Top Banner
A Multipath Channel Estimation Algorithm using the Kalman Filter. Rupul Safaya
63

Channel Estimation Using Kalman Filter

Nov 25, 2014

Download

Documents

user1972
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Channel Estimation Using Kalman Filter

A Multipath Channel Estimation Algorithm using

the Kalman Filter.

Rupul Safaya

Page 2: Channel Estimation Using Kalman Filter

2

OrganizationIntroductionTheoretical BackgroundChannel Estimation AlgorithmConclusionsFuture Work

Page 3: Channel Estimation Using Kalman Filter

3

Introduction

Page 4: Channel Estimation Using Kalman Filter

4

Definitions: Channel: In its most General sense can describe everything

from the source to the sink of the radio signal. Including the physical medium. In this work “Channel” refers to the physical medium.

Channel Model: Is a mathematical representation of the transfer characteristics of the physical medium. Channel models are formulated by observing the characteristics of the

received signal. The one that best explains the received signal behavior is used to

model the channel. Channel Estimation: The process of characterizing the

effect of the physical medium on the input sequence.

Page 5: Channel Estimation Using Kalman Filter

5

General Channel Estimation Procedure

ErrorS igna le (n)

ActualR eceived S igna l

C hannel

Estim atedC hannel

M odel

Estim ation A lgorithm

+

Estim atedS ignal

)(ˆ nY

)(nY

Transm itted sequence

+

-

)(nx

Page 6: Channel Estimation Using Kalman Filter

6

Aim of any channel estimation procedure: Minimize some sort of criteria, e.g. MSE. Utilize as little computational resources as possible

allowing easier implementation. A channel estimate is only a mathematical

estimation of what is truly happening in nature. Why Channel Estimation?

Allows the receiver to approximate the effect of the channel on the signal.

The channel estimate is essential for removing inter symbol interference, noise rejection techniques etc.

Also used in diversity combining, ML detection, angle of arrival estimation etc.

Page 7: Channel Estimation Using Kalman Filter

7

Training Sequences vs. Blind MethodsTraining Sequence methods: Sequences known to the

receiver are embedded into the frame and sent over the channel.

Easily applied to any communications system.

Most popular method used today.

Not too computationally intense.

Has a major drawback: It is wasteful of the information bandwidth.

Blind Methods: No Training sequences

required Uses certain underlying

mathematical properties of the data being sent.

Excellent for applications where bandwidth is scarce.

Has the drawback of being extremely computationally intensive

Thus hard to implement on real time systems.

There Are two Basic types of Channel Estimation Methods:

Page 8: Channel Estimation Using Kalman Filter

8

Algorithm Overview Consider a radio communications system using training

sequences to do channel estimation. This thesis presents a method of improving on the training

sequence based estimate without anymore bandwidth wastage. Jakes Model: Under certain assumptions we can adopt the Jakes

model for the channel. This allows us to have a second estimate independent of the data

based (training sequence) estimate. The Kalman estimation algorithm uses these two independent

estimates of the channel to produce a LMMSE estimate. Performance improvement: As a result of using the Jakes model

in conjunction with the data based estimates there is a significant gain in the channel estimate.

Page 9: Channel Estimation Using Kalman Filter

9

Theoretical Background

Page 10: Channel Estimation Using Kalman Filter

10

Signal Multipath

Base S tation

Tall Build ings

M obile T erm ina l

Path 2

Path 3

D irect Path

Build ing

Page 11: Channel Estimation Using Kalman Filter

11

Multipath Signal multipath occurs when the transmitted signal arrives

at the receiver via multiple propagation paths. Each path can have a separate phase, attenuation, delay

and doppler shift associated with it. Due to signal multipath the received signal has certain

undesirable properties like Signal Fading, Inter-Symbol-Interference, distortion etc.

Two types of Multipath: Discrete: When the signal arrives at the receiver from a

limited number of paths. Diffuse: The received signal is better modeled as being

received from a very large number of scatterers.

Page 12: Channel Estimation Using Kalman Filter

12

Diffuse Multipath The Signal arrives via a continuum of multipaths.

Thus the received signal is given by:

τ)dτ(tst(τα(t)y ~);~~ where ),(~ tα is the complex

attenuation at delay and time t and ts~ is thesignal sent

The Low Pass time variant impulse response is:

Cfjetth

2);();(~

where Cf is the carrier frequency. If the signal is bandlimited then the channel can

be represented as a tap-delayed line with time-varying coefficients and fixed tap spacing.

Page 13: Channel Estimation Using Kalman Filter

13

Tap Delayed Line Channel Model

Attenuator

Attenuator

A ttenuator Attenuator

Attenuator

Attenuator

)()()(~ tjststs sc

(t)g M~

2M

21M

21

20

21M 2

M

)(~ty

sT Delay

(t)g 1~ (t)g0

~ (t)gM 1~ (t)gM

~(t)g M 1~

sT Delay

sT Delay

Page 14: Channel Estimation Using Kalman Filter

14

Tap-Delay Line Model T h e r e c e i v e d s i g n a l c a n b e w r i t t e n a s :

m W

mtstmgty )(~)(~)(~ w h e r e :

);(~1)(~ tW

mhW

tmg i s t h e s a m p l e d ( i n t h e d o m a i n ) c o m p l e x

l o w - p a s s e q u i v a l e n t i m p u l s e r e s p o n s e . W : i s t h e B a n d w i d t h o ft h e B a n d p a s s S i g n a l

: W S S U S ( W i d e S e n s e S t a t i o n a r y U n c o r r e l a t e d

S c a t t e r i n g ) : A s s u m i n g W S S U S t h e d e l a y p r o f i l e a n d s c a t t e r i n gf u n c t i o n a r e a s f o l l o w s : M u l t i p a t h I n t e n s i t y P r o f i l e :

),(~),(*~

21)( ththECR T h i s

d e f i n e s t h e v a r i a t i o n o f a v e r a g e r e c e i v e d p o w e r w i t h d e l a y .D e l a y s p r e a d i s t h e r a n g e ( i n d e l a y ) f o r w h i c h t h e a v e r a g ep o w e r i s n o n - z e r o .

S c a t t e r i n g f u n c t i o n : )]([);( CRFvS T h i s d e s c r i b e s t h e p o w e rs p e c t r a l d e n s i t y a s a f u n c t i o n o f D o p p l e r f r e q u e n c y ( f o r f i x e dd e l a y )

Page 15: Channel Estimation Using Kalman Filter

15

Tap gain functions Complex Gaussian process: Assuming infinite

scatterers, as a consequence of the Central Limit

Theorem, we can model the impulse response as a

complex Gaussian process. Rayleigh: If there is no one single dominant path, then the

process is zero mean and the channel is Rayleigh fading.

Ricean: If there is asingle dominant path then the process is non-

zero-mean and the channel is Ricean.

The tap gain functions are then sampled complex

gaussian processes.

Page 16: Channel Estimation Using Kalman Filter

16

Model Parameters The tap-delay model requires the following

information. Number of taps are TMW+1. Where TM is the delay spread and W

is the information bandwidth. Tap Spacing is: 1/W. Tap gain functions are discrete time complex Gaussian processes

with variance given by the Multipth spread and PSD given by thescattering function.

Tap gain functions as key: Once having specified thetap spacing and the number, it only remains to trackthe time varying tap gain functions in order tocharacterize the channel as modeled by the tap-delayline.

Jakes model: The Jakes model (under certainassumptions) assigns the spectrum and autocorrelationto the tap-gain processes.

Page 17: Channel Estimation Using Kalman Filter

17

Jakes Model

Base S tation

Veh ic le Ve loc ity

PropagationPath

M obile

a

Assume plane waves are incident upon an omni-directional antenna from stationary scatterers.

There will be a doppler shift induced in every wave. Function of angle of arrival, carrier frequency and

the receiver velocity.

Page 18: Channel Estimation Using Kalman Filter

18

Bounded Doppler Shift: The doppler shift is given by cosvfd (where v is Vehicle velocity, , the

wavelength of the carrier and is the angle of arrival)and is thus bounded.

Narrowband process: Since the Doppler spectrum isbounded, the electric field at the receiver is anarrowband process.

Complex Gaussian Process: Assuming infinitescatterers and using the Central Limit theorem fornarrowband processes, the received electric field isapproximately a complex gaussian process.

Page 19: Channel Estimation Using Kalman Filter

19

Jakes Spectrum

U n i f o r m a n g l e o f a r r i v a l : A s s u m e t h a t t h e r e c e i v e dp o w e r i s u n i f o r m l y d i s t r i b u t e d o v e r t h e a n g l e o f a r r i v a l .

C o n s t a n t v e h i c l e v e l o c i t y : F i n a l l y t h e a s s u m p t i o n i sm a d e t h a t t h e v e h i c l e i s n o t a c c e l e r a t i n g .

P o w e r s p e c t r u m e x p r e s s i o n :

2/12

1)(

mfCff

fS w h e r e Cf i s t h e c a r r i e r f r e q u e n c y a n d mf i s

t h e d o p p l e r s p r e a d . S h a p i n g F i l t e r : T h e J a k e s s p e c t r u m c a n b e s y n t h e s i z e d

b y a s h a p i n g f i l t e r w i t h t h e f o l l o w i n g i m p u l s e r e s p o n s e : )2(4/1

4/1)2()43(4/12)( tmfJtmfmftjh

Page 20: Channel Estimation Using Kalman Filter

20

Jakes Spectrum at a Doppler spread of 530 Hz.

Page 21: Channel Estimation Using Kalman Filter

21

The Channel Estimation Algorithm

Page 22: Channel Estimation Using Kalman Filter

22

Introduction Aim: To improve on the data-only estimate. Jakes model: We have adopted the Jakes model for the radio

channel. Tap-gains as auto-regressive processes: The Jakes power

spectrum is used to represent the tap-gains as AR processes. State-Space Representation: We have two independent estimates

of the process from the data-based estimate and the Jakes model. These are used to formulate a State-Space representation for the tap-

gain processes. An appropriate Kalman filter is derived from the state-space

representation. Derivation: The algorithm is developed first for a Gauss-Markov

Channel and then for the Jakes Multipath channel

Page 23: Channel Estimation Using Kalman Filter

23

AR representation of the Tap-gains

General form: Any stationary random process can be represented as an infinite tap AR process.

The current value is a weighted sum of previous values and the plant noise.

U nitD e lay

U n itD elay

U n itD e lay

.

.

.

. . .

1 h

2 h

Nh

)(nS)1( nS

)( NnS

)(nw

Page 24: Channel Estimation Using Kalman Filter

24

D i f f e r e n c e E q u a t i o n f o r m : )()()(

1

nwinSnSN

ii

W h e r e S ( n ) : i s t h e c o m p l e x g a u s s i a n

p r o c e s s , i a r e t h e p a r a m e t e r s o f t h e m o d e l . T h e m o d e l i s d r i v e n

b y w ( n ) : A s e q u e n c e o f i d e n t i c a l l y d i s t r i b u t e d z e r o - m e a n

C o m p l e x G a u s s i a n r a n d o m v a r i a b l e s .

S o l v i n g f o r t h e A R p a r a m e t e r s : T h i s c a n b e d o n e i n t w o w a y s

Y u l e - W a l k e r e q u a t i o n s o l u t i o n : T h e a u t o c o r r e l a t i o n c o e f f i c i e n t

o f t h e p r o c e s s , i s a n N ( n u m b e r o f t a p s i n t h e A R m o d e l ) o r d e r

d i f f e r e n c e e q u a t i o n t h a t c a n b e s o l v e d .

P S D o f t h e p r o c e s s : T h i s m e t h o d i s m o r e c o m p l e x a n d i n v o l v e s

f i n d i n g t h e f o r m o f t h e s h a p i n g f i l t e r f o r t h e p r o c e s s P S D .

Page 25: Channel Estimation Using Kalman Filter

25

Data based estimator A s s u m p t i o n : T h e c h a n n e l r e m a i n s c o n s t a n t o v e r

t h e s p a n o f t h e t r a i n i n g s e q u e n c e . S p e c i fi c s :

T r a i n i n g s e q u e n c e : L e t t h e ‘ M ’ l e n g t h t r a i n i n g s e q u e n c e b e : TMxxxx 110 .................

C h a n n e l I m p u l s e R e s p o n s e : L e t t h e ‘ L ’ l e n g t h i m p u l s e

r e s p o n s e b e TLh......hhhh 1210~~~~

R e c e i v e d s i g n a l : F o r c h a n n e l n o i s e Cn o f v a r i a n c e 2C t h e

r e c e i v e d s i g n a l i n v e c t o r f o r m i s g i v e n b y : cnhXY . W h e r e X i s

a n LNL 1 T o e p l i t z m a t r i x c o n t a i n i n g d e l a y e d v e r s i o n s o f t h e

t r a i n i n g s e q u e n c e s e n t .

Page 26: Channel Estimation Using Kalman Filter

26

Channel estimate: The data based estimate is given by

correlating the received signal with the training sequence:

)()(ˆ 1 YXXXh TT

Estimation error: As expected the estimation error is a

function of the channel noise. It is given by )()(~

1c

TT nXXXh

Error Covariance: The performance of the data based

estimator depends on the length of the training sequence and

its autocorrelation: 12 )( XXP T

cD

For an ideal training sequence autocorrelation the error

covariance is given by M

P cD

2

Page 27: Channel Estimation Using Kalman Filter

27

Tracking a Gauss-Markov Channel

Page 28: Channel Estimation Using Kalman Filter

28

A Gauss-Markov tap-gain process has an exponential autocorrelation.

Page 29: Channel Estimation Using Kalman Filter

29

Kalman Filter Derivation System M odel: Since the auto-correlation is

exponential, the tap gain is a simple first order AR

process: )()1()( 1 nwnSnS W here

)(nS : is the complex gaussian tap-gain process.

1 is the parameter of the AR model assumed.

Observation M odel: Since the data based estimator

produces “noisy” estimates of the process. The

following model emerges:

)()()( nvnSnX . W here X(n) is the data based estimate of S(n) v(n) is the error of the data based estimate and

σ cv

22 is the error variance

Page 30: Channel Estimation Using Kalman Filter

30

Kalman filter equations S c a l a r K a l m a n f i l t e r : G i v e n t h e s t a t e s p a c e

r e p r e s e n t a t i o n , a s t a n d a r d s c a l a r K a l m a n f i l t e r i s u s e dt o t r a c k t h e p r o c e s s .

E q u a t i o n s : T h e i n i t i a l c o n d i t i o n s a r e :

00ˆ S(n))=E(S

22)1( vandwP

T h e K a l m a n g a i n i s g i v e n b y :

)()()()( 2 nnP

nPnkv

T h e c u r r e n t e s t i m a t e o f t h e p r o c e s s , a f t e r r e c e i v i n g t h e d a t a e s t i m a t e i sg i v e n b y :

)]ˆ[ˆˆ (nSX(n)-k(n)(n)S(n)=S curr

T h e p r e d i c t e d e s t i m a t e o f t h e p r o c e s s i s g i v e n b y :

(n)S)=(nS cu rrˆ1ˆ

1 T h e c u r r e n t e r r o r c o v a r i a n c e i s g i v e n b y :

)()(1)( nPnknP cu rr T h e p r e d i c t i o n e r r o r c o v a r i a n c e ( M S E i n t h i s c a s e ) i s g i v e n b y :

221 )()1( wcu rr nPnP

Page 31: Channel Estimation Using Kalman Filter

31

Simulation Parameters S y s t e m e q u a t i o n : w(n))S (n.S (n) 19 O b s e r v a t i o n E q u a t i o n : )()()( nvnSnX T h e f r a m e r a t e i s : sec105 4 Frames/R F . T h e s i m u l a t i o n i s r u n a t t h e

f r a m e r a t e .

8M : T h e l e n g t h o f t h e t r a i n i n g s e q u e n c e . T h e c h a n n e l i s a s s u m e d

t o b e i n v a r i a n t f o r t h e s e M b i t s .

T h e s i g n a l t o n o i s e r a t i o o f t h e c h a n n e l , f o r 1BE i s :

dBENE

c

B

O

B 62 2

T h u s 1256.2 c

T h e d a t a e s t i m a t o r v a r i a n c e 0.0157σ2

2V

Mc

T h e v a r i a n c e o f t h e t a p g a i n p l a n t n o i s e i s 0314.02σ 22w V

Page 32: Channel Estimation Using Kalman Filter

32

Results:Results:

Channel Estimation for a single ray Gauss-Markov channel

Page 33: Channel Estimation Using Kalman Filter

33

MSE for the estimator: D e f i n i t i o n :

T h e c u r r e n t M S E i s :

H

currcurrcurr (n)SS(n)(n)SS(n)EP ˆˆ

T h e p r e d i c t i o n M S E i s :

H(n)SS(n)(n)SS(n)EP ˆˆ

S t e a d y S t a t e :

T h e s t e a d y s t a t e c u r r e n t e r r o r c o v a r i a n c e i s :0113.

SScurrP T h e s t e a d y s t a t e p r e d i c t i o n e r r o r c o v a r i a n c e i s :

0406.SSP

S i m u l a t i o n R e s u l t s : T h e c u r r e n t e r r o r c o v a r i a n c e i s :

0113.SimcurrP

T h e p r e d i c t i o n e r r o r c o v a r i a n c e i s :0406.SimP

P e r f o r m a n c e I m p r o v e m e n t : W e c a n s e e t h a t c o m p a r e d t o t h e d a t a o n l y

e s t i m a t o r , t h e r e i s a s i g n i f i c a n t i m p r o v e m e n t :

%282

2

V

currV SSP

Page 34: Channel Estimation Using Kalman Filter

34

Tracking a single Jakes Tap-Gain Process

Page 35: Channel Estimation Using Kalman Filter

35

Single ray Jakes Channel Consider a single ray line of sight radio channel. More Complex Channel: The underlying channel model is no

longer a single tap AR process. AR representation: The tap-gain process with the Jakes

spectrum is a stationary process. We can represent it as an AR process. Parameters: We derive the co-efficients for the process from the

closed form expression of the Jakes channel-shaping filter. State-Space representation: Using the AR model and the data

based estimator, a state-space representation is derived. Kalman tracking filter: Similar to the Gauss-Markov case, a

Kalman filter to track the process is derived from the State-Space representation.

Page 36: Channel Estimation Using Kalman Filter

36

AR representation of the Jakes Process

J a k e s S h a p i n g F i l t e r : T h e c l o s e d f o r m e x p r e s s i o n o f t h e

J a k e s f i l t e r i s g i v e n b y :

)2(4/14/1)2()

43(4/12)( tmfJtmfmftjh . W h e r e i s t h e G a m m a

f u n c t i o n a n d 4/1J i s t h e f r a c t i o n a l B e s s e l f u n c t i o n .

F I R f i l t e r : T h i s e x p r e s s i o n i s s a m p l e d t o p r o d u c e t h e F I R

J a k e s c h a n n e l s h a p i n g f i l t e r .

O u t p u t : I f t h e i n p u t t o t h i s f i l t e r i s g a u s s i a n w h i t e n o i s e ,

t h e n t h e o u t p u t i s s i m p l y t h e c o n v o l u t i o n s u m :

1

0

)()()(M

mj mnwmhnS . W h e r e M i s t h e l i e n g t h o f t h e F I R f i l t e r .

Page 37: Channel Estimation Using Kalman Filter

37

UnitDelay

UnitDelay

UnitDelay

.

.

.

. . .

1 h

Nh

)1( nw)1( Mnw

)(nw

0 h

)2( nw

2 h

1M- nh

)(nS

Convolution as a MA sum: The convolution is nothing but a

weighted moving average of the white noise inputs.

Partial Fraction Inversion: A finite order MA model can be represented as an infinite order AR series

by the method of partial fractions as described by Box and Jenkins.

Order Truncation: Obviously for our purposes an infinite order AR model

is impractical, so the infinite order AR model is truncated to order N.

Page 38: Channel Estimation Using Kalman Filter

38

Model Validation

T r u n c a t e d A R m o d e l : T h e a c c u r a c y o f th e t r u n c a t e d m o d e l s i n

r e p r e s e n t i n g t h e J a k e s p r o c e s s i s s t u d i e d .

P a r a m e te r s : Hzf m 50 . T h i s i s t h e D o p p l e r b a n d w id t h o f t h e c h a n n e l . mS fF 16 . T h i s i s t h e J a k e s - s h a p in g - f i l t e r s a m p l in g r a t e . HzsamplesF

PSDS /105 3 . T h i s i s t h e J a k e s s p e c t r u m s a m p l i n g f r e q u e n c y . 64MAN . T h i s i s t h e F I R s h a p in g f i l t e r l e n g t h . N i s t h e l e n g th o f t h e t r u n c a t e d A R m o d e l .

P S D a n d a u to c o r r e l a t i o n :

P S D i s g iv e n b y th e a n a ly t i c a l e x p r e s s io n : 2

1

2

2

1

)(

N

i

fiji

WSS

e

fS

A u to c o r r e l a t i o n w a s e s t im a te d b y a c t u a l l y c r e a t i n g t h e p r o c e s s e s a n d

f in d in g t h e i r a u to c o r r e l a t io n s .

Page 39: Channel Estimation Using Kalman Filter

39

AR process length comparison

Jakes spectrum for truncated AR processes.

Page 40: Channel Estimation Using Kalman Filter

40

Jakes autocorrelation for truncated processes

Page 41: Channel Estimation Using Kalman Filter

41

Kalman filter Derivation S t a t e S p a c e r e p r e s e n t a t i o n : A s i n t h e p r e v i o u s c a s e ,

w e a r e g o i n g t o r e p r e s e n t t h e s y s t e m u s i n g t h e S t a t e -

S p a c e f o r m a n d d e r i v e t h e a p p r o p r i a t e K a l m a n f i l t e r .

S y s t e m m o d e l : T h e A R f o r m o f t h e J a k e s p r o c e s s i s

)(1

)()( nwN

iinSinS

. W h e r e i a r e t h e A R c o e f f i c i e n t s

c a l c u l a t e d a n d N i s t h e o r d e r o f t h e m o d e l u s e d .

I t s t w o e q u i v a l e n t f o r m s a r e :

0

021

010000...000.1000..1

..21

1

1

.

.

w(n)

S(n-N ).

. )S(n-

)S(n-

N

)S(n-N..

)S(n-S(n)

i n m a t r i x f o r m

a n d )()1()( nWnSAnS i n v e c t o r f o r m .

Page 42: Channel Estimation Using Kalman Filter

42

T h e s y s t e m m a t r i x i s d e f i n e d a s :

010000...000.1000..1

..21 N

A

T h e P l a n t n o i s e c o v a r i a n c e m a t r i x i s

0000000

0000.002

......... ........

. .......... ... σ

(n)W(n)WEQ

wH__

O b s e r v a t i o n E q u a t i o n : )()()( nvnSnX W h e r e v ( n ) i s t h e e r r o r o f t h e d a t a b a s e d

e s t i m a t e w i t h a v a r i a n c e o f M

cvσ

22

E x p r e s s e d i n m a t r i x a n d v e c t o r f o r m :

)v(n-N..

)v(n-v(n)

)S(n-N..

)S(n-S(n)

)X(n-N..

)X(n-X(n)

1

1

1

1

1

1o r )()()( nvnSHnX

w h e r e H i s t h e i d e n t i t y m a t r i x .

Page 43: Channel Estimation Using Kalman Filter

43

O b s e r v a t i o n n o i s e c o v a r i a n c e m a t r i x :

1. .000. .100

0.100.. . .001

2

. . . . . . . . . . . . . . . . .

.. . . . . . . . . . . . .

vσH

(n )_v(n )

_vER

K a l m a n f i l t e r E q u a t i o n s : G i v e n t h e a b o v e S t a t e S p a c ef o r m u l a t i o n , w e c a n u s e a v e c t o r K a l m a n f i l t e r t o t r a c kt h e t a p g a i n p r o c e s s . T h e i n i t i a l c o n d i t i o n s a r e :

S (n ))= E(S 0ˆ = z e r o m a t r i x o f l e n g t h L ) (N

Iva n dIwP 22)1(

T h e K a l m a n g a i n i s g i v e n b y :1])([)()( RHnHPHnPnK TT

T h e c u r r e n t e s t i m a t e o f t h e p r o c e s s , g i v e n t h e d a t a e s t i m a t e i s g i v e nb y :

]ˆ[ˆˆ (n )SX (n )-HK(n )(n )S(n )=S cu r r

T h e p r e d i c t e d e s t i m a t e o f t h e p r o c e s s , i s g i v e n b y :

(n )S)= A(nS cu r rˆ1ˆ

T h e c u r r e n t e r r o r c o v a r i a n c e i s g i v e n b y : )()()( nPHnKInP cu r r

T h e p r e d i c t e d e r r o r c o v a r i a n c e i s g i v e n b y : QAnPAnP T

cu r r )()1(

Page 44: Channel Estimation Using Kalman Filter

44

Simulation Parameters S y s t e m e q u a t i o n :

)()1()( nWnSAnS

N = 5 . T h i s i s t h e n u m b e r o f t a p s i n t h e A R m o d e l .

040900486005480059009086 .,.,.,.,.

010000010000010000010409.00486.00548.00590.09086.

A

O b s e r v a t i o n E q u a t i o n :

)()()( nvnSHnX

T h e D o p p l e r b a n d w i d t h i s Hzf m 500

T h e f r a m e r a t e i s : sec4105 Frames/FR . T h e s i m u l a t i o n i s r u n a t t h e f r a m er a t e .

Page 45: Channel Estimation Using Kalman Filter

45

8M : T h e l e n g t h o f t h e t r a i n i n g s e q u e n c e .

T h e s i g n a l t o n o i s e r a t i o o f t h e c h a n n e l , f o r 1BE i s :

dBENE

c

B

O

B 62 2

T h u s 1256.2 c

T h e v a r i a n c e o f t h e t a p g a i n p l a n t n o i s e i s 0314.0222wσ V

000000

000001

03140

......... ........ .

... ..............

.Q

T h e d a t a e s t i m a t o r v a r i a n c e 0.01572

2Vσ

Mc

1000100010

0001

.0157.

......... ........

. .......... ...

R

Page 46: Channel Estimation Using Kalman Filter

46

Results

Channel Estimation of a single ray Jakes channel

Page 47: Channel Estimation Using Kalman Filter

47

Error covariance: T h e e r r o r c o v a r i a n c e i s d e f i n e d a s :

HnSnSEP 1)(n

^S)1(1)(n

^S)1(

W e c a n t h e n i n t e r p r e t t h e d i a g o n a l e l e m e n t s a s f o l l o w s :

)/2( .......................* *..

*....... * *)/1( * *

*....... * *)/( *

*....... * *)/1(

nNnSMSE

nnMSEnnMSE

nnMSE

P

W h e r e )/1( nnMSE i s t h e M S E o f t h e p r e d i c t i o n .

)/( nnMSE i s t h e M S E o f t h e c u r r e n t s t a t e s e s t i m a t e

Page 48: Channel Estimation Using Kalman Filter

48

T h e s te a d y s ta te a n d s im u la te d e r r o r c o v a r ia n c em a t r i c e s a r e :

0.0296 0.0388 0.0565 0.1117 1.0921

)( SSPdiag

0.1144 0.1118 0.1081 0.1125 1.0777

)( SimPdiag

P e r f o r m a n c e I m p r o v e m e n t : T h e r e i s a s ig n i f i c a n tp e r f o r m a n c e g a in c o m p a r e d to th e d a ta o n ly e s t im a to r %29

2)1,2)((2

V

SimPdiagV

Page 49: Channel Estimation Using Kalman Filter

49

Multipath Channel Estimation

Page 50: Channel Estimation Using Kalman Filter

50

Multipath Jakes Channel Consider a multipath radio channel. Assume the Jakes model on each path. AR representation: For the Multipath case, a modification of

the single ray AR system model is presented. State-Space representation: Using the AR model and the

data based estimator, a state-space representation is derived.

Kalman tracking filter:Once again a vector Kalman filter is used to track the tap-gain functions.

Page 51: Channel Estimation Using Kalman Filter

51

System model A s s u m p tio n s : T h e ta p g a in p r o c e s s e s a r e in d e p e n d e n t

b u t h a v e th e s a m e J a k e s s p e c t r u m . A R R e p r e s e n ta t io n :

)(1

)()(

.

.

)(21)(2)(2

)(11)(1)(1

nLwN

iinLSinLS

nwN

iinSinS

nwN

iinSinS

w h e r e )( nlS i s th e thl p ro c e s s to b e tr a c k e d

i a r e th e A R m o d e l p a r a m e te r s . T h e s e a r e th e s a m e f o r e a c hp ro c e s s .

)( nw l i s th e p la n t n o is e d r iv in g th e ta p g a in f u n c t io n . T h e r e la t iv ev a r ia n c e is d e te r m in e d b y th e p o w e r d e la y p ro f i le o f th e c h a n n e l .

L i s th e n u m b e r o f p ro c e s s e s b e in g t r a c k e d

Page 52: Channel Estimation Using Kalman Filter

52

T h e m a t r i x f o r m o f th e s y s t e m e q u a t i o n f o r ‘ L ’ p r o c e s s e s i s :

0................... 0.

. .0..........0.........

(n)L..w(n).......1w

N)-(nL....S N)-(n1S.

. .

2)-(nLS2)........-(n1S

1)-(nLS1)........-(n1S

0 .......1 0 00 ................0 .1......... 0

0......0 0 1N........21

1)N-(nL...S 1)N-(n1S.

. .

1)-(nL..S1)........-(n1S

(n)L.......S(n).......1S

I n v e c to r f o r m : )()1()( nWnSAnS , w h e r e

010000100001

21

....... ...... ..........

.......... ......

N........

A

i s t h e s y s t e m m a t r i x .

0..0

0.000

01

2

........ ..........

......... .........

.......... .........

........L

l(l)wσ

H

(n)_

W(n)_

WEQ i s t h e p l a n t n o i s e c o v a r i a n c e m a t r i x .

Page 53: Channel Estimation Using Kalman Filter

53

Observation Model Assuming that the data based estimates are path-wise

independent, we have the following model:

)()()(..

)(2)(2)(2

)(1)(1)(1

nLvnLSnLX

nvnSnX

nvnSnX

Where, )(nSl : The l’th process at time n.

)(nXl : The l’th data based estimate of S(n) )(nvl : Error of the l’th data based estimate.

Mσ c

v

22 is assumed to be the same for all paths

Page 54: Channel Estimation Using Kalman Filter

54

The Observation Equation can be written in matrix and vector form asfollows:

1)N-(nLv..

1)-(nLv

(n)Lv

.

.

.

.

.

.

.

.

.

.

1)N-(n1v..

1)-(n1v

(n)1v

1)N-(nLS..

1)-(nLS

(n)LS

.

.

.

.

.

.

.

.

.

.

1)N-(n1S..

1)-(n1S

(n)1S

1)N-(nLX..

1)-(nLX

(n)LX

.

.

.

.

.

.

.

.

.

.

1)N-(n1X..

1)-(n1X

(n)1X

)()()(___

nvnSHnX where H is an identity matrix. The observation noise covariance matrix is given by:

][)2(])()([ IvLHnvnvER where ][I is an )( NN identity matrix.

Page 55: Channel Estimation Using Kalman Filter

55

Simulation parameters N=5. This is the number of taps in the AR model.

L=3: This is the number of tap-gain processes being tracked.

040900486005480059009086 .,.,.,.,.

The System Equation

010000010000010000010409.00486.00548.00590.09086.

A

The Doppler bandwidth is Hz500fm

The frame rate is : sec105 4 Frames/RF . The simulation is run at the

frame rate.

8M : The length of the training sequence. The channel is assumed to

be invariant for these M bits.

Page 56: Channel Estimation Using Kalman Filter

56

T h e s i g n a l t o n o i s e r a t i o o f t h e c h a n n e l , f o r 1BE i s :

dBENE

c

B

O

B 62 2

T h u s 1256.2 c

T h e p o w e r d e l a y p r o f i l e ]81.0,9.0,1[0314.0)(2wσ l

T h e c o v a r i a n c e o f t h e p l a n t n o i s e i s :

0.0...

0.0.0851 Q

T h e d a t a e s t i m a t o r v a r i a n c e 0.0157σ2

2V

Mc . H e r e t h e a s s u m p t i o n i s

m a d e t h a t t h e t r a i n i n g s e q u e n c e h a s a n i d e a l a u t o c o r r e l a t i o n . I .0157.03 R

Page 57: Channel Estimation Using Kalman Filter

57

Results

Channel estimation for the first process.

Page 58: Channel Estimation Using Kalman Filter

58

Channel estimation for the second process.

Page 59: Channel Estimation Using Kalman Filter

59

Channel estimation for the third process.

Page 60: Channel Estimation Using Kalman Filter

60

Error Covariance T h e E r r o r c o v a r i a n c e i s d e f i n e d a s :

H)(nS)S(n)(nS)S(nEP 1ˆ11ˆ1

W e c a n t h e n i n t e r p r e t t h e d i a g o n a l e l e m e n t s a s f o l l o w s :

l /n)N(n

(l)MSE....... ...........* *.......

.** * ......l /n)(n

(l)MSE* *

.** * ......l (n/n)

(l)MSE*

.** * ......l /n)(n

(l)MSE

P

2

1

1

w h e r e

l nn

lMSE)/1(

)( : t h e s u m o f t h e M S E o f t h e p r e d i c t e d s t a t e e s t i m a t e

o n a l l p r o c e s s e s .

l (n/n)

(l)MSE : t h e M S E o f t h e c u r r e n t s t a t e s e s t i m a t e o n a l l

p r o c e s s e s .

Page 61: Channel Estimation Using Kalman Filter

61

T h e s i m u l a t e d e r r o r c o v a r i a n c e d i a g o n a l i s g i v e n b y :

1 2 30 . 0 3 8 4 0 . 0 3 5 1 0 . 0 3 2 1 0 . 1 0 5 6 0 . 1 1 1 10 . 0 1 1 2 0 . 0 1 0 9 0 . 0 1 0 6 0 . 0 3 2 7 0 . 0 3 2 10 . 0 0 9 8 0 . 0 0 9 7 0 . 0 0 9 7 0 . 0 2 9 2 0 . 0 1 6 90 . 0 1 0 5 0 . 0 1 0 5 0 . 0 1 0 5 0 . 0 3 1 5 0 . 0 1 2 20 . 0 1 1 2 0 . 0 1 1 1 0 . 0 1 1 2 0 . 0 3 3 5 0 . 0 0 9 6

0 . 0 1 1 2 0 . 0 1 0 9 0 . 0 1 0 6 0 . 0 3 2 7 0 . 0 3 2 10 . 0 0 9 8 0 . 0 0 9 7 0 . 0 0 9 7 0 . 0 2 9 2 0 . 0 1 6 90 . 0 1 0 5 0 . 0 1 0 5 0 . 0 1 0 5 0 . 0 3 1 5 0 . 0 1 2 20 . 0 1 1 2 0 . 0 1 1 1 0 . 0 1 1 2 0 . 0 3 3 5 0 . 0 0 9 60 . 0 1 1 7 0 . 0 1 1 7 0 . 0 1 1 7 0 . 0 3 5 1 0 . 0 0 8

)ocess # (lPr

)(SSCurrPdiag)(

SimCu rrPdiag))(( lPdiagS imCurr

))(( lPdiag S im )( S imPdiag )( SSPdiag

P e r f o r m a n c e i m p r o v e m e n t o n e a c h p a t h : T h e d a t a b a s e d e s t i m a t e h a s a M S E o f 0157.0σ 2

V o n e a c h p a t h .

P a t h 1 i m p r o v e m e n t : %66.281000157.

0112.0157.)1,1)((2

2

V

currV simPdiag

P a t h 2 i m p r o v e m e n t : %57.301000157.

0109.0157.

P a t h 3 i m p r o v e m e n t : %48.321000157.

0106.0157.

A l m o s t a 3 0 % i m p r o v e m e n t o n e a c h p a t h

Page 62: Channel Estimation Using Kalman Filter

62

Conclusions Developed a Kalman filter based channel

estimation algorithm for the Multipath radio channel.

Significant gain in performance over a training sequence based estimator.

This improvement is obtained without wasting any more bandwidth.

Also allows us to predict the channel state without having to wait for data.

Page 63: Channel Estimation Using Kalman Filter

63

Future Work Use Of Multiple Sampling Rates:

Instead of waiting for the data to arrive at the end of every frame we can run the Kalman filter at a higher rate than the frame rate.

In the absence of a data based estimate perform the time-update portion of the algorithm and do a measurement update when data is received.

Allows estimates to be available as required. Different process models on each path:

In case the process model varies with path, we can still use the Kalman filter but with some modifications to the system matrix.

Correlated paths: For correlated paths the Kalman filter needs to be modified.