Top Banner

of 46

Ch15(part I) (2)

Jun 02, 2018

Download

Documents

ujjwal2110
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Ch15(part I) (2)

    1/46

    Multiple Integrals

  • 8/10/2019 Ch15(part I) (2)

    2/46

    Geometrical Meaning

    y

    35

    30

    25

    20

    15

    10

    5

    010

    x5

    0

    -5

    -10

    6

    42

    0

    -2

    -4

    -6

    z

  • 8/10/2019 Ch15(part I) (2)

    3/46

    Double Integrals over Rectangles

    Iff(x,y) is a positive function, andRis a rectangle on thexy-

    plane, then the geometrical meaning of

    R dAyxf ),(

    is the volume of the solid Sthat is above the rectangle R and

    is below the graphz=f(x,y).

  • 8/10/2019 Ch15(part I) (2)

    4/46

  • 8/10/2019 Ch15(part I) (2)

    5/46

  • 8/10/2019 Ch15(part I) (2)

    6/46

    Definition in terms of Riemann sum

    Iff(x,y) is a function of two variables andR= [a,b][c,d] is

    a closed rectangle in thexy-plane, then we define

    AyxfdAyxf ij

    m

    i

    n

    j

    ijnm

    R

    ),(lim),( *

    1 1

    *

    ,

    if the limit exists, where

    the interval [a,b] is divided into mequal subintervals,

    the interval [c,d] is divided into nequal subintervals,

    A is the area of each sub-rectangle,

    (xij*,yij*) is any point in sub-rectangle ij.

  • 8/10/2019 Ch15(part I) (2)

    7/46

    Estimation of the integral

    If we know that mf(x,y) Mon the rectangle R, then

    )(area),()(area RMdAyxfRmR

    Midpoint Rule

    AyxfdAyxf j

    m

    i

    n

    j

    i

    R

    ),(),(1 1

    wherexiis the midpoint of [xi-1,xi], andyjis the midpoint of

    [yj-1,yj]

  • 8/10/2019 Ch15(part I) (2)

    8/46

  • 8/10/2019 Ch15(part I) (2)

    9/46

  • 8/10/2019 Ch15(part I) (2)

    10/46

    Approximation of volume by Riemann Sum

  • 8/10/2019 Ch15(part I) (2)

    11/46

    yx

    0.50.6

    0.70.8

    0.91.0

    0.5

    2.0

    1.5

    1.0

    -0.4-0.2

    0 0.2

    0.4

    equation of surface z = f(x,y)

  • 8/10/2019 Ch15(part I) (2)

    12/46

    yx

    0.50.6

    0.70.8

    0.91.0

    0.5

    2.0

    1.5

    1.0

    -0.4-0.2

    0 0.2

    0.4

    x

    equation of surface z = f(x,y)

  • 8/10/2019 Ch15(part I) (2)

    13/46

    Iterated Integrals

    Definition

    The iterated integral

    means that we first integrate the functionfwith respect toy,

    treatingxas a constant, and then integrate the result with respect

    tox. This can also be called iterated partial integration.

    b

    a

    d

    c

    dxdyyxf ]),([

  • 8/10/2019 Ch15(part I) (2)

    14/46

    Fubinis Theorem

    If fis continuous on the rectangleR= [a,b][c,d], then

    d

    c

    b

    a

    b

    a

    d

    cR

    dxdyyxfdydxyxfdAyxf ),(),(),(

    More generally, this is true iffis bounded onR,f is

    discontinuous only on a finite number of smooth curves, and

    the iterated integrals exist.

  • 8/10/2019 Ch15(part I) (2)

    15/46

    Properties of Double Integrals

    IfDis the non-overlapping union of two regionsD1andD2, then

    21

    )()()(

    DDD

    dAy,xfdAy,xfdAy,xf

    IfR= [a,b][c,d] is a rectangle andf(x,y) =g(x)h(y) is a

    product of two functions of one variable, then

    b

    a

    d

    cR

    dyyhdxxgdAy,xf

  • 8/10/2019 Ch15(part I) (2)

    16/46

    Over General Regions

    y-simple (or type I) regionsA plane regionDis said to bey-simple if it lies between the

    graphs of two continuous functions ofx.

    D= {(x,y): ax b,g1(x) yg2(x)}

    Example:

    x

    1.510.50

    -0.5-1-1.5

    3

    2.5

    2

    1.5

    1

    0.5

  • 8/10/2019 Ch15(part I) (2)

    17/46

    In this case

    b

    a

    xg

    xgD

    dydxy,xfdAy,xf2

    1

    )()(

    x1.510.5

    0-0.5-1-1.5

    3

    2.5

    2

    1.5

    1

    0.5

  • 8/10/2019 Ch15(part I) (2)

    18/46

    Example

    D dAyx 2Evaluate

    x1.510.5

    0-0.5-1-1.5

    3

    2.5

    2

    1.5

    1

    0.5

    2

    1 xy

    2

    2xy

  • 8/10/2019 Ch15(part I) (2)

    19/46

    x-simple (or type II) regions

    A plane regionDis said to bex-simple if it lies between the

    graphs of two continuous functions ofy.

    D= {(x,y): cx d, h1(y) x h2(y)}

    Example:

    x 543210-1-2-3

    4

    2

    -2

    -4

  • 8/10/2019 Ch15(part I) (2)

    20/46

    In this case

    d

    c

    yh

    yhD

    dxdyy,xfdAy,xf2

    1)()(

    x5

    4

    3

    2

    1

    0-1

    -2

    -3

    4

    2

    -2

    -4

  • 8/10/2019 Ch15(part I) (2)

    21/46

    Example

    D

    dAxyEvaluate

    x5

    4

    3

    2

    1

    0-1

    -2

    -3

    4

    2

    -2

    -4

    622 xy

    1xy

  • 8/10/2019 Ch15(part I) (2)

    22/46

    Non-simple Regions

    There are many regions that do not belong to any of the twoprevious types, such as the one indicated below.

    In this case, we have to divide to

    region into several disjoint sub-

    regions so that each one is either

    x-simple ory-simple.

    The integral will then be the sum

    of several integrals, as stated in thenext theorem.

    1086420

    12

    10

    8

    6

    4

    2

    0

    D1

    D2

    D3

  • 8/10/2019 Ch15(part I) (2)

    23/46

    1086420

    12

    10

    8

    6

    4

    2

    0

    Example: Evaluate D

    xydA

    2585 22 yx

    488 22 yx

    4)5(9

    2 2 yx

  • 8/10/2019 Ch15(part I) (2)

    24/46

    In Polar Coordinates

    HencedA= rdrd

    3

    2.5

    2

    1.5

    1

    0.5

    0

    32.521.510.50

    r= b

    r= a

    dr

  • 8/10/2019 Ch15(part I) (2)

    25/46

    drdrsinr,cosrfdAy,xf

    b

    aR

    )(

    Iff is continuous on a polar rectangleRgiven by

    0 a r b, , where0 - 2

    then

  • 8/10/2019 Ch15(part I) (2)

    26/46

    drdrsinr,cosrfdAy,xf

    h

    hD

    2

    1

    )(

    Iff is continuous on a polar regionDof the form

    0 h1() r h2(),

    , where0 - 2

    then

  • 8/10/2019 Ch15(part I) (2)

    27/46

    Surface Area

    If Sis a surface given by the continuously differentiable

    functionf(x,y) over a regionD, then its area is

    D

    dAyf

    xfS 1Area

    22

  • 8/10/2019 Ch15(part I) (2)

    28/46

    Parametric Surface

    All surfaces we have seen so far can be described by equationsof the form z=f (x,y), hence the surface can pass the vertical

    line test.

    In practice, many useful surfaces will not pass this test, and

    will not pass any horizontal line test either.

    In those cases, we cannot expect to describe the surface by

    functions of the formx=g(y,z) ory= h(x,z) etc.

    And the remedy is to introduce two new variables uand vthat

    will control values ofx,y, andz.

    The more precise definition is on the next page.

  • 8/10/2019 Ch15(part I) (2)

    29/46

    Parametric Surface

    Suppose that

    vuzvuyvuxvu ,,,,,, r

    is a vector-valued function defined on a regionDin the

    uv-plane. The set of all points (x,y,z) in 3such that

    x=x(u,v), y=y(u,v), z=z(u,v),

    and (u,v) varies throughoutD, is called a parametric surface.

  • 8/10/2019 Ch15(part I) (2)

    30/46

    Examples

    A sphere centered at the origin with radius 4.

    In principle this surface can be described by two equations

    2222 16and16 yxzyxz

    but the result in plotting is not satisfactory due to vertical

    slopes near the edge of each hemisphere. (see next page)

  • 8/10/2019 Ch15(part I) (2)

    31/46

  • 8/10/2019 Ch15(part I) (2)

    32/46

    A sphere centered at the origin with radius 4.

    20and0

    cos4,sinsin4,cossin4

    where

    zyx

    It will be a lot better to use spherical coordinates

  • 8/10/2019 Ch15(part I) (2)

    33/46

    The curves that you can see on

    the sphere are the grid curves.

    The horizontal circles are

    created by keeping fixed, for

    instance

    20where

    8cos4

    ,sin8

    sin4

    ,cos8

    sin4

    z

    y

    x

    The vertical circles are created by

    keeping fixed.

  • 8/10/2019 Ch15(part I) (2)

    34/46

    Example 2 A parallelogram with vertexP0and two other

    corners A(a1, a2, a3) and B(b1, b2, b3).

    ),,( 3210 cccPwhere

    )()(),(

    )()(),(

    )()(),(

    33333

    22222

    11111

    cbvcaucvuz

    cbvcaucvuy

    cbvcaucvux

    1,0 vuwhere

    The parametric equations are

    P0

    A

    B

  • 8/10/2019 Ch15(part I) (2)

    35/46

    In many practical situations, we need to create the

    parametric equations for a given surface, and one useful

    method is to decide which directions the grid curves go first,

    and then determine what parameters to use. Finally create the

    equation for the surface (by adding vectors).

    This can be illustrated in the next example.

  • 8/10/2019 Ch15(part I) (2)

    36/46

  • 8/10/2019 Ch15(part I) (2)

    37/46

    The parametric equations for the previous Torus are

    x(, ) = (b+ acos )cos

    y(, ) = (b+ acos )sin

    z(, ) = asin

    where 0 , 2

  • 8/10/2019 Ch15(part I) (2)

    38/46

    Example 3 An ellipsoid

    The standard equation in rectangular coordinates is

    12

    2

    2

    2

    2

    2

    c

    z

    b

    y

    a

    x

  • 8/10/2019 Ch15(part I) (2)

    39/46

    1

    0.5

    0

    -0.5

    -1

    -2-1

    0

    1

    2

    10

    -1

    x

    y

    One parameter will be anglewhich starts from 0 to .

    Hencex= acos

  • 8/10/2019 Ch15(part I) (2)

    40/46

    1

    0.5

    0

    -0.5

    -1

    -2-1

    0

    1

    2

    10

    -1

    x

    y

    Another parameter will be anglewhich starts from 0 to 2.

    For this ellipse, the

    y-max = bsin and

    z-max = csin

    Hence

    y= (bsin) cos andz= (csin) sin

  • 8/10/2019 Ch15(part I) (2)

    41/46

    Example 3 An ellipsoid

    In parametric form it can be (but not uniquely)

    sinsin,cossin,cos czbyax

    20,0 where

  • 8/10/2019 Ch15(part I) (2)

    42/46

    In some extreme cases, a surface will intersect itself. If this

    happens, parametric equation is the only way to describe

    such as surface.

  • 8/10/2019 Ch15(part I) (2)

    43/46

    Example 5 A surface that intersects itself

    1,02,, 22 vuwherevuzvyux

    4

    2

    0

    -2

    -4

    1.41.210.80.60.40.20

    4

    3

    2

    1

    0

    E i M t h th f ll i h ith th ti

  • 8/10/2019 Ch15(part I) (2)

    44/46

    yx

    z

    x

    z

    y

    yx

    z

    3

    Exercise: Match the following graphs with the equations on

    the next slide.

    I II III

    IV V VI

  • 8/10/2019 Ch15(part I) (2)

    45/46

    11. r(u,v) = cosvi+ sinvj+ uk

    12. r(u,v) = ucos vi+ usin vj+ uk

    13. r(u,v) = u cos vi+ u sin vj+ vk

    14. r(u,v) = u3

    i+ u sin vj+ u

    cos

    vk

    15. x= (usinu)cosv,y= (1 cosu)sinv,z= u

    16. x= (1u)(3 + cosv)cos4u,

    y= (1u)(3 + cosv)sin4u,

    z= 3u+ (1u)sinv

  • 8/10/2019 Ch15(part I) (2)

    46/46

    Surface area of

    Parametric Surfaces

    D

    vu dArrS Area

    v

    z

    v

    y

    v

    xr

    u

    z

    u

    y

    u

    xr vu

    ,,and,,where

    If a smooth parametric surface S is given by the equations

    Dvuvuzvuyvuxvu ),(),(),,(),,(),(r

    and S is covered only once as (u,v) ranges throughout thedomainD, then the surface area is