Top Banner
Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC), T. J. Turner (UMBC/GSFC), J. N. Reeves (USRA/GSFC), P. J. Serlemitsos (GSFC), R. F. Mushotzky (GSFC), S. B. Kraemer (CU/GSFC), M. Crenshaw (GSU), J. Gabel (CU/GSFC), U. Padmanabhan (JHU), V. Karas, M. Dovciak (Charles U., Prague), A. Markowitz (GSFC)
52

Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Jan 16, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Chandra Grating Spectroscopy of Active Galactic Nuclei

Tahir Yaqoob (JHU/GSFC)

Collaborators:

B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC), T. J. Turner (UMBC/GSFC), J. N. Reeves (USRA/GSFC), P. J. Serlemitsos (GSFC), R. F. Mushotzky (GSFC), S. B. Kraemer (CU/GSFC), M. Crenshaw (GSU), J. Gabel (CU/GSFC), U. Padmanabhan (JHU), V. Karas, M. Dovciak (Charles U., Prague), A. Markowitz (GSFC)

Page 2: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Overview The Chandra grating data and general overview of

salient results. Results from a Chandra HETG sample of Sy 1

galaxies. Properties of the photoionized outflows & a

comparison with other results including XMM RGS. Location of the wind.

Gravitationally redshifted lines. Extreme outflows. Absorption in the IGM.

Emission lines, including Fe K. What can Suzaku do for AGN winds? A HETG AGN database of ready-to-go products,

suitable for grating non-experts (and experts).

Page 3: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Gratings: best resolution at lowest energies

LETG: ~240 km/s at 0.2 keV [0.16 eV]MEG: ~280 km/s at 0.5 keV [0.47 eV]RGS: ~290 km/s at 0.3 keV [0.29 eV]

E (keV)

V

100

103

Page 4: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

X-ray Absorption in Ionized Gas in Seyfert 1 Galaxies

• Before Chandra & XMM, CCDs had best spectral resolution (FWHM ~30,000 -10,000 km/s in soft X-rays, 7,500 at Fe-K energies).

• ~50% of Sy 1 known with complex (likely photoionized) X-ray absorption.

• Individual O edges claimed but could have been confused.

• Chandra & XMM gratings, with FWHM down to ~300 km/s, revolutionalized study of “warm absorbers”, wealth of complexity, unresolved absorption lines, some emission lines.

Pre-1999 View

Page 5: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Number of AGN with Chandra Grating Observations

Page 6: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

What Do We See?

Mkn 509 Chandra HETG+HST STIS campaign [Yaqoob et al. 2003]

Mostly He-like, H-like unresolved absorption lines; in most cases blueshifted w.r.t. to systemic (~0-1000 km/s FWHM).

Page 7: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Derived column density from X-ray (Chandra LETGS) data versus the ionization parameter for which that ion has the maximum column density.

NGC 5548 (Steenbrugge et al. 2003)

Page 8: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Dust vs. Relativistic Lines

MCG -6-30-15 soft X-ray spectrum: (Left) Lee et al. 2001 Dusty Warm Absorber; (Right) Relativistically broadened soft X-ray lines, K. Mason & others, 2001..2005 Soft X-ray broad lines also claimed in NGC 4051 (Ogle et al. 2004), NGC 5548 (Kaastra et al. 2002), MCG -2-58-22 (Salvi et al. 2003), NGC 4593 (Steenbrugge et al. 2003)

Page 9: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

MCG -6-30-15Chandra HETG ~500 ks “long-look”

(Young et al. 2005)

Fe K absorption features found (~2000 km/s outflow)..absorber model for broad Fe K line predicts Fe K absorption features not found?

Caution..the Fe K absorption features found could be at z~0.

Page 10: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Ton S 180 LETG/ACIS

Weak absorption features..alternative modelsproposed: No warm absorber plus relativisticlines (Turner et al. 2002); Stratified warm absorber(with identified weak lines) plus disk emission lines(Rozanska et al. 2004). Very few LETG/ACIS observations. More LETG/HRC observations (but orders can’t beseparated), but still much less than HETG/ACIS.

Rozanska et al. 2004Turner et al. 2002

Page 11: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

• X-ray/UV connection• X-ray & UV absorbers share

kinematics• Much higher resolution in UV - why

discrete components?• Hints of velocity structure in some

X-ray profiles, details elusive.• Very different UV & X-ray columns

(but e.g. Arav et al. ‘04: UV columns much larger?).

• Two-phase? UV “knots” in an X-ray wind?

From Kaspi et al. 2002, & Crenshaw, Kraemer & George 2003, AR&AA, 41, 117

Details of a physicalmodel need to be filledin. Multi-temperaturewind (cf. Krolik & Kriss2001)? What drives it &what is the source of thematter?

Page 12: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

A Chandra HETG Sample of Seyfert 1 Galaxies

What we want to know: Where does the outflow

originate? What is its size? Geometry? Physical, thermal, & ionization

structure? Kinematics? Source of material in the wind? What determines properties of

the outflow? What is the nature of the

connection between the outflow and the central black hole plus accretion disk?

Covering factor/filling factor? What drives the outflow? Mass outflow rate (compare to

accretion)?

Urry & Padovani 1995

Test for correlations betweenoutflow properties & other keyproperties of the central engine.

Page 13: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

A Chandra HETG Sample of Seyfert 1 Galaxies

Selection: Low z (<0.05) Seyfert 1 galaxies Public HETG data up to 1 July, 2003 Bright (HEG > 0.05 ct/s) -> 15 AGN; 10/15 exhibit signatures of ionized absorption. (Detailed results in McKernan, Yaqoob, Reynolds 2004, 2005, 2006)

What we can measure: Columns, ionization parameters from modeling; offset velocities of absorption lines; crude kinematic information (widths, profiles). If sufficient emission-line data, density. Cannot get distance from center without density or variability information. UV absorption: 4 of the 15 have simultaneous UV/Chandra data. How are UV/X-ray columns, ionization parameters, covering factors and kinematics related?

Page 14: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

The HETG Seyfert 1 Sample

Page 15: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Correlations with Outflow Velocity & LION/LEDD

V appears to have a bimodal distribution. Anti-correlated with LION/LEDD? No correlation of N with LION/LEDD . Possible anti-correlation of with LION/LEDD.

N

N

V

V (km/s) LION/LEDD

McKernan, Yaqoob, & Reynolds 2006

Page 16: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Correlations with Black Hole Mass & LION/LEDD

Appears to be no correlation between mass outflow rate and black-hole mass. Possible correlation of mass outflow rate with LION/LEDD .

MBH/MSOLAR LION/LEDD

McKernan, Yaqoob, & Reynolds 2006M

OU

TF

LO

W [

0.01

C M

SO

LA

R /

yea

r ]

Page 17: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Blustin et al. (2005) Study

Page 18: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Blustin et al. (2005) study: outflow rates

These mass ouflow rates are LARGE, often greater than the accretion rate..but the absolute outflow rates depend on assumptions (Ne, covering & filling factors, and distance to the ionizing source have to be inferred, usually indirectly, based on assumptions which may or may not be true).

Page 19: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Blustin et al. (2005) Warm Absorber Location

Page 20: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Comparison with Blustin et al. Conclusions

Low filling factor (<8%), derived assuming momentum in outflow ~ momentum in radiation intercepted.

Minimum distance of warm absorber calculated assuming outflow exceeds escape velocity - not necessarily true. Leads to conclusion that the absorbers are located at ~ distance of torus or greater.

Kinetic energy of outflow may only be 1% of total energy budget, but so is the accretion rate. If the accretion rate is small yet important for the AGN then the outflow could be too.

Another caveat: Some of the outflow (e.g. closer in to center) may not be observable (e.g. too ionized).

Page 21: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Location of the Wind

Need variability information (continuum and opacity) to constrain the density and hence the location of the photoionized absorber. Any other method of deriving location makes at least one assumption, which may or may not be true.

Early variability studies (e.g. NGC 3227 Ptak et al. 1994; MCG -6-30-15, Reynolds et al. 1995; NGC 4051, McHardy et al. 1995; MR 2251, Otani et al. 1995; NGC 3516, Netzer et al. 2002) with low-resolution (CCD, or PSPC) spectra are difficult to interpret since the spectra are now known to be very complex.

Estimates of the location of the “warm absorber” varied from upper limits of parsecs to the distance of the BLR (e.g. NGC 3516).

From different arguments, location of the very high velocity outflows (e.g. PG1211+143), placed at <0.1pc (more later).

S/N ratio of the higher resolution grating spectra has been too low for time-resolved spectroscopy..except for the extended Chandra HETG observation of NGC 3783…

Page 22: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Opacity Variations in the Fe UTA in NGC 3783

• 0.2A shift in UTA, x2 change in U with x2 change in L -> photoionization eqm., Ne>104 cm-3, d<6pc. LP only. HP does not respond (e.g. 8-13A). Var. result claimed at >10

Krongold et al. 2005

Page 23: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

“Picture” and Structure of the Wind

• Does the wind originate from the accretion disk (e.g. Elvis 2000, 2003)?

• Or does it originate in material blown off from the inner edge of the torus (e.g. Krolik & Kriss 2001- gas exists in a multi-phase, multi-temperature state in pressure balance but on the thermally unstable part of the cooling curve.)? Mass flux could be large.

• Large scale cones (of the type directly observed in Sy 2) [e.g. Kinkhabwala 2002].

• High resolution X-ray spectra have lead to the view of a wide, radially continuous range of ionization stages of ions.

• Krongold UTA variability result rules out continuous ionization stage distribution, favoring high degree of clumping.

• Also rules out kpc scale cone scenario.

Page 24: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

E1821+643 (z=0.297)

Evidence for a gravitationally redshiftedabsorption line, and one the highest redshift broad Fe-K emission lines.

Yaqoob & Serlemitsos, 2005

Page 25: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),
Page 26: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),
Page 27: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Redshifted Absorption Lines in PG 1211+143

Redshifted absorption lines at 4.56 & 5.33 keV rest-frame (z=0.0809); ~1.3 x 10-4 chance probability. FWHM<8000 km/s. If Fe XXVI, v~0.26c & 0.40c (0.22 & 0.37c for Fe XXV). Column density is ~4 (+4,-2) x 1023 cm-3, but Fe K edge depth < 0.1. log Pure gravitational shift?[R<6Rg]; Inflow/Failed outflow? Or gravitationally

redshifted low-velocity outflow?

Page 28: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Extreme Outflows• XMM CCD detections of very high-

velocity outflows deduced from (blueshifted) Fe-K absorption lines from highly ionized Fe in some QSOs (Pounds, Reeves et al. 2003..).

• PG 1211+143: v~ 24,000 km/s

• PG 0844+349: v~ 60,000 km/s

• High optical depths: NH~ 5 x 1023 cm-2 or more..but model-dependent.

• Other examples: PDS 456 (v~55,000 km/s).

• These are moderately low redshift QSOs (z<0.2).

• NOTE: Alternative interpretation of PG1211+143 by Kaspi et al. (2005) is an outflow with V~3000 km/s, due mainly to alternative line ids plus a detailed model which has emission lines which “fill in” some of the absorption lines.

Page 29: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Search for local (z~0) OVII & OVIII Absorption in the HETG AGN sample

Search for WHIGM: McKernan, Yaqoob, & Reynolds (2004, ApJ, 617, 232). + No whigm detected; Ovii & Oviii detected but no FUSE observations; Ovii & Oviii detected AND Ovi detected with FUSE.

Page 30: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Are the Extreme Outflows Due to WHIGM?

• Local (z~0) OVII absorption from HETG Seyfert 1.

PDS 456

3C 273

PKS 2155

PG 1211+143

Mkn 421 Outflows not claimed in 3C

273, PKS 2155, & Mkn 421. “Outflow” in NGC 4051 with

V ~ 600 km/s may be due to local absorption.

Large columns in PG1211+143 & PDS456 make WHIGM interp. very difficult.

Page 31: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Are the Extreme Outflows Due to WHIGM?

• Local (z~0) OVII absorption from HETG Seyfert 1.

PDS 456 3C 273 PKS 2155 PG 1211+143 Mkn 421

PG 0844+349 does NOT fit on the correlation. The outflow velocity required (from modeling XMM data-Pounds et al. 2004), is ~60,000 km/s, much larger than cz~20,000 km/s.

PG 0844+349

most outflows

Page 32: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Narrow Emission Lines

• In the McKernan et al. Sample, prominent emission lines are seen in NGC 3783, NGC 5548, NGC 4051.

• Weaker emission lines are seen in MCG -6-30-15, NGC 4593, Mkn 509, & Mkn 279.

• Emission lines are much less common than absorption lines in Sy 1 (but soft X-ray spectra of Sy 1.5-2 are line-dominated, e.g. NGC 4151).

• In general the emission lines are centered on the systemic velocity of the system.

NGC 5548 OVII tripletNGC 4151 HETG/MEG

Page 33: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

HETG Fe K Lines

Fe K line studied for same HETG sample of Sy 1, in Yaqoob & Padmanabhan (2004).

A narrow, often unresolved core at 6.4 keV in the rest frame is common, but some of the AGN HETG Fe K lines show complexity with the high spectral resolution of the Chandra high-energy gratings.

Page 34: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Peak Energy & FWHM of Fe-K Line Core

HETG sample of 15Sy 1 galaxies. Yaqoob & Padmanabhan 2004.

Mean peak energy:6.404 +/- 0.005 keV

Mean FWHM:2380 +/- 760 km/s

At least 8/15 have a broad line. Core resolved in 3/15.

HEG resolutionis ~1800 km/sFWHM.

Page 35: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Correlation of Ionized Outflow Parameters with the EW of the Fe-K Line Core

HETG sample of 15 Sy 1 galaxies: Fe-K core EW

from Yaqoob & Padmanabhan 2004.

Warm absorber (outflow) parameters from McKernan, Yaqoob & Reynolds (2006).

N

V

Page 36: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),
Page 37: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Variable narrow 6.4 keV line found in Mkn 841 - Petrucci et al. (2002).

Page 38: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Ionization balance of Fe (as manifestedby the emission line complex between Fe I and Fe XXVI), responds rapidlyto the continuum variability (1000s of seconds or less).

See Yaqoob et al. (2003).

Page 39: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),
Page 40: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Cen A Suzaku Spectrum

Page 41: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

MCG -6-30-15

XIS0 XIS1

XIS2 XIS3

Page 42: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

MCG -6-30-15

Page 43: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Low Energy Spectral Resolution of the XIS BI CCD is Better than XMM EPIC pn & MOS

Page 44: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Suzaku resolves C, O lines in the Planetary Nebula BD+30 3639 for the first time

• C/Ne ~ 4 -10

• C/O ~ 30-100

• N/C ~ 0

CVI

OVII

OVIII Ne IX

Chandra ACIS: C, O linesunresolved.

Suzaku BI CCD

Suzaku Team/K. Arnaud/K. Makishima

Page 45: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

How does the better low-energy spectral resolution of the XIS BI chip help with studying the warm absorber or wind, compared to Chandra or XMM?

Effective area of the XIS BI chip is much higher than that for the gratings. However, XIS BI is better than XMM pn, making it more suitable for time-resolved spectroscopy.

Method: Folded 830 ks NGC 3783 HETG/MEG spectrum through the Suzaku XIS BI response and then through the XMM response.

Page 46: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Suzaku vs. XMM Total Effective Area

Page 47: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

HotGAS: Home of the Grating Archive Spectrahttp://hotgas.pha.jhu.edu

Page 48: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Example page (top half) for NGC 1068

Page 49: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Example page (bottom half) for NGC 1068

Page 50: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),
Page 51: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),
Page 52: Chandra Grating Spectroscopy of Active Galactic Nuclei Tahir Yaqoob (JHU/GSFC) Collaborators: B. McKernan (UMD), C. Reynolds (UMD), I. M. George (UMBC/GSFC),

Summary Origin & location of ionized outflows still uncertain. X-ray columns ~1021-22 cm-2, ~ 101-3, sometimes in same source. Location, Ne, X-ray cov/fill factor (C) require variability studies.

(Chandra monitoring of NGC 3783 gave only upper limit on R, < 6 pc. Origin may still be at accretion disk, but detection may only be possible for matter further out).

Can only measure absolute mass outflow rate when C is known. If C is similar in different AGN, we find a tentative connection between mass flow and accretion efficiency. For large C, mass outflow rate comparable to accretion rate (~0.01-0.1 solar M/year).

Tentative connection between outflow velocity and accretion efficiency, independent of C. Bimodal V?

Some very high V outflows in QSOs may be really be due to z~ 0, local absorption (whigm?). However, the implied column density for whigm is way too high. There are low V interpretations also.

Rich & new phenomenology of Fe K emission with Chandra & XMM: Need to disentangle the disk & DM components.