Top Banner

of 24

ch8.pdf

Jun 01, 2018

Download

Documents

cathy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 ch8.pdf

    1/56

      TERMINOLOGY

    8 Introduction toCalculus

    Composite function: A function of a function. Onefunction, f ( x ), is a composite of one function to anotherfunction, for example g( x ) 

    Continuity: Describing a line or curve that is unbrokenover its domain

    Continuous function: A function is continuous over aninterval if it has no break in its graph. For every x  valueon the graph the limit exists and equals the functionvalue

    Derivative at a point: This is the gradient of a curve at aparticular point

    Derivative function: The gradient function of a curveobtained through differentiation

    Differentiable function: A function which is continuousand where the gradient exists at all points on thefunction

    Differentiation: The process of finding the gradient of atangent to a curve which is called the derivative

    Differentiation from first principles: The process of findingthe gradient of a tangent to a curve by finding thegradient of the secant between two points and findingthe limit as the secant becomes a tangent

    Gradient of a secant: The gradient (slope) of the linebetween two points that lies close together on a function

    Gradient of a tangent: The gradient (slope) of a line that

    is a tangent to the curve at a point on a function. It is thederivative of the function

    Rate of change: The rate at which the dependent variablechanges as the independent variable changes

  • 8/9/2019 ch8.pdf

    2/56

    439Chapter 8  Introduction to Calculus

     INTRODUCTION

    CALCULUS IS A VERY IMPORTANT part of mathematics and involves the

    measurement of change. It can be applied to many areas such as science,

    economics, engineering, astronomy,sociology and medicine. We also see articles

    in newspapers every day that involve change:

    the spread of infectious diseases, population

    growth, inflation, unemployment, filling of

    our water reservoirs.

    For example, this graph shows the

    change in crude oil production in Iran over

    the years. Notice that while the graph shows

    that production is increasing over recent

    years, the rate at which it is being produced

    seems to be slowing down. Calculus is usedto look at these trends and predict what will

    happen in the future.

    There are two main branches of

    calculus. Differentiation is used to calculate

    the rate at which two variables change in relation to one another.

    Anti-differentiation, or integration, is the inverse of differentiation and

    uses information about rates of change to go back and examine the original

    variables. Integration can also be used to find areas of curved objects.

    DID YOU KNOW?

    ‘Calculus’ comes from the Latin meaning pebble or small stone. In ancient civilisations, stones

    were used for counting. However, the mathematics practised by these early people was quite

    sophisticated. For example, the ancient Greeks used sums of rectangles to estimate areas of curved

    gures.

    However, it wasn’t until the 17th century that there was a breakthrough in calculus when

    scientists were searching for ways of measuring motion of objects such as planets, pendulums and

    projectiles.

    Isaac Newton, an Englishman, discovered the main principles of calculus when he was 23

    years old. At this time an epidemic of bubonic plague closed Cambridge University where he was

    studying, so many of his discoveries were made at home.

    He rst wrote about his calculus methods, which he called uxions, in 1671, but his Method

    of uxions was not published until 1704.

    Gottfried Leibniz (1646–1716), in Germany, was also studying the same methods and there

    was intense rivalry between the two countries over who was rst!

    Search the Internet for further details on these two famous mathematicians. You can nd

    out about the history of calculus and why it was necessary for mathematicians all those years ago

    to invent it.

    7,000

    Crude Oil Production (Mbbl/d)

    Iran

    6,000

    5,000

    4,000

    2,000

    3,000

    1,000

    073

    74

    75 77

    76 78

    79 81 83 85 87 89

    80 82 84 86 88

    91 93 95 97 99

    90 92 94 96 98

    01 03 05 07

    00 02 04 06

       T   h  o  u  s  a  n   d   B  a  r  r  e   l  s  p  e  r   D  a  y

    January 1973–May 2007

    You will learn about

    integration in the

    HSC Course.

    Isaac Newton

  • 8/9/2019 ch8.pdf

    3/56

    440 Maths In Focus  Mathematics Extension 1 Preliminary Course

     Gradient

    Gradient of a straight line

    The gradient of a straight line measures its slope. You studied gradient in the

    last chapter.

    runrise

    m =  

    Class Discussion

    Remember that an increasing  line has a positive gradient and a

    decreasing  line has a negative gradient.

      positive negative

    Notice also that a horizontal line has zero gradient.

    Can you see why?

    Can you find the gradient of a vertical line? Why?

     Gradient plays an important part, not just in mathematics, but in many areas

    including science, business, medicine and engineering. It is used everywhere

    we want to find rates.

    On a graph, the gradient measures the rate of change of the dependent

    variable with respect to the change in the independent variable.

    In this chapter you will learn about differentiation, which measures the rate of

    change of one variable with respect to another.

  • 8/9/2019 ch8.pdf

    4/56

    441Chapter 8  Introduction to Calculus

     EXAMPLES

    1. The graph shows the average distance travelled by a car over time.

    Find the gradient and describe it as a rate.

    Hours

         k    m

    400

    5  t 

     Solution

    The line is increasing so it will have a positive gradient.

      runrise

    m

    5400

    1

    80

    80

    =

    =

    =

    =

     

    This means that the car is travelling at the rate of 80 km/hour.

    2. The graph shows the number of cases of u reported in a town over

    several weeks.

    ee s

       N  u  m  e  r  o

      c  a  s  e  s

      s   )

    1

     N 

     Find the gradient and describe it as a rate.

    CONTINUED

  • 8/9/2019 ch8.pdf

    5/56

    442 Maths In Focus  Mathematics Extension 1 Preliminary Course

     Solution

    The line is decreasing so it will have a negative gradient.

    m

    10

    1500

    1150

    150

    runrise

    =

    = -

    = -

    = -

     

    This means that the rate is 150-  cases/week, or the number of cases

    reported is decreasing by 150 cases/week.

    When finding the gradient of a straight line in the number plane, we think ofa change in  y  values as x changes. The gradients in the examples above show

    rates of change .

    However, in most examples in real life, the rate of change will vary. For

    example, a car would speed up and slow down depending on where it is in

    relation to other cars, traffic light signals and changing speed limits.

     Class Discussion

    The two graphs show the distance that a bicycle travels over time. One is

    a straight line and the other is a curve.

    Hours

         k    m

    20

    15

    10

    5

    4321

     

    Hours

         k    m

    20

    15

    10

    5

    4321

     Is the average speed of the bicycle the same in both cases? What is

    different about the speed in the two graphs?

    How could you measure the speed in the second graph at any one

    time? Does it change? If so, how does it change?

    Gradient of a curve

  • 8/9/2019 ch8.pdf

    6/56

    443Chapter 8  Introduction to Calculus

     Here is a more general curve. What could you say about its gradient?

    How does it change along the curve?

     y

     x 

     Copy the graph and mark on it where the gradient is positive, negative

    and zero.

    Using what we know about the gradient of a straight line, we can see where

    the gradient of a curve is positive, negative or zero by drawing tangents to the

    curve in different places around the curve.

    0

    +-

     y

     x 

     Notice that when the curve increases it has a positive gradient, when it

    decreases it has a negative gradient and when it turns around the gradient is zero.

    Investigation

    There are some excellent computer programs that will draw tangents to

    a curve and then sketch the gradient curve. One of these is Geometer

    Sketchpad.

    Explore how to sketch gradient functions using this or a similar

    program as you look at the examples below.

  • 8/9/2019 ch8.pdf

    7/56

    444 Maths In Focus  Mathematics Extension 1 Preliminary Course

     EXAMPLES

    Describe the gradient of each curve.

    1.

    Solution

    Where the curve increases, the gradient is positive. Where it decreases, it

    is negative. Where it turns around, it has a zero gradient.

    2.

    Solution

  • 8/9/2019 ch8.pdf

    8/56

    445Chapter 8  Introduction to Calculus

    There are computer

     programs that will

    draw these tangents.

    EXAMPLE

    Make an accurate sketch of(a)  y x2=  on graph paper.

    Draw tangents to this curve at the points where(b)

    3, 2, 1, 0, 1, 2x x x x x x= - = - = - = = =  and 3x = .

    Find the gradient of each of these tangents.(c)

    Draw the graph of the gradients (the gradient function) on a(d)

    number plane.

    Solution

    (a) and (b)

    9

    8

    7

    6

    5

    4

    3

    2

    1

    1 2 3-3   -2

     x 

     y

     (c) 3, 6

    2, 4

    1, 2

    0, 0

    1, 2

    2, 4

    3, 6

    x m

    x m

    x m

    x m

    x m

    x m

    x m

    At

    At

    At

    At

    At

    At

    At

    = - = -

    = - = -

    = - = -

    = =

    = =

    = =

    = =

    (d)

    Since we have a formula for nding the gradient of a straight line, we nd the

    gradient of a curve by measuring the gradient of a tangent to the curve.

    Use the ‘m’ values as

    the ‘y’ values on this

     graph.

  • 8/9/2019 ch8.pdf

    9/56

    446 Maths In Focus  Mathematics Extension 1 Preliminary Course

     Drawing tangents to a curve is difficult. We can do a rough sketch of

    the gradient function of a curve without knowing the actual values of the

    gradients of the tangents.

    To do this, notice in the example above that where m is positive, the

    gradient function is above the x -axis, where 0,m =  the gradient function is on

    thex

     -axis and wherem

     is negative, the gradient function is below thex

     -axis.

    EXAMPLES

    Sketch the gradient function of each curve.

    1.

    Solution

    First we mark in where the gradient is positive, negative and zero.

    Now on the gradient graph, place the points where 0m =  on the x -axis.

    These are at ,x1

     x2

     and .x3

     

  • 8/9/2019 ch8.pdf

    10/56

    447Chapter 8  Introduction to Calculus

     To the left of ,x1

     the gradient is negative, so this part of the graph will

    be below the x -axis. Between x1 and ,x

    2 the gradient is positive, so the

    graph will be above the x -axis. Between x2 and ,x

    3 the gradient is negative,

    so the graph will be below the x -axis. To the right of ,x3

     the gradient is

    positive, so this part of the graph will be above the x -axis.

    2.

    Solution

    First mark in where the gradient is positive, negative and zero.

    CONTINUED

  • 8/9/2019 ch8.pdf

    11/56

    448 Maths In Focus  Mathematics Extension 1 Preliminary Course

    8.1  Exercises

    Sketch the gradient function for each graph.

    The gradient is zero at x1 and .x

    2 These points will be on the x -axis. To the

    left of ,x1

     the gradient is positive, so this part of the graph will be above

    the x -axis. Between x1 and ,x

    2 the gradient is negative, so the graph will

    be below the x -axis. To the right of ,x2

     the gradient is positive, so this part

    of the graph will be above the x -axis.

    1.

    2. 

    3. 

    4.

    5.

    6.

  • 8/9/2019 ch8.pdf

    12/56

    449Chapter 8  Introduction to Calculus

     7.

    8.

    9.

    10.

    Differentiation from First Principles

    Seeing where the gradient of a curve is positive, negative or zero is a good rst step,

    but there are methods to nd a formula for the gradient of a tangent to a curve.

    The process of nding the gradient of a tangent is called differentiation .

    The resulting function is called the derivative .

    Differentiability

    A function is called a differentiable function if the gradient of the tangentcan be found.

    There are some graphs that are not differentiable in places.

    Most functions are continuous , which means that they have a smooth

    unbroken line or curve. However, some have a gap, or discontinuity, in the

    graph (e.g. hyperbola). This can be shown by an asymptote or a ‘hole’ in the

    graph. We cannot nd the gradient of a tangent to the curve at a point that

    doesn’t exist! So the function is not differentiable at the point of discontinuity.

    a

     y

     x 

     This function is not

    differentiable at a since the curve is

    discontinuous at this point.

  • 8/9/2019 ch8.pdf

    13/56

    450 Maths In Focus  Mathematics Extension 1 Preliminary Course

     A function may be continuous but not smooth. It may have a sharp

    corner. Can you see why curves are not differentiable at the point where there

    is a corner?

    A function ( ) y f x=  is differentiable at the point x a=  if the derivativeexists at that point. This can only happen if the function is continuous

    and smooth at .x a=  

    b

     y

     x 

     This function is not

    differentiable at b as the curve isdiscontinuous at this point.

    c

     y

     x 

     

    The curve is not differentiable at

    point c  since it is not smooth at that

    point.

  • 8/9/2019 ch8.pdf

    14/56

    451Chapter 8  Introduction to Calculus

     EXAMPLES

    1. Find all points where the function below is not differentiable.

     B

     A

     y

     x 

     Solution

    The function is not differentiable at points A and B since there are sharp

    corners and the curve is not smooth at these points.

    It is not differentiable at point C since the function is discontinuous

    at this point.

    2. Is the function ( )f x  x x

    x x

    1

    3 2 1

    for

    for

    2

    1

    $=

    -

    )  differentiable at all points?Solution

    The functions ( ) ( ) 3 2f x x f x xand2= = -  are both differentiable at all

    points.

    However, we need to look at where one finishes and the other starts, at f (1).

    ( )

    ( )

    f x x

    f x x

    1 1

    13 2

    1 3 1 2

    1

    For

    For

    2

    2

    =

    =

    =

    = -

    = -

    =

    ]

    ] ]

    g

    g g 

    This means that both pieces of this function join up (the function is

    continuous). However, to be differentiable, the curve must be smooth at

    this point.

    CONTINUED

  • 8/9/2019 ch8.pdf

    15/56

    452 Maths In Focus  Mathematics Extension 1 Preliminary Course

    8.2  Exercises

    For each function, state whether it has any points at which it is not

    differentiable.

    Sketching this function shows that it is not smooth (it has a sharp

    corner) so it is not differentiable at 1x =  .

    1

    1

    -2

     y =  x 2

     y = 3 x -2

     y

     x 

     1.   y

     x 

     2. 

     x 1

     y

     x 

     3. 

     x 1

     y

     x 

     4.  y

     x 

  • 8/9/2019 ch8.pdf

    16/56

    453Chapter 8  Introduction to Calculus

     5.

     x 1   x 2

     y

     x 

     6. ( )4

    f x x=  

    7.3

    1 y 

    x= -

    8. ( )f x  x x

    x x

    2

    1 2

    if

    if

    32

    #=

    +

    )  

    9. ( )f x

    x x

    x

    x x

    2 3

    3 2 3

    1 2

    for

    for

    for2

    2

    1

    # #= -

    - -

    Z

    [

    \

    ]]

    10. 

    -4

    -4

    -5

    -3

    -3

    -2

    -2

    -1-1

    2

    1

    3

    4

    5

    1 2 3 4

     x 

     y

     11. tan y x=  for x0 360c c# #  

    12. ( )f x xx

    =  

    13. ( ) cosf  3 2i i= -  

    14. ( ) sin g  2z z=  

    15.9

    3 y 

    x

    x2

    =

    -

    Limits

    To differentiate from rst principles, we need to look more closely at the

    concept of a limit.

    A limit is used when we want to move as close as we can to something.

    Often this is to nd out where a function is near a gap or discontinuous point.You saw this in Chapter 5 when looking at discontinuous graphs. In this topic,

    it is used when we want to move from a gradient of a line between two points

    to a gradient of a tangent.

    EXAMPLES

    1. Find .limx

    x x2

    2x 2

    2

    -

    - -

    "

     

    Solution

    ( )

    ( ) ( )

    ( 1)

    lim lim

    limx

    x x

    x

    x x

    x2

    2

    2

    1 2

    2 1

    3

    x x

    x

    2

    2

    2

    2

    -

    - -=

    -

    + -

    = +

    = +

    =

    " "

    You did this in

    Chapter 5.

    CONTINUED

  • 8/9/2019 ch8.pdf

    17/56

    454 Maths In Focus  Mathematics Extension 1 Preliminary Course

     2. Find an expression in terms of x for2 3

    limh

    xh h h0

    2

    h

    - -

    "

     .

     Solution

    ( )

    ( )lim lim

    limh

    xh h h

    h

    h x h

    x h

    x

    2 3 2 3

    2 3

    2 3

    h h

    h

    0

    2

    0

    0

    - -=

    - -

    = - -

    = -

    " "

    "

     

    3. Find an expression in terms of x for3 5

    limx

    x x x x0

    2 2

    x d

    d d d+ -

    "d .

     Solution

    ( )

    ( )

     

    lim lim

    lim

    x

    x x x x

    x

    x x x

    x x

    x

    3 5 3 5

    3 5

    3 5

    x x

    x

    0

    2 2

    0

    2

    0

    2

    2

    d

    d d d

    d

    d d

    d

    + -=

    + -

    = + -

    = -

    " "

    "

    d d

    d

     

    1. Evaluate

    (a)3

    lim xx x

    0

    2

    x

    +

    "

     

    (b)5 2 7

    lim xx x x

    0

    3 2

    x

    - -

    "

     

    (c)33

    limx

    x x3

    2

    x -

    -

    "

     

    (d)416

    limt 

    t 4

    2

    t  -

    -

    "

     

    (e)1

    1lim

     g 

     g 

    1

    2

     g  -

    -

    "

     

    (f)2

    2lim

    xx x

    2

    2

    x +

    + -

    " -

     

    (g)

    2

    lim h

    h h0

    5

    h

    +

    "  

    (h)3

    7 12lim

    xx x

    3

    2

    x -

    - +

    "

     

    (i)525

    limn

    n5

    2

    n -

    -

    "

     

    (j)1

    4 3lim

    x

    x x1 2

    2

    x-

    + +

    " -

     

    2. Find as an expression in terms of x 

    (a)2 4

    limh

    x h xh h0

    2

    h

    - -

    "

     

    (b)2

    limh

    x h xh h0

    3

    h

    + -

    "

     

    (c)3 7 4

    limh

    x h xh h h0

    2 2 2

    h

    - + -

    "

     

    (d)4 4

    limh

    x h x h xh0

    4 2 2

    h

    - -

    "

     

    (e)3 4 3

    limh

    x h xh xh h0

    2 2 2

    h

    + - +

    "

     

    (f)2 5 6

    limh

    x h xh h0

    2 2

    h

    + +

    "

     

    (g)2

    limx

    x x x x

    0

    2 2

    x d

    d d-

    "d

     

    (h)4 2

    limx

    x x x0

    2 2

    x d

    d d-

    "d 

    (i)3

    limx

    x x x x x0

    3 2

    x d

    d d d+ -

    "d 

    (j)2 9

    limx

    x x x x x0

    2

    x d

    d d d- +

    "d 

    8.3  Exercises

  • 8/9/2019 ch8.pdf

    18/56

    455Chapter 8  Introduction to Calculus

     Differentiation as a limit

    The formula m x x

     y y 

    2 1

    2 1=

    -

    -

     is used to find the gradient of a straight line when we

    know two points on the line. However, when the line is a tangent to a curve,

    we only know one point on the line—the point of contact with the curve.To differentiate from first principles , we first use the point of contact

    and another point close to it on the curve (this line is called a secant) and then

    we move the second point closer and closer to the point of contact until they

    overlap and the line is at single point (the tangent). To do this, we use a limit.

    If you look at a close up of a graph, you can get some idea of this concept.

    When the curve is magnified, two points appear to be joined by a straight line.

    We say the curve is locally straight .

    Investigation

    Use a graphics calculator or a computer program to sketch a curve and

    then zoom in on a section of the curve to see that it is locally straight.

    For example, here is a parabola.

    -20

    -10

    2 20

    10

    2

     y

     x  f 1( x )= x 2

     Notice how it looks straight when we zoom in on a point on the

    parabola?

     f 1( x )= x 2

    2.99

    7.99   y

     x 

     Use technology to sketch other curves and zoom in to show that they are

    locally straight.

  • 8/9/2019 ch8.pdf

    19/56

    456 Maths In Focus  Mathematics Extension 1 Preliminary Course

     Before using limits to find different formulae for differentiating from first

    principles, here are some examples of how we can calculate an approximate

    value for the gradient of the tangent to a curve. By taking two points close

    together, as in the example below, we find the gradient of the secant and then

    estimate the gradient of the tangent.

    (3,  f (3))

    (3.01,  f (3.01))

     y

     x 

     EXAMPLES

    1. For the functionf x x

    3=] g  , find the gradient of the secant

     PQ  where

     P  

    is the point on the function where 2x =  and Q  is another point on the

    curve close to  P  . Choose different values for Q  and use these results to

    estimate the gradient of the curve at  P  .

    (2,  f (2))

    (2.1,  f (2.1))

     y

    Q

    P

     x 

  • 8/9/2019 ch8.pdf

    20/56

    457Chapter 8  Introduction to Calculus

     Solution

    2, (2) P f = ^ h 

    Take different values of x for point Q  , for example 2.1x =  

    Using different values of x for point Q  gives the results in the table.

    Point Q  Gradient of secant  PQ 

    . , .f 2 1 2 1]_   gi.

    ( . ) ( )

    ..

    .

    mf f 

    2 1 2

    2 1 2

    2 1 22 1 2

    12 61

    3 3

    =-

    -

    =-

    -

    =

    . , .f 2 01 2 01]_   gi.

    ( . ) ( )

    .

    .

    .

    mf f 

    2 01 2

    2 01 2

    2 01 2

    2 01 2

    12 0601

    3 3

    =-

    -

    =

    -

    -

    =

    . , .f 2 001 2 001]_   gi.

    ( . ) ( )

    .

    .

    .

    mf f 

    2 001 2

    2 001 2

    2 001 2

    2 001 2

    12 006001

    3 3

    =-

    -

    =-

    -

    =

    . , .f 1 9 1 9]_   gi.

    ( . ) ( )

    .

    .

    .

    mf f 

    1 9 2

    1 9 2

    1 9 2

    1 9 2

    11 41

    3 3

    =-

    -

    =-

    -

    =

    . , .f 1 99 1 99]_   gi.

    ( . ) ( )

    ..

    .

    mf f 

    1 99 2

    1 99 2

    1 99 21 99 2

    11 9401

    3 3

    =-

    -

    =-

    -

    =

    . , .f 1 999 1 999]_   gi.

    ( . ) ( )

    .

    .

    .

    mf f 

    1 999 2

    1 999 2

    1 999 2

    1 999 2

    11 994001

    3 3

    =-

    -

    =-

    -

    =

    From these results, a good estimate for the gradient at  P  is 12.

     We can say that as x approaches 2, the gradient approaches 12.

    We can write2

    ( ) (2)12lim

    x

    f x f 

    2x -

    -

    ="

     .

    Use y 

    m x x 

     y 

    2 1

    12

    -

    -

    =  to find 

    the gradient of the secant.

    CONTINUED

  • 8/9/2019 ch8.pdf

    21/56

    458 Maths In Focus  Mathematics Extension 1 Preliminary Course

     2. For the curve  y x2=  , find the gradient of the secant  AB where  A is the

    point on the curve where 5x =  and point  B is close to  A . Find an estimate

    of the gradient of the curve at  A by using three different values for  B .

    Solution

    5, (5) A f = ^ h 

    Take three different values of x for point  B , for example . , .x x4 9 5 1= =  

    and 5.01x =  .

     (a) . , ( . )

    .

    ( . ) ( )

    ..

    .

     B f 

    m x x

     y y 

    f f 

    4 9 4 9

    4 9 5

    4 9 5

    4 9 54 9 5

    9 9

    2 1

    2 1

    2 2

    =

    =-

    -

    =-

    -

    =-

    -

    =

    ^ h  

    (b) . , ( . )

    .

    ( . ) ( )

    ..

    .

     B f 

    m x x

     y y 

    f f 

    5 1 5 1

    5 1 5

    5 1 5

    5 1 55 1 5

    10 1

    2 1

    2 1

    2 2

    =

    =-

    -

    =-

    -

    =-

    -

    =

    ^ h  

    (c) . , ( . )

    .

    ( . ) ( )

    ..

    .

     B f 

    m x x

     y y 

    f f 

    5 01 5 01

    5 01 5

    5 01 5

    5 01 55 01 5

    10 01

    2 1

    2 1

    2 2

    =

    =-

    -

    =-

    -

    =-

    -

    =

    ^ h 

    From these results, a good estimate for the gradient at  A is 10.

    We can say that as x approaches 5, the gradient approaches 10.

    We can write5

    ( ) (5)10lim

    x

    f x f 

    5x -

    -

    ="

     .

     We can find a general formula for differentiating from first principles by

    using c  rather than any particular number. We use general points , ( ) P c f c ^ h and

    , ( )Q x f x^ h where x is close to c  .

    The gradient of the secant  PQ  is given by

    ( ) ( )

    m x x

     y y 

    x c 

    f x f c  2 1

    2 1=

    -

    -

    =-

  • 8/9/2019 ch8.pdf

    22/56

    459Chapter 8  Introduction to Calculus

     The gradient of the tangent at  P  is found when x approaches c  . We call

    this ( )c f l  .

    ( )( ) ( )

    limf c  x c 

    f x f c  x c 

    =-

    -

    "

    l  

    There are other versions of this formula.

    We can call the points , ( ) P x f x^ h and , ( )Q x h f x h+ +^ h where h is small.

    ( x +h, f ( x +h))

    ( x , f ( x ))P

    Q

     y

     x 

     Secant  PQ  has gradient

    ( ) ( )

    ( ) ( )

    m x x

     y y 

    x h xf x h f x

    h

    f x h f x

    2 1

    2 1=

    -

    -

    =+ -

    + -

    =

    + -

     

    To find the gradient of the secant, we make h smaller as shown, so that

    Q  becomes closer and closer to  P  .

    P

    Q

    QQ

    Q

     y

     x 

    ( x +h, f ( x +h))

    ( x, f ( x ))

    Search the Internet using

    keywords ‘differentiation from

    first principles’, gradient of

     secant’ and ‘tangent’ to find

    mathematical websites that

     show this working.

  • 8/9/2019 ch8.pdf

    23/56

    460 Maths In Focus  Mathematics Extension 1 Preliminary Course

     As h approaches 0, the gradient of the tangent becomes( ) ( )

    limh

    f x h f x

    0h

    + -

    "

     .

    We call this ( )xf l  .

    ( ) ( ) ( )limxh

    f x h f xh 0

    =+ -

    "

    f l  

    If we use , P x y ^ h and ,Q x x y y  d d+ +^ h close to  P  where x y andd d  are

    small:

    Gradient of secant  PQ  

    m x x

     y 

    x x x

     y y y 

    x

     y 

     y 

    2 1

    2 1

    d

    d

    d

    d

    =-

    -

    =

    + -

    + -

    =

     

    As xd  approaches 0, the gradient of the tangent becomes limx

     y 

    x 0 d

    d

    "d . We

    call thisdx

    dy  .

    The symbol d is a

    Greek letter called

    delta.

      limdx

    dy 

    x

     y 

    x 0 d

    d=

    "d 

    All of these different notations stand for the derivative, or the gradient of

    the tangent:

    , ( ), ( ) , ( ),dx

    dy 

    dx

    d  y 

    dx

    d f x f x y  l l^ h  

    These occur because Newton, Leibniz and other mathematicians over the

    years have used different notation.

    Investigation

    Leibniz useddx

    dy  where d  stood for ‘difference’. Can you see why he would

    have used this?

    Use the Internet to explore the different notations used in calculus and

    where they came from.

  • 8/9/2019 ch8.pdf

    24/56

    461Chapter 8  Introduction to Calculus

     The three formulae for differentiating from first principles all work in a

    similar way.

    EXAMPLE

    Differentiate from first principles to find the gradient of the tangent to

    the curve 3 y x2= +  at the point where 1.x =  

    Solution

    Method 1:

    ( )( ) ( )

    ( )( ) ( )

    ( )( ) ( )

    ( )

    ( ) ( )

    ( )

    lim

    lim

    lim

    lim

    lim

    lim

    lim

    f c  x c 

    f x f c  

    f x x

    f c  x c 

    f x f c  

    f x

    f x f 

    x

    x

    x

    x

    x

    x x

    x

    3

    1 1 3

    4

    11

    1

    1

    3 4

    1

    1

    1

    1 1

    1

    1 1

    2

    x c 

    x c 

    x

    x

    x

    x

    x

    2

    2

    1

    1

    2

    1

    2

    1

    1

    =-

    -

    = +

    = +

    =

    =-

    -

    =-

    -

    =-

    + -

    =-

    -

    =-

    + -

    = +

    = +

    =

    "

    "

    "

    "

    "

    "

    "

    l

    l

    l

    ]]

    gg

     

    Method 2:

    ( )( ) ( )

     

    limf xh

    f x h f x

    f x x

    f x h x h

    x

    f h h

    h h

    h h

    3

    1 1 3

    4

    3

    1

    1 1 3

    1 2 3

    2 4

    When

    h 0

    2

    2

    2

    2

    2

    2

    =

    + -

    = +

    = +

    =

    + = + +

    =

    + = + +

    = + + +

    = + +

    "

    l

    ]]

    ] ]

    ] ]

    gg

    g g

    g g

     

    Remember that  3 y x 2= -  

    is the same as ( ) .f x x 32= -

    CONTINUED

  • 8/9/2019 ch8.pdf

    25/56

    462 Maths In Focus  Mathematics Extension 1 Preliminary Course

    ( )( ) ( )

    ( )( ) ( )

    ( )

    ( )

    ( )

    lim

    lim

    lim

    lim

    lim

    lim

    f xh

    f x h f x

    f h

    f h f 

    hh h

    h

    h h

    h

    h h

    h

    11 1

    2 4 4

    2

    2

    2

    2 0

    2

    h

    h

    h

    h

    h

    h

    0

    0

    0

    2

    0

    2

    0

    0

    =

    + -

    =

    + -

    =+ + -

    =  +

    =

    +

    = +

    = +

    =

    "

    "

    "

    "

    "

    "

    l

    l

     Method 3:

    limdx

    dy 

    x

     y 

     y x 3

    x 0

    2

    d

    d=

    = +

    "d  

    1 3

    x

     y 

    1

    4

    When2

    =

    = +

    =

     So point ,1 4^ h lies on the curve.Substitute point ( , )x y 1 4d d+ +  :

    ( )

    ( )

    ( )

    lim

    lim

     y x

    x x

    x x

     y x x

    x

     y 

    x

    x x

    x

    x x

    x

    dx

    dy 

    x

     y 

    x

    4 1 3

    1 2 3

    2 4

    2

    2

    2

    2

    2

    2 0

    2

    x

    x

    2

    2

    2

    2

    2

    0

    0

    d d

    d d

    d d

    d d d

    d

    d

    d

    d d

    d

    d d

    d

    d

    d

    d

    + = + +

    = + + +

    = + +

    = +

    =  +

    =

    +

    = +

    =

    = +

    = +

    =

    "

    "

    d

    d

     

    We can also use these formulae to nd the derivative function generally.

  • 8/9/2019 ch8.pdf

    26/56

    463Chapter 8  Introduction to Calculus

     EXAMPLE

    Differentiate f x 2x x2 7 3= + -] g  from first principles.

    Solution

    f x x x

    f x h x h x h

    x xh h x h

    x xh h x h

    2 7 3

    2 7 3

    2 2 7 7 3

    2 4 2 7 7 3

    2

    2

    2 2

    2 2

    = + -

    + = + + + -

    = + + + + -

    = + + + + -

    ]] ] ]

    ^

    gg g g

    f x h f x x xh h x h x x

    x xh h x h x x

    xh h h

    2 4 2 7 7 3 2 7 3

    2 4 2 7 7 3 2 7 3

    4 2 7

    2 2 2

    2 2 2

    2

    + - = + + + + - - + -

    = + + + + - - - +

    = + +

    ] ]   ^ ^g g   h h

    ( )( ) ( )

    ( )

    ( )

    lim

    lim

    lim

    lim

    f xh

    f x h f x

    hxh h h

    h

    h x h

    x h

    x

    x

    4 2 7

    4 2 7

    4 2 7

    4 0 7

    4 7

    h

    h

    h

    h

    0

    0

    2

    0

    0

    =

    + -

    =  + +

    =

    + +

    = + +

    = + +

    = +

    "

    "

    "

    "

    l

     Try this example using theother two formulae.

     1.  (a) Find the gradient of the secant

    between the point ,1 2^ h and thepoint where 1.01x =  , on the

    curve 1. y x4= +  

    Find the gradient of the(b)

    secant between ,1 2^ h and thepoint where 0.999x =  on the

    curve.

    Use these results to find the(c)gradient of the tangent to the

    curve 1 y x4= +  at the point

    ,1 2^ h .

     2. A function f x x x3= +] g  has atangent at the point ,2 10^ h .

    Find the value of(a)2

    ( ) (2)

    x

    f x f 

    -

    -

     when 2.1x =  .

     Find the value of(b)( ) ( )

    x

    f x f 

    2

    2

    -

    -

     when 2.01x =  .

     Evaluate(c)2

    ( ) (2)

    x

    f x f 

    -

    -

     when

    .x 1 99=  .

     Hence find the gradient of the(d)

    tangent at the point ,2 10^ h .

     3. For the function ,f x x 4

    2= -

    ] g  find the derivative at point  P  where 3x =  by selecting points

    near P  and finding the gradient of

    the secant.

    4. If ( )f x x2=  ,

    find(a) ( )f x h+  

    show that(b)

    ( ) ( )f x h f x+ -   xh h2 2= +

     8.4  Exercises

  • 8/9/2019 ch8.pdf

    27/56

    464 Maths In Focus  Mathematics Extension 1 Preliminary Course

     show that(c)( ) ( )

    h

    f x h f x+ -  x h2= +

     show that(d) ( )x x2=f l  .

     5. A function is given by

    ( ) 2 7 3f x x x2= - +  .

    Show that(a) ( )f x h+ =

     2 4 2 7 7 3x xh h x h2 2+ + - - + .

     (b) Show that

    ( ) ( ) 4 2 7f x h f x xh h h2+ - = + - .

     Show that(c)

    ( ) ( )4 2 7

    h

    f x h f xx h

    + -

    = + - .

     Find(d) ( )xf l  .

     6. A function is given by

    ( ) 5f x x x2= + + .

     Find(a) f  2] g . Find(b) f h2 +] g . Find(c) f h f 2 2+ -]   ]g   g . Show that(d)

    ( ) ( )5

    h

    f h f h

    2 2+ -= + .

     Find(e) (2)f l  .

     7. Given the curve ( ) 4 3f x x3= -  

    find(a) f  1-] g find(b) f h1 1- + -f -]   ]g   g find the gradient of the(c)

    tangent to the curve at the point

    where x 1= -  .

     8. For the parabola 1 y x2= -  

    find(a) f  3] g find(b) f h f 3 3+ -] ]g g find(c) (3)f l  .

     9. For the function

    ( )f x x x4 3 5 2= - -  find(a) ( )f  1l  

    similarly, find the gradient(b)

    of the tangent at the point

    ,2 10- -^ h .

     10. For the parabola  y x x22= +  

    show that(a)

    2 2 y x x x x2d d d d= + +  

    by substituting the point

    ,x x y y  d d+ +^ h 

    show that(b) 2 2x

     y x x

    d

    dd= + +  

    find(c)dx

    dy  .

     11. Differentiate from first principles

    to find the gradient of the

    tangent to the curve

    (a) f x x2=] g  at the point where1x =  

    (b)  y x x2= +  at the point ,2 6^ h (c) f x x2 52= -] g  at the pointwhere x 3= -  

    (d) 3 3 1 y x x2= + +  at the point

    where 2x =  

    (e) f x x x7 42= - -] g  at thepoint ,1 6-^ h .

     12. Find the derivative function for

    each curve by differentiating

    from first principles

    (a) f x x2=] g  (b)  y x x52= +  

    (c) f x x x4 4 32= - -] g  (d)  y x x5 12= - -  

    (e)  y x3=  

    (f) f x x x2 53= +] g  (g) 2 3 1 y x x x3 2= - + -  

    (h) ( )f x x2 3= -  .

     13. The curve  y x=  has a tangent

    drawn at the point ,4 2^ h .

    Evaluate(a)4

    ( ) (4)

    x

    f x f 

    -

    -

     when

    .x 3 9=  .

     Evaluate(b)4

    ( ) (4)

    x

    f x f 

    -

    -

     when

    .x 3 999=  . Evaluate(c)

    4

    ( ) (4)

    x

    f x f 

    -

    -

     when

    4.01x =  .

     14. For the function ( )f x x 1=   -  ,

    evaluate(a)5

    ( ) (5)

    x

    f x f 

    -

    -

     when

    .x 4 99=  .

     Remember that

     x  x 

    11=

    -

  • 8/9/2019 ch8.pdf

    28/56

    465Chapter 8  Introduction to Calculus

     evaluate(b)( ) ( )

    x

    f x f 

    5

    5

    -

    -

     when

    5.01x =  .

     Use these results to nd the(c)

    derivative of the function at the

    point where x 5=  .

     15. Find the gradient of the tangent

    to the curve4

     y x2

    =  at point

    , P  2 1^ h by nding the gradient ofthe secant between  P  and a point

    close to  P  .

    Short Methods of Differentiation

     The basic rule

    Remember that the gradient of a straight line  y mx b= +  is m . The tangent to

    the line is the line itself, so the gradient of the tangent is m everywhere along

    the line.

     y

     x 

     y=mx +b

     So if , y mxdx

    dy m= =  

    For a horizontal line in the form  y k=  , the gradient is zero.

     y

     x  y= k 

     

    So if , y kdx

    dy 0= =  

    dx

    d kx k=] g  

    dx

    d k 0=] g  

  • 8/9/2019 ch8.pdf

    29/56

    466 Maths In Focus  Mathematics Extension 1 Preliminary Course

      Proof

    Investigation

    Differentiate from first principles:

     y x

     y x y x

    2

    3

    4

    =

    =

    =

     

    Can you find a pattern? Could you predict what the result would be for xn ?

    Alternatively, you could find an approximation to the derivative of a

    function at any point by drawing the graph of.

    ( . ) ( ) y 

    f x f x

    0 01

    0 01=

    + -

     .

    Use a graphics calculator or graphing computer software to sketch the

    derivative for these functions and find the equation of the derivative.

    Mathematicians working with differentiation from first principles discovered

    this pattern that enabled them to shorten differentiation considerably!

    For example:

    When , y x y x22= =l  

    When , y x y x33 2= =l  

    When , y x y x44 3= =l  

    dx

    x nx

    n n 1=

      -

    ^ h  

    You do not need to know

    this proof.

     

    ( )

    ( ) ( )

    ( ) ( ) ( )

    ( ) [( ) ( ) ( ) ( )

    . . . ( ) ]

    [( ) ( ) ( ) ( ). . . ( ) ]

    f x x

    f x h x h

    f x h f x x h x

    x h x x h x h x x h x x h x

    x h x x

    h x h x h x x h x x h xx h x x

    n

    n

    n n

    n n n n

    n n

    n n n n

    n n

    1 2 3 2 4 3

    2 1

    1 2 3 2 4 3

    2 1

    =

    + = +

    + - = + -

    = + - + + + + + + +

    + + + +

    = + + + + + + +

    + + + +

    - - - -

    - -

    - - - -

    - -

    ^ h  

    ( )( ) ( )

    [( ) ( ) ( ) ( ) . . . ( ) ]

    [( ) ( ) ( ) ( ) . . . ( ) ]

    ( ) ( ) ( ) ( ) . . . ( )

    lim

    lim

    lim

    f xh

    f x h f x

    h

    h x h x h x x h x x h x x h x x

    x h x h x x h x x h x x h x x

    x x x x x x x x x x

    nx

    h

    h

    n n n n n n

    h

    n n n n n n

    n n n n n n

    n

    0

    0

    1 2 3 2 4 3 2 1

    0

    1 2 3 2 4 3 2 1

    1 2 3 2 4 3 2 1

    1

    =

    + -

    =

    + + + + + + + + + + +

    = + + + + + + + + + + +

    = + + + + + +

    =

    "

    "

    "

    - - - - - -

    - - - - - -

    - - - - - -

    -

    l

  • 8/9/2019 ch8.pdf

    30/56

    467Chapter 8  Introduction to Calculus

     You do not need to know

    this proof.

     EXAMPLE

    Differentiate ( )f x x7=  .

     Solution

    ( ) 7f x x6=l  

    There are some more rules that give us short ways to differentiate functions.

    The first one says that if there is a constant in front of the x (we call this a

    coefficient), then it is just multiplied with the derivative.

    dx

    kx knx

    n n 1=

      -

    ^ h  

    ( ) ( )dx

    d kf x kf x=   l^ h  

    A more general way of writing this rule is:

     Proof

    ( )( ) ( )

    [ ( ) ( )]

    ( ) ( )

    ( )

    lim

    lim

    lim

    dx

    d kf x

    h

    kf x h kf x

    h

    k f x h f x

    kh

    f x h f x

    kf x

    h

    h

    h

    0

    0

    0

    =

    + -

    =

    + -

    =

    + -

    =

    "

    "

    "

    l

    ^ h

     

    EXAMPLE

    Find the derivative of 3x 8 .

     Solution

    3 y x

    dx

    dy x

    x

    3 8

    24

    If  8

    7

    7

    #

    =

    =

    =

     

  • 8/9/2019 ch8.pdf

    31/56

    468 Maths In Focus  Mathematics Extension 1 Preliminary Course

     Many functions use a combination of these rules.

    Also, if there are several terms in an expression, we differentiate each one

    separately. We can write this as a rule:

    ( ) ( ) ( ) ( )dx

    d f x g x f x g x+ = + ’l^ h  

     Proof

    ( ) ( )[ ( ) ( )] [ ( ) ( )]

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( )

    lim

    lim

    lim

    lim

    lim lim

    dx

    d f x g x

    h

    f x h g x h f x g x

    h

    f x h g x h f x g x

    h

    f x h f x g x h g x

    hf x h f x

    h g x h g x

    h

    f x h f x

    h

     g x h g x

    f x g x

    h

    h

    h

    h

    h h

    0

    0

    0

    0

    0 0

    + =

    + + + - +

    =

    + + + - -

    =

    + - + + -

    =

    + -

    +

    + -

    =

    + -

    +

    + -

    = +

    "

    "

    "

    "

    " "

    l l

    ^ h

    = G

     

    You do not need to

    know this proof.

     EXAMPLE

    Differentiate x x3 4+  .

     Solution

    ( )dx

    d x x x x3 43 4 2 3+ = +  

    EXAMPLES

    Differentiate

    1. 7x 

    Solution

    dx

    d x7 7=] g  

    CONTINUED

  • 8/9/2019 ch8.pdf

    32/56

    469Chapter 8  Introduction to Calculus

     2. ( ) 5x x xf  4 3= - +  

    Solution

    ( )f x x x

    x x

    4 3 0

    4 3

    3 2

    3 2

    = - +

    = -

    l

     

    3.  y x4 7=  

    Solution

    dx

    dy x

    x

    4 7

    28

    6

    6

    #=

    =

     

    4. If ( )f x x x x2 7 5 45 3= - + -  , evaluate ( )f  1-l  

    Solution

    ( )

    ( ) ( ) ( )

    f x x x

    10 21 5

    1 10 1 21 1 5

    6

    4 2

    4 2

    = - +

    - = - - - +

    = -

    l

    l  

    5. Differentiate2

    3 5x

    x x2 + 

    Solution

    Divide by 2x before differentiating.

    x

    x x

    x

    x

    xx

    x

    dx

    dy 

    23 5

    23

    25

    23

    25

    2

    3

    121

    2 2+

    = +

    = +

    =

    =

     

    6. Differentiate S r rh2 22r r= +  with respect to r  .

     Solution

    We are differentiating with respect to r  , so r  is the variable and r and h 

    are constants.

    ( )dr 

    dSr h

    r h

    2 2 2

    4 2

    r r

    r r

    = +

    = +

     

  • 8/9/2019 ch8.pdf

    33/56

    470 Maths In Focus  Mathematics Extension 1 Preliminary Course

     1. Differentiate

    (a) 2x +  

    (b) 5 9x -  

    (c) 3 4x x2 + +  

    (d) 5 8x x2 - -  

    (e) 2 7 3x x x3 2+ - -  

    (f) 2 7 7 1x x x3 2- + -  

    (g) 3 2 5x x x4 2- +  

    (h) 5 2x x x6 5 4- -  

    (i) 2 4 2 4x x x x5 3 2- + - +  

    (j) 4 7x x10 9-  

    2. Find the derivative of

    (a) 2 1x x +] g (b) 2 3x 2-] g  (c) 4 4x x+ -] ]g g (d) 2 3x2

    2-^ h  

    (e) 2 5 1x x x2+ - +]   ^g   h 

    3. Differentiate

    (a)x

    x6

    2

    -  

    (b)2 3

    4x x4 3

    - +  

    (c) ( )x x31 36 2 -  

    (d) xx x2 53 +

     

    (e)4

    2x

    x x2 + 

    (f)3

    2 3 6 2

    x

    x x x x2

    5 4 3 2- + -

     

    4. Find ( )f xl  when

    ( )f x x8 2= -  x7 4+ .

     5. If y x x2 54 3= - +  , finddxdy  when

    .x 2= -  

    6. Finddx

    dy  if

     y x x x6 5 710 8 5= - + -  .x3 8+

     7. If s t t 5 202= -  , finddt 

    ds .

    8. Find ( ) g xl  given ( ) g x x5 4=   -  .

     9. Finddt 

    dv  when v t 15 92= -  .

     10. If h t t 40 2 2= -  , finddt dh  .

     11. Given34

    V r 3r=  , finddr 

    dV  .

     12. If ( )f x   x x2 3 43= - +  ,

    evaluate (1)f l  .

     13. Given ( ) 5f x x x2= - +  , evaluate

    (a) ( )f  3l  

    (b) ( )f  2-l  

    (c) x when ( )f x 7=l  

    14. If y x 73= -  , evaluate

    (a)dx

    dy  when x 2=  

    (b) x whendx

    dy 12=  

    15. Evaluate ( ) g  2l  when

    ( ) g t t t t 3 4 2 13 2= - - + .

     8.5  Exercises

    Expand brackets

    before differentiating.

     Simplify by dividing

    before differentiating.

  • 8/9/2019 ch8.pdf

    34/56

    471Chapter 8  Introduction to Calculus

     DID YOU KNOW?

    • The word tangent comes from the Latin ‘tangens’, meaning ‘touching’. A tangent to a circle 

    intersects it only once. 

    • However, a tangent to a curve could intersect the curve more than once. 

    • A line may only intersect a curve once but not be a tangent.

    • So a tangent to a curve is best described as the limiting position of the secant PQ as Q 

    approaches P  .

    This line is a tangent to the

    curve at point P.

     Remember from earlier in the chapter that the derivative is the gradient of the

    tangent to a curve.

    dx

    dy  is the gradient of the tangent to a curve

     Tangents and Normals

  • 8/9/2019 ch8.pdf

    35/56

    472 Maths In Focus  Mathematics Extension 1 Preliminary Course

    u EXAMPLES

    1. Find the gradient of the tangent to the parabola y x 12= +  at the

    point ,1 2^ h .

     Solution

    , ( )

    dx

    dy x

    x

    dx

    dy 

    2 0

    2

    1 2 2 1

    2

    At

    = +

    =

    =

    =

    ^ h

     

    So the gradient of the tangent at ,1 2^ h is 2.

    2. Find values of x for which the gradient of the tangent to the curve2 6 1 y x x3 2= - +  is equal to 18.

    Solution

    dx

    dy x x6 122= -  

    dx

    dy  is the gradient of the tangent, so substitute

    dx

    dy 18=  .

     

    x 1= -

    ,

    ,

    x x

    x x

    x x

    x x

    x x

    x

    18 6 12

    0 6 12 18

    2 3

    3 1

    3 0 1 0

    3

    2

    2

    2

    `

    = -

    = - -

    = - -

    = - +

    - = + =

    =

    ] ]g g 

    3. Find the equation of the tangent to the curve y x x x3 7 24 3= - + -  

    at the point ,2 4^ h .

    Solution

    ,

    dxdy  x x

    dx

    dy 

    4 9 7

    2 4 4 2 9 2 7

    3

    At

    3 2

    3 2

    = - +

    = - +

    =

    ^   ] ]h   g g  

    So the gradient of the tangent at ,2 4^ h is 3.Equation of the tangent:

     y y m x x

     y x4 3 21 1

    - = -

    - = -

    _]

    ig

     

  • 8/9/2019 ch8.pdf

    36/56

    473Chapter 8  Introduction to Calculus

     

    x

     y x

    x y 

    3 6

    3 2

    0 3 2or

    = -

    = -

    = - -

     The normal is a straight line perpendicular to the tangent at the same point of

    contact with the curve.

    Normal

    Tangent

     y

     x 

     If lines with gradients m 1 and m 

    2 are perpendicular, then m m 1

    1 2= -  

    You used this rule in the

     previous chapter.

     EXAMPLES

    1. Find the gradient of the normal to the curve y x x2 3 52= - +  at the

    point where x 4=  .

     Solution

    dx

    dy  is the gradient of the tangent.

     

    13=

    x4 3= -dx

    dy 

    x

    dx

    dy 

    m

    4

    4 4 3

    13

    When

    So1

    #

    =

    = -

    =

     

    The normal is perpendicular to the tangent.

      m m 1So1 2

    = -  

    CONTINUED

  • 8/9/2019 ch8.pdf

    37/56

    474 Maths In Focus  Mathematics Extension 1 Preliminary Course

    m

    m

    13 1

    131

    2

    2

    = -

    = -

     So the gradient of the normal is131

    -  .

     

    2. Find the equation of the normal to the curve y x x x3 2 13 2= + - -  

    at the point , .1 3-^ h  

    Solution

    dx

    dy  is the gradient of the tangent.

     

    dx

    dy x x

    x

    dx

    dy 

    m

    3 6 2

    1

    3 1 6 1 2

    5

    5

    When

    So

    2

    2

    1

    = + -

    = -

    = - + - -

    = -

    = -

    ] ]g g  

    The normal is perpendicular to the tangent.

     

    m m

    m

    m

    1

    5 1

    51

    So1 2

    2

    2

    = -

    - = -

    =

     

    So the gradient of the normal is 51

     . Equation of the normal:

     y y m x x

     y x

     y x

    x y 

    351

    1

    5 15 1

    0 5 16

    1 1- = -

    - = - -

    - = +

    = - +

    _

    ]]

    i

    g g 

    1.  Find the gradient of the tangent

    to the curve

    (a)  y x x33= -  at the point where

    5x =  

    (b) f x 2x x 4= + -] g  at the point,7 38-^ h 

    (c) f x 3x x5 4 1= - -] g  at thepoint where x 1= -  

    (d) 5 2 3 y x x2= + +  at the point

    ,2 19-^ h (e)  y x2 9=  at the point where

    1x =  

    (f) f x 3x 7= -] g  at the pointwhere 3x =  

    (g) v t t 2 3 52= + -  at the point

    where t  2=  

    (h) 3 2 8 4Q r r r  3 2= - + -  at the

    point where 4r =  

    (i) 4h t t 4= -  where t  0=  

    (j) f t t t t  3 8 55 3= - +] g  at thepoint where 2t =  .

     8.6  Exercises

  • 8/9/2019 ch8.pdf

    38/56

    475Chapter 8  Introduction to Calculus

     2.  Find the gradient of the normal

    to the curve

    (a) f x x x2 2 13= + -] g  at thepoint where x 2= -  

    (b) 3 5 2 y x x2= + -  at the

    point ,5 48-

    ^ h (c) f x x x2 72= - -] g  at thepoint where 9x = -  

    (d) 3 2 y x x x3 2= + + -  at the

    point ,4 62- -^ h (e) f x x10=] g  at the point where

    1x = -  

    (f) 7 5 y x x2= + -  at the

    point ,7 5- -^ h (g) 2 3 1 A x x x3 2= + - +  at the

    point where 3x =  

    (h) f a a a3 2 62= - -] g  at thepoint where 3a = -  

    (i) 4 9V h h3= - +  at the

    point ,2 9^ h (j) 2 5 3 g x x x x4 2= - + -] g  atthe point where x 1= -  .

     3.  Find the gradient of the

    (i) tangent and (ii) normal to

    the curve

    (a) 1 y x2= +  at the point ,3 10^ h 

    (b) f x x5 2= -] g  at the pointwhere x 4= -  

    (c) 2 7 4 y x x5 2= - +  at the point

    where x 1= -  

    (d) 3 2 8 p x x x x6 4= - - +] g  where 1x =  

    (e) f x x x4 2= - -] g  at the point,6 26-^ h .

     4.  Find the equation of the tangent

    to the curve

    (a) 5 1 y x x4= - +  at thepoint ,2 7^ h (b) ( ) 5 3 2 6f x x x x3 2= - - +  at

    the point ,1 6^ h (c) 2 8 y x x2= + -  at the

    point ,3 5- -^ h (d) 3 1 y x3= +  at the point

    where 2x =  

    (e) 4 7 2v t t 4 3= - -  at the point

    where 2t =  

    5.  Find the equation of the normal

    to the curve

    (a) f x x x3 53= - +] g  at thepoint ,3 23^ h (b) 4 5 y x x2= - -  at the point

    ,2 7-

    ^ h (c) f x x x7 2 2= -] g  at the pointwhere 6x =  

    (d) 7 3 2 y x x2= - -  at the point

    ,3 70-^ h (e) 2 4 1 y x x x4 3= - + +  at the

    point where 1x =  .

     6.  Find the equation of the

    (i) tangent and (ii) normal to the

    curve

    (a) f x x x4 8

    2= - +

    ] g  at thepoint ,1 11^ h (b) 2 5 y x x x3 2= + -  at the

    point ,3 6-^ h (c) 5 F x x x5 3= -] g  at the pointwhere 1x =  

    (d) 8 7 y x x2= - +  at the point

    ,3 8-^ h (e) 2 4 1 y x x x4 3= - + +  at the

    point where 1x =  .

     7.

      For the curve 27 5, y x x

    3= - -

     

    find values of x for which 0dx

    dy =  .

     8.  Find the coordinates of the point

    at which the curve 1 y x3= +  has

    a tangent with a gradient of 3.

    9.  A function ( ) 4 12f x x x2= + -  

    has a tangent with a gradient of

    6-  at point P  on the curve. Find

    the coordinates of the point P  .

    10.  The tangent at point P  on the

    curve 4 1 y x2= +  is parallel to the

    x -axis. Find the coordinates of P  .

    11.  Find the coordinates of point Q  

    where the tangent to the curve

    5 3 y x x2= -  is parallel to the line

    7 3 0x y - + =  .

  • 8/9/2019 ch8.pdf

    39/56

    476 Maths In Focus  Mathematics Extension 1 Preliminary Course

     12.  Find the coordinates of point S 

    where the tangent to the curve

    4 1 y x x2= + -  is perpendicular

    to the line 4 2 7 0x y + + =  .

     13. The curve 3 4 y x2= -  has a

    gradient of 6 at point A .

    Find the coordinates of(a)  A .

     Find the equation of the(b)

    tangent to the curve at A .

    14. A function 3 2 5h t t 2= - +  has a

    tangent at the point where t  2=  .

    Find the equation of the tangent.

    15. A function f x x x2 8 32= - +] g  has a tangent parallel to the line

    4 2 1 0x y - + =  at point P  . Find

    the equation of the tangent at P  .

    Further Differentiation and Indices

    The basic rule for differentiating xn works for any rational number n .

    Investigation

    (a) Show that1.1 1

    ( )x h   x   x x h

    h

    +- =

    +

    - .

     Hence differentiate(b)1

     y  x=  from first principles.

     Differentiate(c)  y x 1=   -  using a short method. Do you get the same

    answer as 1(b)?

    (a) Show that2. ( )( )x h x x h x h+ - + + =  .

     Hence differentiate(b)  y x=  from first principles.

     Differentiate(c)2

     y x=

    1

     and show that this gives the same answer as 2(b).

    EXAMPLES

    1. Differentiate 7   x3  .

     Solution

    3

    x x

    dx

    dy x

    x

    x

    7 7

    731

    37

    37 1

    3 3

    31

    3

    2

    $

    #

    =

    =

    =

    =

    -

    -

    1

    1

    2

     

    We sometimes need to change a function into index form before

    differentiating.

  • 8/9/2019 ch8.pdf

    40/56

    477Chapter 8  Introduction to Calculus

    x

    x

    37 1

    3

    7

    23

    23

    #=

    =

     2. Find the equation of the tangent to the curve4

     y x2

    =  at the point

    where 2.x =  

    Solution

     y x

    x

    dx

    dy x

    x

    4

    4

    8

    8

    2

    2

    3

    3

    =

    =

    = -

    = -

    -

    2xWhen   =

     y 2

    4

    1

    2=

    =

     

    Gradient of the tangent at 2, 1 :^ h  

    dx

    dy 

    2

    8

    1

    3= -

    = -

     

    Equation of the tangent:

     y y m x x y x

    x

     y x

    x y 

    1 1 2

    2

    3

    3 0or

    1 1- = -

    - = - -

    = - +

    = - +

    + - =

    _ ] ig

     

    8.7  Exercises

    1. Differentiate

    (a) x 3-  

    (b) x1.4 

    (c) 6x0.2 

    (d) 2x1

     

    (e) 22 3x x 1-   -1

     

    (f) 3x31

     

    (g) 8x43

     

    (h)2

    2x-

    -1

     

    2. Find the derivative function,

    writing the answer without

    negative or fractional indices.

     (a)1x  

    (b) 5   x  

    (c) x6  

    (d)2

    x5 

    (e)5

    x3-  

    (f)1

    x

     

  • 8/9/2019 ch8.pdf

    41/56

    478 Maths In Focus  Mathematics Extension 1 Preliminary Course

     (g)x2

    16

     (h) x x

     (i)x3

    2

     (j)x x4

    1 32 4

    +

     3. Find the gradient of the tangent

    to the curve  y x3=  at the point

    where 27.x =  

    4. If12

    xt 

    =  , nddt 

    dx when .t  2=  

    5. A function is given by ( )f x x4=  .

    Evaluate .( )f  16l  

    6. Find the gradient of the tangent

    to the curve2

    3 y 

    x2=  at the point

    1, 121c m .

    7. Finddx

    dy  if  y x x

    2= +^ h  .

     8. A function ( )2

    f x  x

    =  has a

    tangent at , .4 1^ h  Find thegradient of the tangent.9.  Find the equation of the tangent

    to the curve1

     y x3

    =  at the point

    2,81c m .

    10. Find the equation of the tangent

    to ( ) 6f x x=  at the point where

    9.x =  

    11. (a) Differentiate xx

     .

     H(b) ence nd the gradient of thetangent to the curve  y  x

    x=  at

    the point where 4.x =  

    12. Find the equation of the tangent

    to the curve4

     y  x=  at the point

    8,21c m .

    13. If the gradient of the tangent to

     y x=  is6

    1 at point  A , nd the

    coordinates of  A .

    14. The function ( ) 3f x x=  has

    ( )f x43

    =l  . Evaluate x .

    15. The hyperbola2

     y  x=  has two

    tangents with gradient252

    -  . Find

    the coordinates of the points of

    contact of these tangents.

    Note that1

    . x x 2 2

    1 16 6

    #=  

    Use index laws to

     simplify rst.

     Expand brackets rst.

     Composite Function Rule

    A composite function is a function composed of two or more other functions.

    For example, 3 4x25

    -^ h  is made up of a function u 5 where 3 4u x2= -  . To differentiate a composite function, we need to use the result..

    This rule is also called the

    function of a function rule

    or chain rule.

     dx

    dy 

    du

    dy 

    dx

    du#=  

  • 8/9/2019 ch8.pdf

    42/56

    479Chapter 8  Introduction to Calculus

      Proof

    Let ,x y d d  and ud  be small changes in x ,  y  and u where , , .x y u0 0 0" " "d d d  

    0, 0

    lim lim lim

    x

     y 

    u

     y 

    x

    u

    x u

    x

     y 

    u

     y 

    x

    u

    Then

    As

    Sox u x0 0 0

    " "

    #

    #

    d

    d

    d

    d

    d

    d

    d d

    d

    d

    d

    d

    d

    d

    =

    =" " "d d d

     

    Using the definition of the derivative from first principles, this gives

    dx

    dy 

    du

    dy 

    dx

    du#=  .

     You do not need to

    learn this proof.

     EXAMPLES

    Differentiate

    1. (5 4)x 7+  

    Solution

    Let 5 4u x= +  

    ` 7

    ( )

    dx

    du

     y u

    du

    dy u

    dxdy 

    dudy 

    dxdu

    u

    x

    5

    7 5

    35 5 4

    Then

    7

    6

    6

    6

    #

    #

    =

    =

    =

    =

    =

    = +

     

    2. (3 2 1)x x2 9+ -  

    Solution

    `

    ( )

    ( ) ( )

    u x x

    dx

    dux

     y u

    du

    dy u

    dx

    dy 

    du

    dy 

    dx

    du

    u x

    x x x

    3 2 1

    6 2

    9

    9 6 2

    9 6 2 3 2 1

    Let

    Then

    2

    9

    8

    8

    2 8

    #

    = + -

    = +

    =

    =

    =

    = +

    = + + -

     

    Can you see a quick

    way of doing this

    question?

    CONTINUED

  • 8/9/2019 ch8.pdf

    43/56

    480 Maths In Focus  Mathematics Extension 1 Preliminary Course

     3. 3   x-  

    Solution

    2

    2

    2

    2

    2

    ( )

    ( 1)

    (3 )

    x xu x

    dx

    du

     y u

    du

    dy u

    dx

    dy 

    du

    dy 

    dx

    du

    u

    x

    x

    3 33

    1

    21

    21

    21

    2 3

    1

    Let

    #

    - = -

    = -

    = -

    =

    =

    =

    = -

    = - -

    = -

    -

    -

    -

    -

    1

    1

    1

    1

    1

     

    The derivative of a composite function is the product of two derivatives.

    One is the derivative of the function inside the brackets. The other is the

    derivative of the whole function.

    [dx

    d    n n 1-( )] ( ) [f x f x n= ( )]f xl  

     Proof

    ( )

    ( )

    ( )

    ( ) [ ( )]

    u f x

    dx

    duf x

     y u

    du

    dy nu

    dx

    dy 

    du

    dy 

    dx

    du

    nu f x

    f x n f x

    Let

    Then

    n

    n

    n

    n

    1

    1

    1

    `

    #

    #

    =

    =

    =

    =

    =

    =

    =

    -

    -

    -

    l

    l

    l

     

    You do not need to know

    this proof.

  • 8/9/2019 ch8.pdf

    44/56

    481Chapter 8  Introduction to Calculus

     EXAMPLES

    Differentiate

    1. (8 1)x3 5-  

    Solution

    ( ) [ ( )]

    ( )

    ( )

    dx

    dy f x n f x

    x x

    x x

    24 5 8 1

    120 8 1

    n 1

    2 3 4

    2 3 4

    $

    $

    =

    = -

    = -

    -

    l  

    2. (3 8)x 11+  

    Solution

    .( ) [ ( )]

    ( )

    ( )

     y f x n f x

    x

    x

    3 11 3 8

    33 3 8

    n 1

    10

    10

    #

    =

    = +

    = +

    -

    l l  

    3.

    (6 1)

    1

    x 2+

     

    Solution

    ( )

    ( )

    ( ) [ ( )]

    ( )

    ( )

    ( )

    x

    x

     y f x n f x

    x

    x

    x

    6 1

    16 1

    6 2 6 1

    12 6 1

    6 1

    12

    n

    2

    2

    1

    3

    3

    3

    $

    #

    +

    = +

    =

    = - +

    = - +

    = -

    +

    -

    -

    -

    -

    l l

     

    1.  Differentiate

    (a) ( )x 3 4+  

    (b) ( )x2 1 3-  

    (c) ( )x5 42 7-  

    (d) ( )x8 3 6+  

    (e) ( )x1 5-  

    (f) 3(5 9)x 9+  

    (g) ( )x2 4 2-  

    (h) ( )x x2 33 4+  

    (i) ( 5 1)x x2 8+ -  

    (j) ( 2 3)x x6 2 6- +  

    (k) 2( )x3 1-1

     

    8.8  Exercises

  • 8/9/2019 ch8.pdf

    45/56

    482 Maths In Focus  Mathematics Extension 1 Preliminary Course

     (l) (4 )x 2-   -  

    (m)( 9)x2 3-   -  

    (n) 3( )x5 4+1

     

    (o) 4( )x x x73 2- +3

     

    (p) 3 4x +  (q)

    5 21

    x - 

    (r)( 1)

    1

    x2 4+ 

    (s) ( )x7 3 2-3  

    (t)4

    5

    x+ 

    (u)2 3 1

    1

    x - 

    (v)4(2 7)

    3

    x 9+ 

    (w)3 3

    1

    x x x4 3- + 

    (x) ( )x4 1 43 +  

    (y)( )x7

    154

    -

     

    2. Find the gradient of the tangent

    to the curve 3 2 y x 3= -] g  at the

    point .,1 1^ h  3. If ( ) 2( 3)f x x2 5= -  , evaluate (2)f l  .

    4. The curve 3 y x= -  has atangent with gradient

    21

     at point

    N  . Find the coordinates of N  .

    5. For what values of x does the

    function ( )4 1

    1f x

    x=

    - have

    ( )f x494

    = -l  ?

    6. Find the equation of the tangent

    to (2 1) y x 4= +  at the point

    where 1.x = -  

    Product Rule

    Differentiating the product of two functions  y uv =  gives the result

    dx

    dy u

    dx

    dv v 

    dx

    du= +  

     Proof

     y uv =  

    Given that , y u v andd d d  are small changes in  y  , u and v  .

     

    ( ) ( ) y y u u v v 

    uv u v v u u v  

     y u v v u u v y uv 

    x

     y u

    x

    v v 

    x

    uu

    x

    since`

    d d d

    d d d d

    d d d d d

    d

    d

    d

    d

    d

    dd

    d

    d

    + = + +

    = + + +

    = + + =

    = + +

    ^ h 

  • 8/9/2019 ch8.pdf

    46/56

    483Chapter 8  Introduction to Calculus

    0, 0

    lim lim

    lim lim lim

    x u

    x

     y u

    x

    v v 

    x

    uu

    x

    ux

    v v 

    x

    uu

    x

    dxdy  u

    dxdv  v 

    dxdu

    As

    x x

    x x x

    0 0

    0 0 0

    " "d d

    d

    d

    d

    d

    d

    dd

    d

    d

    d

    d

    d

    dd

    d

    d

    = + +

    = + +

    = +

    " "

    " " "

    d d

    d d d

    << < <

    FF F F 

    It is easier to remember this rule as  y uv vu= +l l l . We can also write this

    the other way around which helps when learning the quotient rule in the next

    section.

    You do not need to

    know this proof.

     If , y uv y u v v u= = +l l l  

    EXAMPLES

    Differentiate

    1. 3 1 5x x+ -] ]g g Solution

    You could expand the brackets and then differentiate:

    x x x x x

    x x

    dx

    dy x

    3 1 5 3 15 5

    3 14 5

    6 14

    2

    2

    + - = - + -

    = - -

    = -

    ] ]g g  

    Using the product rule:

     y uv u x v x

    u v 

    3 1 5

    3 1

    where and= = + = -

    = =l l 

     y u v v u

    x x

    x x

    x

    3 5 1 3 1

    3 15 3 1

    6 14

    = +

    = - + +

    = - + +

    = -

    l l l

    ]   ]g   g 

    2. 2 5 3x x5 3+

    ] g 

    Solution

    .

     y uv u x v x

    u x v x

    2 5 3

    10 5 3 5 3

    where and5 3

    4 2

    = = = +

    = = +l l

    ]]

    gg

    CONTINUED

  • 8/9/2019 ch8.pdf

    47/56

    484 Maths In Focus  Mathematics Extension 1 Preliminary Course

    .

     y u v v u

    x x x x

    x x x x

    x x x x

    x x x

    10 5 3 5 3 5 3 2

    10 5 3 30 5 3

    10 5 3 5 3 3

    10 5 3 8 3

    4 3 2 5

    4 3 5 2

    4 2

    4 2

    $

    = +

    = + + +

    = + + +

    = + + +

    = + +

    l l l

    ] ]] ]] ]

    ] ]

    g gg gg g

    g g

    6 @

     

    3. (3 4) 5 2x x- -  

    Solution

    2

    2

    2

     

    ( )

    x x

     y uv u x v x

    u v x

    5 2 5 2

    3 4 5 2

    3 221

    5 2

    Remember

    where and

    $

    - = -

    = = - = -

    = = - -

    -

    1

    1

    1

    l l

    ]]

    gg  

    -

    2

    2

    2

    2

    ( )

    ( )

    ( )

    ( ) ( )

     y u v v u

    x x x

    x x x

    x

    x

    x

    xx

    x

    x

    x x x

    x

    x x

    x

    x x

    x

    x

    3 5 2 221

    5 2 3 4

    3 5 2 3 4 5 2

    3 5 2

    5 2

    3 4

    3 5 25 2

    3 4

    5 2

    3 5 2 5 2 3 4

    5 2

    3 5 2 3 4

    5 2

    15 6 3 4

    5 2

    19 9

    $

    $

    = +

    = - + - - -

    = - - - -

    = - -

    -

    -

    = - -

    -

    -

    =

    -

    - - - -

    =

    -

    - - -

    =

    -

    - - +

    =

    -

    -

    -1 1

    1

    1

    l l l

    ] ] ]]

    g g gg

     

    We can simplify this further

    by factorising.

     1. Differentiate

    (a) 2 3x x3 +] g (b) 3 2 2 1x x- +]   ]g   g (c) 3 5 7x x +] g (d) 4 3 1x x4 2 -^ h (e) 2 3x x x4 -^ h (f) 1x x2 3+] g  

    (g) 4 3 2x x 5-] g  (h) x x3 44 3-] g  (i) 1 2 5x x 4+ +] ]g g  (j) 5 3 1x x x3 2 2

    5+ - +^   ^h   h  

    (k) 2x x-  

    (l)2 15 3

    x

    x

    -

    8.9  Exercises

    Change this into a product

    before differentiating.

  • 8/9/2019 ch8.pdf

    48/56

    485Chapter 8  Introduction to Calculus

     2. Find the gradient of the tangent

    to the curve 2 3 2 y x x 4= -] g  atthe point 1, 2^ h .

    3. If ( ) (2 3)(3 1)f x x x 5= + -  ,

    evaluate ( )1f l  .

     4. Find the exact gradient of the

    tangent to the curve  y x x2 5= +  

    at the point where 1x =  .

     5. Find the gradient of the

    tangent where 3,t  =  given

    2 5 1x t t  3= - +] ]g g  . 6. Find the equation of the tangent

    to the curve 2 1 y x x2 4= -] g  atthe point , .1 1

    ^ h 

    7. Find the equation of the tangent

    to ( 1) ( 1)h t t 2 7= + -  at the point

    , .2 9^ h  8. Find exact values of x for

    which the gradient of the

    tangent to the curve

    2 3 y x x 2= +] g  is 14.9. Given ( ) (4 1)(3 2)f x x x 2= - +  ,

    nd the equation of the

    tangent at the point where

    x 1= -  .

     Quotient Rule

    Differentiating the quotient of two functions  y  v u

    =  gives the result.

    dx

    dy 

    v dx

    duu

    dx

    dv 

    2=

    -

     

     Proof

     y  v u

    =  

    Given that , y u v andd d d  are small changes in  y  , u and v  .

     

    `  

    ( )

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    ( )

    ( )

    ( )

    ,

     y y v v 

    u u

     y v v 

    u uv u

     y  v u

    v v v 

    v u u

    v v v 

    u v v 

    v v v 

    v u u u v v  

    v v v 

    vu v u uv u v  

    v v v 

    v u u v  

    x

     y 

    v v v 

    v x

    uu

    x

    x v 0 0

    since

    As   " "

    dd

    d

    dd

    d

    d

    d

    d

    d

    d

    d d

    d

    d d

    d

    d d

    d

    d

    d

    d

    d

    d

    d

    d d

    + =

    +

    +

    =+

    +- =

    =+

    +

    -+

    +

    =+

    + - +

    =

    +

    + - -

    =+

    -

    =

    +

    -

    a k

  • 8/9/2019 ch8.pdf

    49/56

    486 Maths In Focus  Mathematics Extension 1 Preliminary Course

    ( )lim lim

    x

     y 

    v v v 

    v x

    uu

    x

    dx

    dy 

    v dx

    duu

    dx

    dv 

    x x0 0

    2

    d

    d

    d

    d

    d

    d

    d

    =

    +

    -

    =

    -

    " "d d

    R

    T

    SSSS

    V

    X

    WWWW 

    It is easier to remember this rule as  y v 

    u v v u2

    =  -

    l  l l

     .

    You do not need to know

    this proof.

     If , y  v u

     y v 

    u v v u2

    = =  -

    l  l l

     

    EXAMPLES

    Differentiate

    1.

    5 2

    3 5

    x

    x

    +

    -  

    Solution

    =

      y  v u

    u x   v x

    u v 

    3 5 5 2

    3 5

    where and= = - = +

    =l l

    ( )( ) ( )

    ( )

    ( )

     y v 

    u v v u

    xx x

    x

    x x

    x

    5 23 5 2 5 3 5

    5 2

    15 6 15 25

    5 2

    31

    2

    2

    2

    2

    =  -

    =

    +

    + - -

    =

    +

    + - +

    =

    +

    l  l l

     

    2.

    1

    4 5 2

    x

    x x3

    3

    -

    - +  

    Solution

    =

      y  v u u x x v x

    v x

    4 5 2 1

    3

    where and3 3

    2 2

    = = - + = -

    =u x12 5-l l

    ( )

    ( ) ( ) ( )

    ( )

    ( )

     y v 

    u v v u

    x

    x x x x x

    x

    x x x x x x

    x

    x x

    1

    12 5 1 3 4 5 2

    1

    12 12 5 5 12 15 6

    1

    10 18 5

    2

    3 2

    2 3 2 3

    3 2

    5 2 3 5 3 2

    3 2

    3 2

    =  -

    =

    -

    - - - - +

    =

    -

    - - + - + -

    =

    -

    - +

    l  l l  

  • 8/9/2019 ch8.pdf

    50/56

    487Chapter 8  Introduction to Calculus

    8.10  Exercises

    1. Differentiate

    (a)

    2 1

    1

    x -

     

    (b)5

    3x

    x

    +

     

    (c)4x

    x2

    3

    -

     

    (d)5 1

    3

    x

    x

    +

    -  

    (e) 7

    x

    x2

    -  

    (f)3

    5 4xx

    +

    +  

    (g)2x x

    x2

    -

     

    (h)24

    x

    x

    -

    +  

    (i)

    4 32 7

    x

    x

    -

    +  

    (j)3 1

    5x

    x

    +

    +  

    (k)3 7

    1

    x

    x2

    -

    +  

    (l)2 3

    2x

    x2

    -

     

    (m)54

    xx2

    2

    -

    +

     

    (n)4x

    x3

    +

     

    (o)3

    2 1x

    x x3

    +

    + -  

    (p)3 4

    2 1x

    x x2

    +

    - -  

    (q)1x x

    x x2

    3

    - -

    +  

    (r)2

    ( )x

    x

    5

    2

    +

    1  

    (s)5 1

    (2 9)

    x

    x 3

    +

    -  

    (t)(7 2)

    1xx 4

    +

    -

     

    (u)

    (2 5)

    (3 4)

    x

    x3

    5

    -

    +  

    (v)

    1

    3 1

    x

    x

    +

    +  

    (w)2 3

    1

    x

    x

    -

    -  

    (x)

    ( 9)

    1

    x

    x2

    2

    -

    +  

    2. Find the gradient of the tangent tothe curve

    3 1

    2 y 

    x

    x=

    + at the point

    1,21c m .

    3. If ( )f xxx

    2 1

    4 5=

    -

    + evaluate ( )f  2l  .

    4.  Find any values of x for which

    the gradient of the tangent to the

    curve2 14 1

     y x

    x=

    -

    - is equal to .2-  

    5. Given ( )f xx

    x3

    2=+

     nd x if

    ( )f x61

    =l  .

    6. Find the equation of the tangent

    to the curve2

     y x

    x=

    + at the

    point 4,32c m .

    7. Find the equation of the tangent

    to the curve3

    1 y 

    xx2

    =+

    - at the

    point where 2x =  .

    Angle Between 2 Curves

    To measure the angle between two curves, measure the angle between the

    tangents to the curves at that point.

  • 8/9/2019 ch8.pdf

    51/56

    488 Maths In Focus  Mathematics Extension 1 Preliminary Course

     EXAMPLE

    Find the acute angle formed at the intersection of the curves  y x2=  and

    ( 2) . y x 2= -  

    Solution

    The curves intersect at the point (1,1). 

    ( , ), ( )

    ( )

    ( )

    (1, 1), 2(1 2)

    ( )

    ( )

    tan

     y x

    dx

    dy x

    dx

    dy 

    m

     y x

    dx

    dy x

    dx

    dy 

    m

    m m

    m m

    2

    1 1 2 1

    2

    2

    2 2

    2

    1

    1 2 2

    2 2

    53 08

    For

    At

    For

    At

    2

    1

    2

    2

    1 2

    1 2

    34

    `

    `

    c

    i

    i

    =

    =

    =

    =

    = -

    = -

    = -

    = -

    =+

    -

    =+ -

    - -

    =

    =   l

     

    1tan

    m m

    m m

    1 2

    1 2i =

    +

    -

     where m1 and m

    2 are the gradients of the tangents to

    the curves at the point of intersection.

  • 8/9/2019 ch8.pdf

    52/56

    489Chapter 8  Introduction to Calculus

     1.  (a) Sketch the curves 4 y x2= -  

    and 8 12 y x x2= - +  on the same

    set of axes.Show that the curves intersect(b)

    at the point (2,0).Q   

    Find the gradient of the(c)

    tangent of each curve at point Q  .

    Find the acute angle at which(d)

    the curves intersect at Q  .

    2. (a) Sketch the curve  y x2=  and

    the line 6 9 y x= -  on the same

    set of axes.

    Find the point(b)  P  , their pointof intersection.

    Find the gradient of the curve(c)

     y x2=  at  P  .

    Find the acute angle between(d)

    the curve and the line at  P  .

    3. Find the acute angle between the

    curves  y x2=  and  y x3=  at point

    (1,1). 

    4.  Find the acute angle between the

    curves  y x3=  and 2 2 y x x2= - +  at their point of intersection.

    5.  What is the obtuse angle between

    the curves ( ) 4f x x x2= -  and

    ( ) 12 g x x2= -  at the point where

    they meet?

    6.  The curves 2 4 y x x2= -  and

    4 y x x2= - +  intersect at two

    points  X  and Y  .Find the coordinates of(a)

     X  and Y  .

    Find the gradient of the(b)

    tangent to each curve at  X  and Y  .

    Find the acute angle between(c)

    the curves at  X  and Y  .

    7. Find the acute angle between the

    curve ( ) 1f x x2= -  and the line

    ( ) 3 1 g x x= -  at their 2 points of

    intersection.

    8.  (a) Find the points of intersection

    between  y x3=  and 2 y x x2= +  .

     Find the acute angle between(b)

    the curves at these points.

    9.  Show that the acute angle

    between the curves  y x2=  and

    4 y x x2= -  is the same at both

    the points of intersection.

    10. Find the obtuse angles betweenthe curves 2 y x x3= +  and

    5 2 y x x2= -  at their points of

    intersection.

    8.11  Exercises

  • 8/9/2019 ch8.pdf

    53/56

    490 Maths In Focus  Mathematics Extension 1 Preliminary Course

     1.  Sketch the derivative function of

    each graph

    (a)

    (b)

    2.  Differentiate 5 3 2 y x x2= - +  from first

    principles.

     3.  Differentiate

    (a) 7 3 8 4x x x x6 3 2- + - -  

    (b)

    2 1

    3 4

    x

    x

    +

    -  

    (c) ( 4 2)x x2 9+ -  

    (d) ( )x x5 2 1 4-  

    (e) x x2  

    (f)5

    x2 

    4. Finddt 

    dv  if 2 3 4v t t 2= - -  .

     5.  Given ( ) (4 3) ,f x x 5= -  find the value of

    (a) (1)f   

    (b) ( )f  11  .

     6.  Find the gradient of the tangent to the

    curve 3 5 y x x x3 2= - + -  at the point

    ( , ) .1 10- -  

    7.  If 60 3 ,h t t 2= -  finddt 

    dh when .t  3=  

    8.  Find all x-values that are not

    differentiable on the following curves.

     (a)

    (b)

    (c)

    9.  Differentiate

    (a) f x x2 4 9 4= +] ]g g  

    (b)3

    5 y 

    x=

    (c) 3 1 y x x 2= -] g  

    (d)4

     y  x=  (e) ( )f x x5=  

    Test Yourself 8

    -5

    2 4

    21

    4

    5

    -

    -4

    -2

    -1

     y

     x 

    - - -2 -1

    -4

    5

    -2 -1 2 4

    2

    1

    4

    5

    4

    2

    1  1

     y

     x 

  • 8/9/2019 ch8.pdf

    54/56

    491Chapter 8  Introduction to Calculus

     10. Sketch the derivative function of the

    following curve.

    11. Find the equation of the tangent to

    the curve 5 3 y x x2= + -  at the point

    2, 11 .^ h  

    12. Find the point on the curve

    1 y x   x2= - +  at which the tangent has a

    gradient of 3.

    13. Finddr 

    dS if 4S r 2r=  .

    14. At which points on the curve

    2 9 60 3 y x x x3 2= - - +  are the tangents

    horizontal?

    15. Find the equation of the tangent to the

    curve 2 5 y x x2

    = + -  that is parallel tothe line 4 1. y x= -  

    16. Find the gradient of the tangent to the

    curve 3 1 2 1 y x x3 2= - -] ]g g  at the point

    where 2.x =  

    17. Find ( )f  4l  when .f x x 3 9= -] ]g g  

    18. Find the equation of the tangent to the

    curve31

     y x

    =  at the point where .x61

    =  

    19. Differentiate21

    s ut at 2= +  with respect

    to t  and find the value of t  for which

    5, 7dt 

    dsu= =  and .a 10= -  

    20. Find the x -intercept of the tangent to

    the curve2 14 3

     y x

    x=

    +

    - at the point where

    .x 1=  

    21.  Find the acute angle between the curve

     y x2

    =  and the line 2 3 y x= +  at eachpoint of intersection.

    22. Find the obtuse angle between the curve

     y x2=  and the line 6 8 y x= -  at each

    point of intersection.

    1. If ( ) 3 (1 2 ) ,f x x x2 5= -  find the value of

    (1)f   and (1).f l  

    2. If7 1

    5 3, A

    h

    h=

    -

    + find

    dh

    dA when 1.h =  

    3. Given 2 100 ,x t t 4 3= +  finddt 

    dx and find

    values of t  when 0.dt 

    dx=  

    4. Find the equations of the tangents to the

    curve ( 1)( 2) y x x x= - +  at the points

    where the curve cuts the x -axis.

    5. Find the points on the curve 6 y x3= -  

    where the tangents are parallel to the line

    12 1. y x= -  Hence find the equations of

    the normals to the curve at those points.

    Challenge Exercise 8

     y

     x 

  • 8/9/2019 ch8.pdf

    55/56

    492 Maths In Focus  Mathematics Extension 1 Preliminary Course

     6. Find ( )f  2l  if ( ) 3 2 .f x x= -  

    7. Differentiate (5 1) ( 9) .x x3 5+ -  

    8. Find the derivative of(4 9)

    2 1. y 

    x

    x4

    =

    -

    9. If ( ) 2 3 4,f x x x3 2= + +  for what exact

    values of x is ( ) ?x 7=f l  

    10. Find the equation of the normal to the

    curve 3 1 y x= +  at the point where

    8.x =  

    11. The tangent to the curve 2 y ax3= +  at

    the point where 3x =  is inclined at 135c 

    to the x -axis. Find the value of a .

    12. The normal to the curve 1 y x2= +  at the

    point where 2,x =  cuts the curve again

    at point  P  . Find the coordinates of  P  .

    13. Find the exact values of the

    x - coordinates of the points on the curve

    (3 2 4) y x x2 3= - -  where the tangent is

    horizontal.

    14. Find the gradient of the normal to the

    curve 2 5 y x x= -  at the point (4,8). 

    15. Find the equation of the tangent to

    the curve 2 6 y x x x3 2= - + +  at point

    (1,8). P   Find the coordinates of point Q  

    where this tangent meets the  y  -axis and

    calculate the exact length of  PQ  .

    16.  (a) Show that the curves 3 2 y x 5= -] g  and

    15 3 y xx=

    +

    -  intersect at 1, 1^ h 

    Find the acute angle between the(b)

    curves at this point.

     17. The equation of the tangent to the

    curve 3 2 y x nx x4 2= - + -  at the point

    where 2x = -  is given by 3 2 0.x y - - =  

    Evaluate n .

    18. The function ( ) 3 1f x x= +  has a

    tangent that makes an angle of 30c withthe x -axis. Find the coordinates of the

    point of contact for this tangent and find

    its equation in exact form.

    19. Find all x values of the function

    ( ) ( 3)(2 1)f x x x2 8= - -  for which

    ( )f x 0=l  .

    20. (a) Find any points at which the graph

    below is not differentiable.

    Sketch the derivative function for(b)the graph.

    21. Find the point of intersection

    between the tangents to the curve

    2 5 3 y x x x3 2= - - +  at the points where

    2x =  and 1.x = -  

    22. Find the equation of the tangent to the

    parabola2

    3 y 

      x2=

      - at the point where

    the tangent is perpendicular to the line

    .x y 3 3 0+ - =  

    23. Differentiate .x

    x2

    3 23

    24. (a) Find the equations of the tangents

    to the parabola 2 y x2=  at the points

    where the line 6 8 1 0x y - + =  intersects

    with the parabola.

    Show that the tangents are(b)

    perpendicular.

     y

     x 

    90c   180c   270c   360c

  • 8/9/2019 ch8.pdf

    56/56

    493Chapter 8  Introduction to Calculus

     25. Find any x values of the function

    ( ) 8 122f x x x x3 2=

    - + where it is not

    differentiable.

    26. The equation of the tangent to the curve

    7 6 9 y x x x3 2= + - -  is  y ax b= +  at the

    point where .x 4= -  Evaluate a and b .

    27. Find the exact gradient with rational

    denominator of the tangent to the curve

    3 y x2= -  at the point where 5.x =  

    28.The tangent to the curve  y  x

     p=

     has agradient of

    61

    -  at the point where 3.x =  

    Evaluate p .

    29. Finddr 

    dV  when

    3

    2r 

      r=  and 6h =  given

    31

    V r h3r=  .

    30. Evaluate k if the function

    ( ) 2 1f x x kx3 2= - +  has ( ) .f  2 8=l  

    31. Find the equation of the chord joiningthe points of contact of t