Top Banner
FDSOI Technology Benefits for Variationaware SRAM design Changhwan Shin Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA USA Acknowledgements Prof. TsuJae King Liu, Prof. Borivoje Nikolić, Dr. Horacio Mendez, Dr. BichYen Nguyen and Dr. Carlos Mazuré FDSOI Workshop, 28 April 2011
25

Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Nov 26, 2015

Download

Documents

Rajni Sharma
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

FD‐SOI Technology Benefitsfor Variation‐aware SRAM design

Changhwan Shin

Department of Electrical Engineering and Computer SciencesUniversity of California, Berkeley, CA USA

AcknowledgementsProf. Tsu‐Jae King Liu, Prof. Borivoje Nikolić,

Dr. Horacio Mendez, Dr. Bich‐Yen Nguyen and Dr. Carlos Mazuré

FDSOI Workshop, 28 April 2011

Page 2: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Major Sources of Variation

Drain

Gate

Source

Increasing variation with continued device scalingIncreasing variation with continued device scaling!!

Random DopantFluctuations (VT or VTH)• Caused by random 

counts and positions of dopant atoms

• With scaling:

↑∝WLVT

1σ Channel Width (W)• Sources: Line edge 

roughness, corner rounding

• Can affect VT

• With scaling: ↑WWσ

Gate Workfunction(ΦM)• Source: Granularity• Affects VT

2

Gate Length (LG)• Source: Line edge roughness• Affects VT, DIBL

• With scaling: ↑G

LGL

σ

Page 3: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

• VT mismatch results in reduced static noise margin.lowers cell yield, and limits VDD scaling

Vn1 (V)

Vn2(V)

Impact of Variability on SRAM

Y. Tsukamoto et al., Proc. IEEE/ACM ICCAD, p. 398, 2005

6‐T SRAM Cell Butterfly Plot

AMD OpteronQuad‐Core (65nm) Intel Xeon Quad‐Core (45nm)

Intel 22nm test chip

• SRAM is critical for technology scaling.– Cell area is shrinking.– Array size is growing.

Immunity to short‐channel and narrow‐width effects, as well as LER/RDF effects, are needed to achieve higher SRAM cell yield.

SRAM SRAM

SRAMSRAMSRAM

n2n1

3

Page 4: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Outline

• Thin‐BOX FD‐SOI Technology*– Variation‐robust device design– Variation analysis

• FDSOI SRAM Design and Comparison with Bulk Technology*

• Back‐gated Tri‐gate FD‐SOI Technology

• Summary*C. Shin et al., “Performance and area scaling benefits of FD‐SOI technology for 6‐T SRAM cells at the 22‐nm node,”IEEE Transactions on Electron Devices, Vol. 57, No. 6, pp. 1301‐1309, 2010.  4

Page 5: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

T BOX

Raised-Drain

W SPACER

L GATE

Sub (p -doped 10 18cm-3)

T Sin+ n+

SiO 2

1020cm-3

-1020cm-3

Raised -Source

T BOX

W SPACER

LGATE

Sub (p -doped 10 18cm-3)

T Sin+

SiO 2

1020cm-3

-1020cm-3

Faceted in-situ-dopedRaised-source

Faceted in-situ-dopedRaised-drain

T S/DWS/DT BOX

Raised-Drain

W SPACER

L GATE

Sub (p -doped 10 18cm-3)

T Sin+ n+

SiO 2

1020cm-3

-1020cm-3

Raised -Source

T BOX

W SPACER

LGATE

Sub (p -doped 10 18cm-3)

T Sin+

SiO 2

1020cm-3

-1020cm-3

Faceted in-situ-dopedRaised-source

Faceted in-situ-dopedRaised-drain

T S/DWS/D

Thin‐BOX FD‐SOI MOSFET Design

Design parametersSchematic cross‐sectional view

• Thin body (TSi < Lg/4) to suppress short‐channel effects

• Raised‐source/drain (RSD) regions to reduce series resistance(formed by low‐temperature selective epitaxial growth with in‐situ doping)

• ΦM set to meet LOP off‐state leakage (IOFF) specification

• Electrical channel length (Leff) selected for maximum ION

NMOS PMOS

Lg (nm) 25 25

Tox (nm) 1 1

tSi (nm) 6 6

TBOX (nm) 10 10

ФM (eV) 4.45 4.85

Leff (nm) 35.6 30.7

= 15nm

WS/D = 72nm; TS/D = 22.6nm

Adapted from K. Cheng et al., 2009 Symp. VLSI Technology

5

Page 6: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Performance Comparison

DS

TH

DS

TH

DS GS TH

TH

V2VGS TH

DS s ox DS subGS TH

sat

2DSVDS GS THV0

l ox DS subGS TH

sat

V V ‐VV S

sub

(V ‐ V )WI = μ C (1 + λV ) + I (1 ‐ e )

V ‐ V2mL 1 +E L

mVV (V ‐ V ‐ )

VW= μ C (1 + λV ) + I (1 ‐ e )

V ‐ VL 1 +E L

= I (1 ‐ e )e

Analytical model fit to simulated I‐V, used to iteratively solve for DC SRAM metrics:

Optimized to maximize ION for IOFF=3nA/um, Nbody=1018 cm-3

in saturation region

in linear region

in sub‐threshold region

0.0 0.2 0.4 0.6 0.8 1.01E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

I DS

(A/u

m)

VGS (V)

Model Sentaurus

200

400

600

800

1m

I DS

(uA

/um

)

ION= 581 μA/μm @ VDD=1.0V

IOFF= 3 nA/μm

SS= 81 mV/dec

VTH,LIN= 0.366 V

VTH,SAT= 0.322 V

BULK

0.0 0.2 0.4 0.6 0.8 1.01E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

I DS

(A/u

m)

VGS (V)

Model Sentaurus

200

400

600

800

1m

I DS

(uA

/um

)

ION= 581 μA/μm @ VDD=1.0V

IOFF= 3 nA/μm

SS= 81 mV/dec

VTH,LIN= 0.366 V

VTH,SAT= 0.322 V

BULK

0.0 0.2 0.4 0.6 0.8 1.01E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

I DS (A

/um

)

Model Sentaurus

VGS (V)

ION= 861 μA/μm @ VDD=1.0V

SS= 75 mV/dec

VTH,LIN= 0.347 V

VTH,SAT= 0.298 V

IOFF= 3 nA/μm FD‐SOI200

400

600

800

1m

I DS (u

A/u

m)

0.0 0.2 0.4 0.6 0.8 1.01E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

I DS (A

/um

)

Model Sentaurus

VGS (V)

ION= 861 μA/μm @ VDD=1.0V

SS= 75 mV/dec

VTH,LIN= 0.347 V

VTH,SAT= 0.298 V

IOFF= 3 nA/μm FD‐SOI200

400

600

800

1m

I DS (u

A/u

m)

6

Page 7: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

σ(VTH)|RDF+LER = 22.4mVσ(VTH)|RDF+LER = 22.4mVσ(VTH)|RDF+LER = 49.6mVσ(VTH)|RDF+LER = 49.6mV

• Gate‐LER‐induced variations were simulated by sampling profiles from an SEM image of a photoresist line.

– 100 different gate line profiles, LER (3σ) = 3.98nm, correlation length = 21.8nm

• RDF‐induced variations were simulated using KMC model.

• ΦM variations were estimated based on Dadgour et al., IEDM’08

Impact of Random Variations

Bulk MOSFET FD‐SOI MOSFET

Nominal case Nominal case

W = 55nm 7

σ(VTH) = 50mV σ(VTH) = 26mV

VGS (V) VGS (V)

I DS

(μA

/μm

)

I DS

(μA

/μm

)

Page 8: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Outline

• Thin‐BOX FD‐SOI Technology

• FDSOI SRAM Design and Comparison with Bulk Technology– SRAM cell design– Yield analysis

• Back‐gated Tri‐gate FD‐SOI Technology

• Summary

8

Page 9: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

• Based on published 22nm CMOS design rules

6‐T SRAM Cell Layout

Half‐Bit Cell Layout Layout Parameters

PD

PG

PUX

YLPD

LPG

BC

WPU

D/2WPD

A/2

WPG

PD

PG

PUX

YLPD

LPG

BC

WPU

D/2WPD

A/2

WPG

Design rules SymbolSize [nm]

Cell Height

PG CH length LPG 25

PD CH length LPD 25

CONT size X 30

Gate‐to‐CONT Y 20

Total 190

Cell Width

POLY‐to‐POLY A 30

POLY‐to‐DIF ext B 20

PD Width WPD 55

N/P isolation C 50

PU width WPU 32

DIF‐DIF (min) D 50

PG width WPG 35

Total 394

SRAM cell area 0.07486 μm2

9

Page 10: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Nominal Read and Write Margins

Butterfly curves

• SNM is slightly lower for the FD‐SOI cell due to lower VTH

– 186 mV vs. 212 mV for planar bulk MOSFET (VDD = 0.9V)

• Iw is 71% higher for the FD‐SOI cell– 18.9 uA vs. 10.8 uA for the planar bulk MOSFET (VDD = 0.9V)

Write‐N‐curves

10

0.0 0.2 0.4 0.6 0.8 1.00.0

10.0μ

20.0μ

30.0μ

40.0μ

50.0μ

60.0μ

I n1 (u

A)

Vn1 (V)

FD-SOI BULK

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

V n2 (V

)

Vn1 (V)

FD-SOI BULK

SNMSOI   = 186mV

SNMBULK= 212mV

Iw,SOI = 18.9uA

Iw,BULK= 10.8uA

Iw

SNM

Page 11: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

0.5 0.6 0.7 0.8 0.9 1.00

5

10

15

20

I W (u

A)

VDD (V)

FD-SOI BULK

0.5 0.6 0.7 0.8 0.9 1.080

100

120

140

160

180

200

220

240

SNM

(mV)

VDD (V)

FD-SOI Bulk

Nominal SNM, Iw and Iread vs. VDD

SNM vs. VDD Iw vs. VDD

• If WPG is reduced to 27.2 nm for the FD‐SOI cell, then comparable SNM (~212 mV) is achieved at 0.9V.– Iw is still ~ 15% higher for the FD‐SOI cell (12.4 uA vs. 10.8 uA)

– Iread is still ~34% higher for the FD‐SOI cell (15.5 uA vs. 11.6 uA)

• FD‐SOI cell shows higher Iw, Iread for comparable SNM at all VDD.

11

0.5 0.6 0.7 0.8 0.9 1.00

5

10

15

20

25

I read

(uA

)VDD (V)

FD-SOI BULK

Iread vs. VDD

Page 12: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Outline

• Thin‐BOX FD‐SOI Technology

• FDSOI SRAM Design and Comparison with Bulk Technology– SRAM cell design– Yield analysis

• Back‐gated Tri‐gate FD‐SOI Technology

• Summary

12

Page 13: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

• W, LG, VT variations mainly cause SRAM cell imbalances– Can degrade read stability and/or write‐ability

– Some more important than othersΔSNM (read stability, V)

From Device Variations to Cell Failure

• Sensitivities are a useful design tool– Quantify tradeoffs, e.g. read vs. write

– Accelerate yield projections 

– Help suggest corner cases for simulations

– Valid for small variations

13

A. Carlson, Ph.D. Thesis, UC Berkeley, May 2008.

Page 14: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

SRAM Sensitivity Analysis

• Sensitivity of read stability to W, LG, VT variations– Most sensitive to mismatch variations in PD devices

• Sensitivity of write‐ability to W, LG, VT variations– More distributed and accentuated for common‐mode variationsin PG devices

Control of both common and mismatch variations is required for robustness.

14

SNM Variation by Type

00.10.20.30.40.50.60.70.8

PD PG PUDevice Type

Sen

sitiv

ity

MismatchCommon Mode

SNM variation by Type Iw Variation by Type

00.10.20.30.40.50.60.70.8

PD PG PUDevice Type

Sen

sitiv

ity

MismatchCommon Mode

IW variation by Type

Adapted from A. Carlson, Ph.D. Thesis, UC Berkeley, May 2008.

Page 15: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

SRAM Yield Modeling Approach

• Consider the transistor parameter variation space:– Each transistor dimension is assumed to be an independent parameter 

with Gaussian distribution (±10% at 3σ)

– VT variation due to variations in Lg, W, TOX, TSi and LER, RDF, WFV

• Too much variation can result in DC read or write failure.

• “Cell Sigma” is defined to be the minimum amount of variation that causes a DC read or write failure.– 18 dimensions of variation

(W, L, VT for 6 transistors)

2‐D Variation Space Example 

PassingCells

FailingCells

Varia

tion

in P

D1

V T(σ)

Variation in PG1 VT (σ) 153

Adapted from A. Carlson, Ph.D. Thesis, UC Berkeley, May 2008.

Page 16: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

SNM

Cel

l Sig

ma

[sig

ma]

VDD [V]

FD-SOI BULK

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

I w C

ell S

igm

a [s

igm

a]

VDD [V]

FD-SOI BULK

Estimated 6‐T SRAM Yield

SNM Yield vs. VDD

• FD‐SOI technology provides for improved cell yield by >2 cell sigma across the range of VDD

• Estimated Vmin for the FD‐SOI SRAM cell is ~0.6V

Iw Yield vs. VDD

16

C. Shin et al., IEEE Int’l SOI conf., Oct. 2009

Page 17: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Iso‐Area Comparison

• Optimal cell designs: – WPG = 35 nm for the bulk cell

– WPG = 40 nm for the FD‐SOI cell

• The FD‐SOI cell can satisfy the 6σ yield requirement.

• The bulk cell cannot satisfy the 6σ yield requirement.– ~1.2σ worse SNM yield,

~2.2σ worse Iw yield than FD‐SOI

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

FD-SOI BULK

VDD=0.9V

WPG=35nm + 1.20

+ 2.15

WPG=40nm

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

FD-SOI BULK

VDD=0.9V

WPG=35nm + 1.20

+ 2.15

WPG=40nm

17

PASS

Page 18: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Iso‐Yield Comparison

• In order for the bulk cell to achieve >6σ yield, it must be upsized so that WPD = 95 nm and WPU = 50 nm.

cell area is increased by 30% (from ~0.07 μm2 to ~0.1 μm2)

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

iso-area BULK iso-yield BULK FD-SOI

VDD=0.9V

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

iso-area BULK iso-yield BULK FD-SOI

VDD=0.9V

18

PASS

Page 19: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Minimum Operating Voltage

• The FD‐SOI cell achieves lower Vmin because it provides for higher transistor drive current and reduced variability. – Vmin ~ 0.6V for the FD‐SOI cell.

– Vmin ~ 0.8V for the bulk cell.

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

FD-SOI (VDD=0.9V)

FD-SOI (VDD=0.8V)

FD-SOI (VDD=0.7V)

FD-SOI (VDD=0.6V)

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

FD-SOI (VDD=0.9V)

FD-SOI (VDD=0.8V)

FD-SOI (VDD=0.7V)

FD-SOI (VDD=0.6V)

Enlarged Bulk Cell (~ 0.1μm2) FD‐SOI Cell ( ~ 0.075μm2)

19

PASS PASS

0 1 2 3 4 5 6 7 8 9 10 110123456789

1011

Yiel

d I w

(sig

ma)

Yield SNM (sigma)

Enlarged BULK (VDD=0.9V)

Enlarged BULK (VDD=0.8V)

Enlarged BULK (VDD=0.7V)

Page 20: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Outline

• Thin‐BOX FD‐SOI Technology

• FDSOI SRAM Design and Comparison with Bulk Technology

• Back‐gated Tri‐gate FD‐SOI Technology

• Summary

20

Page 21: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

L G

WSi HSi

5nm BOX

Parameter Value

LG 25 nm

WSi 25 nm

HSi 19 nm

WSPACING 25 nm

WSPACER 15 nm

TOX 1 nm

TBOX 5 nm

WS/D 30 nm

Substrate doping

3E18 cm‐3

Si

Back‐Gated Tri‐Gate FD‐SOI MOSFET

21-1V

Page 22: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

LER‐ and RDF‐Induced Variability

σ(VT)|LER+RDF = 13.7mV

(vs. 22.4mV for planar FD‐SOI)

• Gate‐LER‐induced variations were simulated by sampling profiles from an SEM image of a photoresist line.

– 100 different gate line profiles, LER (3σ) = 3.98nm, correlation length = 21.8nm

• RDF‐induced variations were simulated using KMC model.

22

Lower variation by a factor of 2!‐ Higher gate controllability‐ Back‐biasing via thinner BOX

Page 23: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Outline

• Thin‐BOX FD‐SOI Technology

• FDSOI SRAM Design and Comparison with Bulk Technology

• Back‐gated Tri‐gate FD‐SOI Technology

• Summary

23

Page 24: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Summary

• Thin‐BOX FD‐SOI and bulk CMOSFET designs were optimized via 3‐D process and device simulations, for LOP 22nm CMOS.– FD‐SOI achieves higher drive current and reduced VT variation.

• For fixed cell area, FD‐SOI technology provides for improved SNM yield (by 1.2σ) and Iw yield (by 2.2σ).  

• For fixed yield, FD‐SOI provides a cell area savings of 30%.  – Vmin for 6σ yield is ~0.6V for FD‐SOI cell vs. ~0.8V for bulk cell.  

• The SOI thinness requirement can be relaxed via back‐gating and sidewall gating.

Additional benefit of variation suppression; higher SRAM yield expected.

Thin‐BOX FD‐SOI is promising for continued 6‐T SRAM scaling!24

Page 25: Changwan Shin - SRAM Analysis - WS FDSOI Taiwan

Acknowledgements

• SOI Consortium and Soitec

• DARPA/SRC Focus Center Research Program– Center for Circuits and Systems Solutions (C2S2)

• Korea Foundation for Advanced Studies (KFAS)

25