Top Banner

of 11

Channel Shaped Reinforced Concrete Compression Members

Jun 04, 2018

Download

Documents

edicson1a
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    1/11

    A C I S T R U C TU R A L JO U R N A L TE CH N IC A L P P E RTi t l e no. 84-S21

    Channel Shaped Reinforced Concrete Compression Membersunder Biaxial Bending

    by Cheng Tzu Thomas Hsu

    f r s M i o t un r\{vrtfHt'nltl an d atialviii 'al irnf\ttt;iiit>n i> I he M renal hand delvrrtttjlion o tia\mll\' Inaded 'hur mui iied t n / i m / m ail.rifarla/I1- M / / / I 'hnnfl-\litJfH' \< . h / f dt".i'n j>rtn't 'durf\.

    i .uppiirlt

    I r r c g u l a r - s h a p c d s l r u c t u r a l c o n c r e t e m e m h e r s s u h -j ec t ed l o c o m b i n c d b i a x i a l b e n d i n j z a nd a x i a l l oads a resomet imes encoun ie red in dcs i en p rac i i ce ; i n i h e case o tr e in fo reed concre te co lun ins and s h e a r \ \ a l K , c h a n n e l -s h a p e d mcmbcr*. a re u s u a l l y used a s co lun ins or enc lo -s u r e s o f h e e l e v a t o r s h a l t s ( I i y . 1 ) . H o \ \ e \ e r . c u r r e n tb u i l d i n ^ - c o d e p r o v i s i o n s do not p r m i d e g u i d e l i n e s C ordes igning such a n icrnbcr. The reason i \ t t h e nt 'or-m a i i o n on h e b e h a v i o r o i r r e g u l a r - s h a p e d r e i n l o r c e dc o n c r e t e m e m b e r s u n d e r c o m b i n e d b i a x i a l b e n d i n g a nda x i a l load is not \ \ e l l k n o \ \ n . T h e y a re u s u a l l y o \ e r d e -s i g n e d , w h i c h m a y cause th e s t r u c t u r e to be s t i f t e r , a nd

    m a y resu l t in loss of d u c t i l i i y \ \ h e n a p p l i e d to se i sn i icr cg ions . T h e p r i m a r y ob j ec t ive o t h i s pape r is to ad -dress t h e s i r e n g t h a nd de l ' o rn ia t iona l behav io r o t c h a n -n c l - s h a p e d r e i n f o r e e d c o n c r e t e m e m b e r s u n d e r i h eab ovc combined l o a d i n g s .

    A t o t a l o f f i v e c o l u m n s and s ix shea rwa l l spec imens\vcrc Cabr i ca ed a nd t e s t c d . Of the t o t a l e l e \ e n s p e c i -m e n s , n ine werc m a d e w i i h no rma l conc re t e uh i l e t w owcre f ab r i ca t cd f rom h i g h - s i r e n g i h c o n c r e t e . T h e t e s t si m c s t i g a t c d t he ax ia l l oad , m o n i e n t , d e t l e c t i o n , c u r \ a -t u r e , and s i r c n g l h o C (hese sec t ions , and h e r e su l t s w e r ec o m p a r e d w i t h a n a l y t i c a l p r e d i c t i o n s o f t h e w r i t e r ' sc o m p u t e r p r o g r a m . '; Based on the C i n d i n g s o f bo th ex -p e r i m e n t a l a n d a n a l y t i c a l r e s u l t s , a m e t h o d is reconi-m e n d e d fo r poss ible des ign p rac t i ce .

    A C I S t ruc tu ra l Journa l / May June 1987

    COMNEN COLUHN

    E L E VAT O H M A T

    />. l~Simplified sketches o f sowc principal applica-iions of irregular shaped reinforeed concrete columnsand shearwalis in huildings

    RESEARCH S I G N I F I C A N C ET h i s s t u d y o f l o a d a n d d e l o r m a t i o n b e h a v i o r o

    c h a n n e l - s h a p e d co lumns a nd s h e a r w a l l s \ \ a s a imed a tprov id ing gu idc l incs C or des ign ing such a m e m b e r u n d c rcombined b iax ia l be nd in g and ax ia l comprcss ion . Bothn o r m a l - s t r e n g t h a nd h i g h - s t r e n g t h concre tes u e r e used

    R e t e n e d A p i 16 . l Y N * . ,m d r e i i e e i l u n d e ? I n - i n i i i c p u M k . i t u > n pohiies< i i p % r i ( z h i I ' H", - Vr j i e n t J t i < i v u i e i e I n s i i i u i c M I n j i l m r e ^ e r i e d . i n t h i i l i n fi l i c m a k i n >i i t inpies n t i l r x s pc r rn i - iS ion 1 1 nh i .L i r i i - J l t c > n i t o v i i p v n t h i propnc l t i r > . l ' e i i i n c i i : J U I I IN M O I I i l l t c p u b l i v l i e d n i t h e M . i t i l i \ p t i l il* > 1 < /N/'I . urul Journal 1 1 re. en e il h v in 1 , \

    201

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    2/11

    , - l f / memtv

    trtt'mtifr < >

    .1(7 ( omrn

    { m\fr\il i .

    r ( Hrng-fiu boma* Htu n f rl l lh,- \tr* J?r\,-\ "

    U / 1M / ( >inniilt,-t' 441. K,'i

    /feo 4.'?. l> f l f l i t i n o < < I L

    Itl/i' ( m i t - r v / i . i j f l t i \ltdil fi'rti;irn't'rini> rm-, in ( jnjiiu in

    i-\\u' ul l ' i n f mi 1 n iir iinmcntal

    l'irt r i ( ( ii 'i'' ' ( tn'unjn and f> are t h e c o l u m n m i d h c i g h t d e f l e c t i o nc o m p o n e n t s i n the x - and the \ - d i r e c t i o n s , r e s p e c l i v e l y.

    T h e m o m e n t - a x i a l l o a d - c u r v a t u r e r e l a t i o r i s h i p s u e r eused l o c a l c l a t e t h e ax i a l l oad v a l u /* ( v v i t h o u t ac-c o u n t i n g f o r c o l u m n d e f l e c i i o n . T h e a x i a l load v a l u P, ( w h i c h accou iHs f or c o l u m n s d e f l e c t i o n s f> and .)w c r c d e r i v e d in the f o l l o w i n g e q u a t i o n s

    P (c

    \(c.

    w h c r c e , a nd 1, a r e t h e e c c e n t r i c i t i e s a l o n g x - a n d y -a x c s , r e s p e c t i v c l y.

    E X P E R I M E N TA L P R O G R A MA t o l a l o t " I I s p e c i m e n s v s e r e t e s t e d i n t he p r e s e n t

    s t u d y . H v e s p e c i m e n s v v e r e d e s i g n e d a s s h o r t , t i e d c o l -u m n s ( I ' i g . ? ) , and the o t h e r s i x s p e c i m e n s v v e r e c o n -s l r u c l c d a s s h o r l s h e a r v v a l l s ( I ' i g - 4 ) . P h y s i c a l c h a r a c -l e r i s t i c s of t h e t ' i v e c o l u m n s and s ix s h e a r v v a l l s t e s t e da r e s h o v v n in Ta b l e I and F ig . 3 and 4 . I he t e s t i n gf r a m e c o n s t r u c t e d f o r t h i s e x p e r i m e n t a l p r o g r a m i ss h o w n i n F i g . 5 , a n d t h e a c t u a l e x p e r i m e n t a l s e t u p f o rt h e t c s t i n g s is s h o w n in F i g . 6 and 7 .

    A l l s p e c i m e n s v v c r c l e s t e d and s tud ied fo r t h e i r c o m -p l e t e b c h a v i o r u n d e r c o m b i ne d b i a x i a l b e n d i n g and ax -ia l c o m p r e s s i o n , a nd wcrc used t o e x a m i ne s o m c o f t h ev a r i a b l e s i n v o l v c d , such a s s t e e l y i e ld s t r e n g t h , n o r m a l -a n d h i g h - s t r c n g t h c o n c r e t e , a n d e c c e n t r i c i t i e s . T h e

    ACI S t ruc tu ra l Journa l / May June 1987

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    3/11

    specimens were p in-ended .T he b r acke l s in bo ih ends o f the specimens were d e-

    signed and h e a v i l y r e inforced to p r e v e n t local f a i lu res Fig. 4 and 6) . For co lumn spec imens C h a n n e l Sec t ionA ) , ih e b racke ts were conf ined w i t h a foo t - long steelt u b e on each end , and the gap b e t w e en th e s teel tubesand t h e o r i g ina l b r ack e t s w as g r o u t e d w i t h 5000 p s ic o n c r e t e , as s h o w n in F ig . 6 . A1I f i v e c o l u m n s w e r er e in fo r ced l ong i t ud i na l l y by 22 N o . 3 b a r s w i t h steelyield s t r e n g t h / = 51 .8 ks i . O f the t o t a l s ix shearwal lsp ec im ens Ch a nne l Sec t i on B) , f ou r s p e c i m ens w e ref a b r i c a t e d w i t h n o rma l conc re t e a n d t w o w i t h h i g h -s t r e n g t h c o n c r e t e . A l l s h e a r w a l l s p e c im e n s w e r e r e in -fo r c e d l ong i t ud ina l l y by 18 No. 3 bars w i t h tw o d i f f e rent s tee l y ie ld s t rengths , as seen in Table 1 . These lon-g i tud ina l bars we re held together by 'vin. lies at spac-ings 2.5 to 4 in. center- to ce rner. T h e l ies and l o n g i t u -d i n a l bars were l i ed toge ther us ing No. 16 gage b i n d i n g

    Table 1 Specimen detailsSpetimcnnumbcr

    u-

    .K

    4c

    5,

    *> >

    %

    8> .

    *>

    IQh

    llh

    I>pco MamI.TOSS vcciion' b a r %

    A :: No 1.A :: N O i

    A :: NO - - - - - -

    A :: NO 3-

    A :: N O .B 1 8 No 3.B 1 8 No 3

    B 1 8 N o 1

    f -B 1 8 N o 1.

    B 18 No 3

    B 18 No l

    ' . / . i. i h 4 :

    51 8 3W.14 I X 2 5 6 4

    5 1 8 '662,4 1 (i 1 0 f> 4 ... * i .

    5 1 8 j:r ;4 i K i 6 4

    5 1 8 3 M W 4 1 5 : < ; 6 4

    6 5 6j:ii i*:*:*: * 1 56 < '(sj:.u 4 u : H Mft i *6 ( ~6.:Wi4' 4 '54 > 0 8 ^ ' t. 5

    6* 62'vtl 4 9 1 1 (> f> 1 lO h

    llh. . _

    B

    B IB I

    i

    B 1B

    Bt

    f'rom leM repul s .T ' r o m P .: l rom

    A n a l v s i * r e p u l s ,kips

    '

    102.4

    103 .1

    102.4

    103.6

    120.0

    100.2

    91.0

    70.5

    6 3 . 1

    124.0

    102.7

    -

    93.

    , 86.3

    6 7 . 5

    60.0

    t

    95.3

    T C . I r e b u l l k i p s

    108.31

    1 1 9 6 5

    1 0 3 . 1 5

    1 0 7 2 8

    1 2 1 7 2

    UP.28

    9 .99

    66.112

    ir 5991 61

    A \ c r a p c

    / *

    /*-,

    1.058

    1 . 1 6 1

    1.007

    1.016

    1 . 0 1 4

    1.07 I

    1.07 1

    1.05.1

    1 046

    0.912

    1 0 3 3

    / _.

    1 . 1 4 5

    1 . 1 . 1 5

    1 1 0 0

    1 1 0 0

    1.028

    0.982

    1.082

    Table 3 Ultmate moment capacity

    Fig I0Specimens of Channel Section B after failure

    206

    Anahsis r c s u l t s .

    Spccimennumbcr

    le

    2c

    3c

    4c

    5c

    6y

    R y9>

    Typc o f ,c r o s s scc t ion

    A

    A

    A

    A ,A

    B

    B

    B

    B

    kip-in

    A / . ,

    3 0 7 . 1

    28.1.4

    307.1

    3 6 1 . 8

    300.2

    252 3

    2 5 5 . 2

    2 1 7 . 5

    212 .4

    Ai.

    184.3

    185.5

    184 3

    186.1

    180.2

    3 7 3 . 0

    3 ^6 7

    3 2 1 . 1

    3 1 3 . 1

    IC M rcsulls, kip-n.

    A / . ' ' A/. A / . ' M.11 2 4 . 9 1 5 6 19 5 2 3 1

    1.129 145 215 .4 25 8

    .109.5 .118.4 1 8 5 . 219

    .175.5 195.2 193.1 225 9i J

    304.3 .126.2 1 8 2 . 6 2 3 6 . 8

    270 ,3 306 .2:3 9 9 . 7 | 4 5 5 . 9t ^

    2 7 4 . 8 304 .2 '405 .7 415 .9

    2 2 9 , 1 2 4 8 . 1 118.2 144.2

    2 2 2 . 5 2 3 3 . 7 .128.1 3 3 0 . 9i t t i

    I0h

    llh

    B

    B

    'LxpcrimcnUl .W.. / .' -xpcumcnia l Af. . P.

    from ihc load-ilcflctiiiin tu

    3 1 2 . 5 i

    *.116.8

    e. , M, / . f f . * A , ) ; Af..

    462.0

    467.7

    P. e.

    2%. 1 3 5 2 . 8 , 4 3 8 . 1 4 5 8 . 1

    2 8 8 . 8 3 3 1 . 9 4 2 6 . 4 4 4 5 . 1

    fi . t hcrc A , A , iihiameil

    A CI S tr u c t u r a l Journa l / May-June 1987

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    7/11

    (4) and (6) were used fo r compara t ive s tudy in the fo l -lowing equat ions

    and

    (6a)

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    8/11

    Load contour and design formulas for channelsections

    T h e load contours a nd t h r e e - d i m e n s i o n a l f a i lu re s u r -faces n a v e f o r m e d th e b a s i s o f c u r r e n des ign proce-dures f o r r e in fo rced conc re t e co lum ns subject to b iax-i a l b e n d i n g an d a x i a l c ompre s s i on in the v a r i o u s n a -

    t ional codes T h e l oad -comour me lhod i nvo lves cu t t ingth e f a i lu re sur face a t a constam va lu of P. to give aload contour i n t e r a c t i o n re lat ing A /n, and Mn. Fig 16and 17 show sets of l oad con tou r s at va r ious v a l e s ofP n. To deve lop a des ign e q u a l i o n , th e d i m e n s i o n l e sload c o n t o u r s a re n eeded . T he genera l nondimens iona

    300

    250

    200

    150

    100

    EXP. M >246.IUpt -lfi.

    EXPERIMENTAL

    O THCORET1CAL

    NOTE: EXP. NVPU+t

    (I/4U I0')

    a

    350

    300

    tftO

    20O

    . I5 O

    100

    50

    SPECIMEN yEXP U 344.2 UH -1

    A EXPERIMENTAL

    O THEOHCT1CAL

    NOTE EXP M. -P(*.+6

    0 2 4 6

    b 4

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    9/11

    equa t i on for the load c on t ou r a t cons t anP, m ay beexpressed in the fo l lowing f o r m " ( o r ano the r s im i l a r

    A/, A f,A/,,

    1 (8)

    where a, a n d a : a re expone nls tha t depend on the d i -m e n s i o n s o f the c r o s s s e c t i o n , t h e r e i n f o r c e m e n ta m o u n t a n d l o c a t i o n , c o n c r e t e s t r e n g t h , s tee l y i e l dstress, and a m o u n t o f concre te cover.

    Fig. 18 and 19 show some of the d imens ion less loadc o n t o u r s a t p resens t u d y. T he v a r i a b l e s i n v o l v e d inFig. 18 and 19 are the m x i m u m concre te compressives t r e n g t h / ' , the steel yield stress/, an d types o f c h a n -nel sections. As s h o w n in these f i g u r e sa, and n : in -crease fo r larger vales o f P,. T he ca lculated v a le s o fa, an d a : va ry f rom 1 .5 to more than 2 .0 . F o r p rac t icadesign purposes, it seems s a t i s fac to ry to t ak e u , = u :as 1.5 for a n y c h a n n e l - s h a p e d sec t ions , w h i c h is ( hes a m e as for a r ec tangula r sec t ion . From t he p resen ts tudy, i t seems tha t the h igher v a lu o f a, and . m ay

    be used {see the f o l lo w i n g des ign examples) for p rac t i -cal design.

    SIGN E X M P L E

    Select a compress ion m e m b e r w i t h t h i n - w a l l e d c h a n -nel shaped cross section to t a k e the f o l l o w i n g u l t m a t eloads: Pu = 32.6 kips , Mu = 100.6 kip- in . . and V / _=148.5 kip-in. Use/ = 2964 psi, and/ = 65.76 ksi .

    Solut ionStep T ry a c h a n n e l - s h a p e d c r o s s s e c t i o n a s

    s h o w n in Fig . 2 .Step 2 Try 18 No. 3 bars as i l l u s t r a t e d in F ig . 2 .T h u s , pt = 0 .049, sa y 4 .9 pe rcen t , w h i c h is b e twecn 1

    o o

    1 X O O 3O O 400 9

    H m k . p t - m )

    Fig, 16Load conours for Channel Section A

    AC I S t r u c t u r a l J o u r n a l / M a y - J u n e 1987

    and 8 percent o f gross rea a s pe rmi t ted by the ACIB u i l d i n g Code . " P rac t ica l ly, va les o f 3 6 pe rcen ta re c o m m o n ly used.

    Step 3 Use o = 0.7 for t ied c o l u m n . Th en

    P, P/o 46.6 kips. V / A /a l/o = U 3 . 7 k i p - i n .

    A/,. = A/B./o = 2 1 2 . 2 k i p - i n .

    t XX 4O O 9 O O

    OO CXJ WO 4O O 500 600

    Fig. I7(a) and b)-Load contours for Cha nnel SeclionB

    209

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    10/11

  • 8/14/2019 Channel Shaped Reinforced Concrete Compression Members

    11/11

    slightly overestimate those of experimental tesis.ever, a satisfactory agreement w as still achieved. Theexperimental load-deflection and moment -cu rva tu recurves obtained ("rom th e present t e s t s were also notedto be in good agreement w i t h ana ly t ica l results fromzero up to the mximum moment capacity of the sec-tion.

    The design procedures in ihis paper require de tcr-mining th e strength in teract ion diagrams and ihe loadcontour equations; the load contour method wiih a -a. = 1.5 for rectangular section w as used in the designexample, and has been found to be on the conservat ivoside as compared w i th th e present analylical and exper-imental results. Even with , = t* . = 2.0, the load con-tour equation still achieves a consrvam e solution.

    Recent s tudies by Pos ton e t a l.14 showed t h a t theplane-section assumption in their axial load-moment-curvature computer analysis program for the design ofslender, nonprismatic, and hollow bridge piers is validonly if the unsupported wall length-to-thickness ratiodoes not exceed s ix . As mentioned earl ier, a similar as-sumption was made in developing ihe present ax ia l

    l o a d - m o m e n t - c u r v a t u r e compute r p rogram for theanalysis of i rregular shaped, shor t , and t ied columnsand shearwalls . Examination of data from this t e s t asshown in Tables 2 and 3 reveis that no strength reduc-tion of any kind is indicated for any spccimens exceptSpecimens lO h an d llh, w h i c h w c r c fabricaied w i t hhigh-strength concrete.

    KNOWLEDGMENTS

    The financia Mjpporl o ihc N ew Jersey Institulc o tcchno o\d s e^cra l consu l lmg cnginccrmg com pa mcs in Nc Jersey and N cw

    York is graicfully a c k n o w l c d g c d . Ihc exper imenta l w o r k and p an oth c compuiations o ihc p rcscm s iudy w c r c conduc t ed h> ihc author's gradate studcnls hclwccn 1 9 K O and I 9 S 5 : D Chidamharrao,S. Ya l a m a r t h y. ti. Hannoush. H. tihadum. N Paicl, \ H. \Vang ,and J. H. Yc h Ihcit cflom are also greatK apprcc ia icd .

    NOT TIONA, g ross c ross -scc t iona l a rca.-1 lolal a rca of mam r cmfo rccmcn te , ccccn t r ic i ty along x -ax i se . c c c c n t n c i t y a long y - a x i s

    /' ultmate Mrcnglh o f concrete/. s tccl yicld stress/. Mec s i rcss a ullimalckd d i s lancc from mximum c o m p r c s M v e .oi icrete s t r a m to

    neu t r a l ax i s( (o ta l length o f cohimn(" cffccmc length o columnAf., nominal bcnding moment ahoui x - ax i sAf.. nominal bendmg momen t about \ - a x i sAf , A f _ capacil) al ax ia l load I', w h c n A f . is / e roA, - A,. capacil> a l ax ia load /'_ w h c n A /, is / e roA/.. o A/..A/.. o A/..A, bcndmg momciu .iboui \ - a \ i sA/. hcndmg momenl ahoul y - a x i sP -- ax i a l load \aluc/* mx imum i.'ompre'.Mon capacilv of ihc cohimii1 or shcar-

    w a l l

    P,

    axia l load \aluc ( w u h o u l accnunling fo r column or shcar-wall dcflccuon)P, = axia l load \aluc (accounimg fo r column or s h c a r w a l l de -

    fleclion)

    nominal axial loadP. = ot Uatcrloo Press , 1980. pp. HN-H5.

    4. Chidambatrao, I).. "lichaMor o (.'hjmiel-Shaped KtmlorccdC'oncrc le Columns undcr Combined Biaxia l Bcndmg and C o m p r e s -sion," MSc tlicsis. Nc\ Jerse> Instnuic o" I echtiolog\ N c w a r k . -\ug1983, IOS pp.

    5. Ya l a m a r t h > . S ., "UchaMor o I hm-\d Channc l ShapedRcinlorccd C 'oncrc le C'olunuis

    undcr C ornbmcd

    Biaxia l Bonding and

    Comprcssion," \1Sc ihcsi\ N'c Je r sey Insinulc o Icchnoloi\N c w a r V. \1a> 1984. H pp .

    6 Hannoush. d . "UchaMor of High S t r cng ih I r regular ShapedRc in fo r ce d Concre te Columns undcr t ombincd Biaxia l Bcndmg andComprcssion." MSc Ilicsis. N ew 1etsc> Insiiiutc o I e c h n o l o g > ,N c w a r k , Ma> 1985 , % pp.

    ". Matlivk. Alan H.. "Roiational C apaci(> o Hmgmg Regions mRcin fo rced Conc re t e Bcams." f-U \ura \ttvtianu~ 1- f Rrintoru-dConcrelf, SP-12 , American C o n c r e t e Insinuic Am er i c a n Socicl\Cnil I:ngmccrs. Detroit. 1965. pp 143-181.

    H. C o r l ey, \V, (icnc. "Rotaiional Ca paci l> o f Rc in fo rced C o n c r e teBcams." Pmit cdin^. ASCI , V. 92, SI4, Ocl. 1966. pp 1 2 1 1 -W >

    9 . Brcslcr. Bon-.. "Design Critcna fot R c i n f o r c e d Column'. undcr

    A x i a l I oad and Biaxial Bcndmg." A( I J < M K--M . Pre>cef