900 45 MHz 880 to 915 MHz 925 to 960 MHz

    R-GSM 900 45 MHz 876 to 915 MHz 921 to 960 MHz

  • 7/30/2019 channellization code

    48/60

    998 884.8 998 929.8999 885 999 9301000 885.2 1000 930.21001 885.4 1001 930.41002 885.6 1002 930.61003 885.8 1003 930.8

    1004 886 1004 9311005 886.2 1005 931.21006 886.4 1006 931.41007 886.6 1007 931.61008 886.8 1008 931.81009 887 1009 9321010 887.2 1010 932.21011 887.4 1011 932.41012 887.6 1012 932.61013 887.8 1013 932.81014 888 1014 9331015 888.2 1015 933.2

    1016 888.4 1016 933.41017 888.6 1017 933.61018 888.8 1018 933.81019 889 1019 9341020 889.2 1020 934.21021 889.4 1021 934.41022 889.6 1022 934.61023 889.8 1023 934.8

  • 7/30/2019 channellization code

    49/60

    977

    e used to identify specific RF channels in a cellular mobile radio system.

    r, enter start and end ARFCN values to generate a table.

  • 7/30/2019 channellization code

    50/60

    HSDPA

    In the future, user application are likely to involve the transport of large volumes of dataand require high bit ratesHSDPA introduces a new transport channel type - HS-DSCHthat makes efficient use of valuable radio freq resources and takes into accout busty packet

    this new transport channel share multiple access code, transmission power and use infrastrThe radio n/w resource can be used efficiently to serve a large number of users who are acIn other word, several users can be time multiplxed so that during silent periods, the resour

    HSDPA offers max peak rates of up to 14.4 Mbps in 5 Mhz channelHowever, more importantly than the peak rate is packet data throughput capacity, which is iThis will increase the number of users that can be supported at higher data rates on a singl

    Another important characteristic of HSDPA is the reduced variance in DL transmission delaA guaranteed short delay time is important for many applications such as interactive games.In general, HSDPA's enhancement can be used to implement the efficiently the "interactive"HSDPA's high data rates also will improve the use of streaming applications on share packe

    while the shorthened roundtrip (RTT) will benefit web-browsing application

    HSDPA Features

    HSDPA enhanced data rates and spectrum efficiencyHSDPA improves system capacity and increase user data rates in DL , that is, transmissionThis improved performance is BASED on:1. ADAPTIVE MODULATION and CODING(Data rates are optimised dynamically during the session according to radio link quality - Thi2. A FAST SCHEDULING function, which is controlloed in WBTS, rather than by RNC(3. FAST RETRANSMISSION with soft combining and incremental redundancy

  • 7/30/2019 channellization code

    51/60

    data

    cture hardware between usersessing to the resourcee are available for other users.

    proved significantly.radio carrier.

    .and "background " QoS.t channel

    from Radio Access n/w(RAN) to mobile

    s ensures HIGHEST possible data rates to end users)

  • 7/30/2019 channellization code

    52/60

    Terminal Category Support

    The 3GPP standard includes different optional feature support as well as parameter settings correspo

    Different choices made regarding these parameters and features could impact the possibility for full s

    HSDPA

    HSDPA Category HSDPA Codes Modulation Maximum bit rate(Mbps)

    Category 1 5 QPSK, 16 QAM 1.2Category 2 5 QPSK, 16 QAM 1.2Category 3 5 QPSK, 16 QAM 1.8Category 4 5 QPSK, 16 QAM 1.8Category 5 5 QPSK, 16 QAM 3.6Category 6 5 QPSK, 16 QAM 3.6Category 7 10 QPSK, 16 QAM 7.3Category 8 10 QPSK, 16 QAM 7.3Category 9 15 QPSK, 16 QAM 10

    Category 10 15 QPSK, 16 QAM 14.4Category 11 5 QPSK 0.9Category 12 5 QPSK 1.8

    HSUPA

    HSUPA Category HSUPA Codes TTI Length Maximum bit rate(Mbps)

    Category 1 1 10 ms only 0.73Category 2 2 10 ms/ 2 ms 1.46Category 3 2 10 ms only 1.46Category 4 2 10 ms/ 2 ms 2.00 / 2.92Category 5 2 10 ms only 2.00Category 6 4 10 ms/ 2 ms 2.00 / 5.76

  • 7/30/2019 channellization code

    53/60

    ding to the possiblitity to support different HSPA terminal categories

    pport of these different terminal categories

  • 7/30/2019 channellization code

    54/60

    UL Service DPCH Generic Nokia UL Service Link Budgets

    Service Type Nokia Specific Speech CS Data

    Uplink bit rate No 12.2 64Maximum transmit power UE dependant 21 21

    Terminal antenna gain UE dependant 0 2

    Body loss No 3 0Transmit EIRP UE dependant 18 23

    Chip rate No 3.84 3.84Processing gain No 25.0 17.8Required Eb/No Yes 4.4 2

    Target uplink load No 50 50Rise over thermal noise No 3.0 3.0

    Thermal noise power No -108 -108Receiver noise figure Yes 3 3

    Interference floor No -102 -102Receiver sensitivity Yes -122.6 -117.8

    Node B antenna gain No 18.5 18.5

    Cable loss No 2 2Benefit of using MHA No 2 2Fast fading margin Yes 1.8 1.8Soft handover gain Yes 2 2

    Building penetration loss No 12 12Indoor location probability No 90 90Indoor standard deviation No 10 10

    Slow fading margin No 7.8 7.8Isotropic power required Yes -121.5 -116.7

    Allowed propagation loss Yes 139.5 139.7

    DL Service DPCH Generic Nokia DL Service Link BudgetsService Type Nokia Specific Speech CS Data

    Downlink bit rate No 12.2 64Maximum transmit power Yes 34.2 37.2

    Cable loss No 2 2MHA insertion loss Yes 0.5 0.5

    Node B antenna gain No 18.5 18.5Transmit EIRP Yes 50.2 53.2

    Processing gain No 25.0 17.8Required Eb/No UE dependant 7.9 5.3Target loading No 80 80

    Rise over thermal noise No 7 7

    Thermal noise power No -108 -108Receiver noise figure UE dependant 8 8Interference floor No -93 -93

    Receiver sensitivity UE dependant -110.1 -105.5Terminal antenna gain UE dependant 0 2

    Body loss No 3 0Fast fading margin UE dependant 0 0Soft handover gain UE dependant 2 2

    MDC gain UE dependant 1.2 1.2

  • 7/30/2019 channellization code

    55/60

    Building penetration loss No 12 12Indoor location probability No 90 90Indoor standard deviation No 10 10

    Slow fading margin No 7.8 7.8Isotropic power required Yes -90.5 -90.9

    Allowed propagation loss Yes 140.7 144.1

    DL CPICH Link Budget Generic Nokia DL CPICH Link Budget

    Service Type Nokia Specific CPICH

    Maximum transmit power Yes 33 dBmCable loss No 2 dB

    MHA insertion loss Yes 0.5 dBiNode B antenna gain No 18.5 dBi

    Transmit EIRP Yes 49 dBmRequired Ec/Io UE dependant -15 dB

    Target loading No 80 %Rise over thermal noise No 7 dB

    Thermal noise power No -108 dBmReceiver noise figure UE dependant 8 dB

    Interference floor No -93 dBmReceiver sensitivity UE dependant dBm

    Terminal antenna gain UE dependant 0 dBiBody loss No 3 dB

    Fast fading margin No 0 dBBuilding penetration loss No 12 dBIndoor location probability No 90 %Indoor standard deviation No 10 dB

    Slow fading margin No 7.8 dBIsotropic power required Yes -85.2 dBm

    Allowed propagation loss Yes 134.2 dB

    The 3G link budget results must be adjusted prior to being used within the planning tool

    Link budget results are generated in terms of maximum allowed path loss whereas the majority o

    This means that a relatively arbitrary Node B transmit power

  • 7/30/2019 channellization code

    56/60

    PS Data

    64 kbps21 dBm kTB = assumed temperature of Node B Receiver 2 dBi

    0 dB dBm = 10*log(mW)23 dBm 1 0.00

    3.84 Mcps17.8 dB Processing Gain=10*LOG (Chip Rate/Bit Rate)

    2 dB Service C/I Requirement=EbNo - Processing Gain50 %3.0 dB RiseOverThermalNoise= -10*LOG(1 - Target Load)

    -108 dBm Thermal Noise Power=10*LOG(kTB)=10*LOG(1.4*10^(-23)*290*(3.83 dB

    -102 dBm-117.8 dBm Receiver Sensitivity=Service C/I Requirement+Thermal Noise Power 18.5 dBi

    2 dB2 dB

    1.8 dB2 dB12 dB90 %10 dB7.8 dB

    -116.7 dBm Isotropic Power Required=Receiver Sensitivity - Antenna Gain + Cab139.7 dB Allowed Propagation Loss=Transmit EIRP - Isotropic Power Require

    64 128 384 kbps Nokia's admission control determines the maximum dow37.2 40 40 dBm

    2 2 2 dB0.5 0.5 0.5 dB

    18.5 18.5 18.5 dBi for non-real time services according to:53.2 56 56 dBm17.8 14.77 10 dB

    5 4.7 4.8 dB80 80 80 %7 7 7 dB PtxDPCHmax and PtxDLabsMax are the RNC databuild

    -108 -108 -108 dBm8 8 8 dB-93 -93 -93 dBm

    -105.8 -103.1 -98.2 dBm2 2 2 dBi0 0 0 dB0 0 0 dB2 2 2 dB

    1.2 1.2 1.2 dB

    PS Data

    MaxDLPtxDPCHMinerMaxRTDLPow max,43

    MaxDPtxDPCHMinwerMaxNRTDLPo max,43

    10(

    )10(10

    Pr

    10

    10

    ReEbNo

    SRB

    EbNo

    BRLOG

    CPICHimaryCPICHPTxlatedMaxDLCalcu

    SRB

  • 7/30/2019 channellization code

    57/60

    12 12 12 dB90 90 90 %10 10 10 dB7.8 7.8 7.8 dB

    -91.2 -88.5 -83.6 dBm144.4 144.5 139.6 dB

    The CPICH link budget is similar to the downlink service link budget

    In this case the transmit power is defined by the PtxPrimaryCPICH RNC databuil

    The downlink service Eb/No requirement and processing gain are replaced by the

    This is equivalent to the downlink service C/I requirement

    The terminal antenna gain is assumed to be 0 dB.This represents a worst case assu

    The CPICH is not combined during soft handover and so there are no soft handov

    The downlink CPICH allowed propagation loss should be compared with the upli

    f planning tools display contours of signal strength

    ust be selected and then a signal strength threshold computed by s

  • 7/30/2019 channellization code

    58/60

    4*10^6))=-138dBW=-108dBm

    +RiseOverThermal Noise + Receiver Noise Figure

    le Loss - MHA Benefit +Fast Fading Margin - Soft HO Gain + Building Penetration Loss + Slow Fading

    link transmit power for real time services according to:

    arameters. MaxDLCalulated is computed from the expression:

    latedalcu

    xPtxDLabsMalatedCalcu ,

    )

    )10(

    Re

    Re

    10

    f

    Service

    EbNo

    BR

    BR

    fRABOffseto

    f

    Service

  • 7/30/2019 channellization code

    59/60

    parameter

    PICH Ec/Io requirement.

    mption

    r gains for the CPICH link budget.

    k service and downlink service allowed propagation losses.

    ubtracting the link budget maximum allowed path loss.

  • 7/30/2019 channellization code

    60/60

    argin