Top Banner

of 36

Ch09 Modified

Apr 06, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/2/2019 Ch09 Modified

    1/36

    Chapter 9 - 11

    ISSUES TOADDRESS... When we combine two elements...

    what equilibrium state do weget? In particular, if we specify...

    --a composition (e.g., wt% Cu - wt% Ni),and

    --a temperature (T)then...How many phases do we get?What is the composition of each

    phase?How much of each phase do we get?

    Chapter 9: Phase Diagrams

    Phase BPhase A

    Nickel

    atomCopperatom

  • 8/2/2019 Ch09 Modified

    2/36

    Chapter 9 - 22

    Phase Equilibria: Solubility LimitIntroduction

    Solutions solid solutions, single phase Mixtures more than one phase

    Solubility Limit:

    Max concentration forwhich only a single phase

    solution occurs.

    Question: What is the

    solubility limit at 20C?

    Answer: 65 wt% sugar.

    If Co < 65 wt% sugar: syrupIf Co > 65 wt% sugar: syrup + sugar.

    65

    Sucrose/Water PhaseDiagram

    P

    u

    r

    e

    S

    u

    g

    ar

    Temperature

    (C

    )

    0 20

    40

    60

    80

    10

    0

    C

    o

    =Composition (wt%

    sugar)

    L(liquid

    solutioni.e.,syrup)

    SolubilityLimit

    L(liqu

    id)+S(sol

    idsugar)

    20

    40

    60

    80

    10 0

    P

    u

    r

    e

    Wa

    te

    r

    Adapted from Fig. 9.1,Callister 7e.

  • 8/2/2019 Ch09 Modified

    3/36

    Chapter 9 - 33

    Components:

    The elements or compounds which are present in the mixture (e.g., Al and Cu) Phases:

    The physically and chemically distinct material regionsthat result (e.g., and ).

    Aluminum-Copper

    Alloy

    Components and Phases

    (darker

    phase)

    (lighter

    phase)

    Adapted fromchapter-openingphotograph,Chapter 9,Callister 3e.

  • 8/2/2019 Ch09 Modified

    4/36

    Chapter 9 - 44

    Effect ofT& Composition (Co) Changing T can change # of phases:

    Adapted from Fig.9.1,Callister 7e.

    D(100C,90)2 phases

    B(100C,70)

    1 phase

    pathA to B.

    Changing Co can change # of phases: path B to D.

    A(20C,70)2 phases

    70

    80

    100

    60

    40

    20

    0

    Temperature

    (C

    )

    Co

    =Composition (wt%sugar)

    L( liquid

    solutioni.e.,

    syrup)20

    10

    0

    4

    0

    60

    80

    0

    L(liquid)+

    S(sol

    idsugar)

    water-sugarsystem

  • 8/2/2019 Ch09 Modified

    5/36

    Chapter 9 - 55

    Phase Equilibria

    CrystalStructure

    electroneg r (nm)

    Ni FCC 1.9 0.1246Cu FCC 1.8 0.1278

    Both have the same crystal structure (FCC) and havesimilar electronegativities and atomic radii (W. Hume Rothery rules) suggesting high mutual solubility.

    Simple solution system (e.g., Ni-Cu solution)

    Ni and Cu are totally miscible in all proportions.

  • 8/2/2019 Ch09 Modified

    6/36

    Chapter 9 - 66

    Phase Diagrams

    Indicate phases as function of T, Co, and P. For this course:

    -binary systems: just 2 components.

    -independent variables: T and Co (P = 1 atm is almost always used).

    PhaseDiagramfor Cu-Nisystem

    Adapted from Fig. 9.3(a), Callister 7e.(Fig. 9.3(a) is adapted from PhaseDiagrams of Binary Nickel Alloys, P. Nash(Ed.), ASM International, Materials Park,OH (1991).

    2 phases:

    L

    (liquid) (FCC solidsolution) 3 phase fields:

    L

    L+

    wt%20

    40

    60

    80

    10

    01000

    1100

    1200

    1300

    1400

    1500

    16

    00

    T(

    C)L(liquid)

    (FCC solid

    solution

    )

    L+

    liq

    uid

    ussolid

    us

  • 8/2/2019 Ch09 Modified

    7/36

    Chapter 9 - 77

    wt%

    Ni

    20

    40

    60

    80

    100

    01000

    1100

    1200

    1300

    1400

    1500

    1600

    T(C)

    L

    (liquid)

    (FCC

    solidsolution)

    L+

    liquid

    ussolid

    us

    Cu-Niphasediagram

    Phase Diagrams:# and types of phases

    Rule 1: If we know T and Co, then we know:--the # and types of phases present.

    Examples:

    A(1100C,

    60):1 phase: B(1250C,

    35):2 phases: L +

    Adapted from Fig. 9.3(a), Callister 7e.(Fig. 9.3(a) is adapted from PhaseDiagrams of Binary Nickel Alloys, P. Nash(Ed.), ASM International, Materials Park,OH, 1991).

    B

    ( 1 2 5 0 C , 3 5 )

    A(1100C,60)

  • 8/2/2019 Ch09 Modified

    8/36

    Chapter 9 - 88

    wt%Ni

    20

    1200

    13

    00

    T(C)

    L

    (liquid)

    (solid)

    L +

    liquid

    us

    solid

    us

    30

    40

    50

    L+

    Cu-Nisystem

    Phase Diagrams:composition of phases

    Rule 2: If we know T and Co

    , then we know:--the composition of each phase.

    Examples:

    TAA

    35Co

    32CL

    At

    T

    A =

    1320C:Only Liquid(L)

    CL =

    Co ( = 35 wt%

    Ni)

    AtT

    B = 1250C:

    Both and

    LCL =C

    liquidus

    ( = 32 wt% Ni here)

    C =

    C

    solidus

    ( = 43 wt% Ni

    here)

    AtT

    D =1190C:Only Solid

    ()

    C =

    Co ( = 35 wt%

    Ni

    )

    Co = 35 wt%Ni

    Adapted from Fig. 9.3(b), Callister 7e.(Fig. 9.3(b) is adapted from Phase Diagramsof Binary Nickel Alloys, P. Nash (Ed.), ASMInternational, Materials Park, OH, 1991.)

    BTB

    DTD

    tieline

    4C3

  • 8/2/2019 Ch09 Modified

    9/36

    Chapter 9 - 99

    Rule 3: If we know T and Co, then we know:--the amount of each phase (given in wt%). Examples:

    At

    TA: Only Liquid

    (L)

    W

    L= 100 wt%,W

    =0At

    TD: Only Solid

    ()

    W

    L= 0,W

    = 100 wt%

    Co = 35 wt%Ni

    Adapted from Fig. 9.3(b), Callister 7e.(Fig. 9.3(b) is adapted from Phase Diagrams ofBinary Nickel Alloys, P. Nash (Ed.), ASMInternational, Materials Park, OH, 1991.)

    Phase Diagrams:weight fractions of phases

    wt%Ni

    20

    1200

    13

    00

    T(C)

    L

    (liquid)

    (solid)

    L +

    liquid

    us

    solid

    us

    30 40 50

    L +

    Cu-Nisystem

    TAA

    35Co

    32CL

    BTB

    DTD

    tieline

    4C3

    R S

    AtT

    B:Both

    andL

    %773377

    3377 wt=

    =

    = 27 wt%

    WL

    = SR+ S

    W

    =R

    R+ S

  • 8/2/2019 Ch09 Modified

    10/36

    Chapter 9 - 1010

    Tie line connects the phases in equilibrium with eachother - essentially an isotherm

    The Lever Rule

    How much of each phase?Think of it as a lever (teeter-totter)

    ML

    M

    R S

    RMSM L =

    L

    L

    LL

    L

    LCC

    CC

    SR

    RW

    CC

    CC

    SR

    S

    MM

    MW

    =

    +

    =

    =

    +

    =

    +

    =

    77

    wt%Ni

    20

    1200

    1300

    T(C)

    L

    (liquid)

    (solid)

    L +

    liquid

    us

    solid

    us

    30 40 50

    L

    +

    BTB

    tieline

    CoCL C

    SR

    Adapted from Fig. 9.3(b),Callister 7e.

  • 8/2/2019 Ch09 Modified

    11/36

    Chapter 9 - 1111

    wt%

    Ni

    20

    120

    0

    130

    0

    30 40 50110

    0

    L(liquid)

    (solid)

    L+

    L +

    T(

    C)

    A

    35Co

    L: 35wt

    %Ni Cu-Nisystem

    Phase diagram:

    Cu-Ni system.

    System is:

    --binaryi.e., 2 components:Cu and Ni.

    --isomorphousi.e., completesolubility of onecomponent in

    another; phase

    field extends from0 to 100 wt% Ni.

    Adapted from Fig. 9.4,

    Callister 7e.

    Consider

    Co = 35 wt%Ni.

    Ex: Cooling in a Cu-Ni Binary

    46

    35 4

    3

    3

    2

    : 43 wt%Ni

    L: 32 wt%Ni

    L: 24 wt%Ni: 36 wt%

    Ni

    B: 46 %

    L: 35 wt%Ni

    C

    D

    E

    24

    36

  • 8/2/2019 Ch09 Modified

    12/36

    Chapter 9 - 1212

    Nonequilibrium Cooling

    In application not sufficienttime for diffusionResult is cored structureSolidus curve shifts to higherNi contents

  • 8/2/2019 Ch09 Modified

    13/36

    Chapter 9 - 1313

    C changes as we solidify. Cu-Ni case:

    Fast rate of cooling:

    Cored structure Slow rate of cooling:

    Equilibrium structure

    First to solidify has C = 46 wt%Ni.

    Last to solidify has C = 35 wt%Ni.

    Cored vs Equilibrium Phases

    First

    tosolidify:46 wt%

    Ni

    UniformC

    :

    35 wt%Ni

    Last

    tosolidify:< 35 wt%

    Ni

  • 8/2/2019 Ch09 Modified

    14/36

    Chapter 9 - 1414

    Mechanical Properties:Cu-Ni System

    Effect of solid solution strengthening on:

    --Tensile strength (TS) --Ductility (%EL,%AR)

    --Peak as a function of Co --Min. as a function of Co

    Adapted from Fig. 9.6(a), Callister 7e. Adapted from Fig. 9.6(b), Callister 7e.

    TensileStren

    gth

    (MPa)

    Composition,wt% Ni

    Cu

    Ni

    0 2

    0

    4

    0

    6

    0

    8

    0

    1

    00

    200

    300

    400 TS

    forpure Ni

    TS forpure Cu

    Elongatio

    n

    (%EL)

    Composition, wt% Ni

    Cu

    Ni

    0 20

    40

    60

    80

    100

    2

    0

    30

    40

    5

    0

    60

    %

    EL

    for

    pureNi

    %EL

    for pureCu

  • 8/2/2019 Ch09 Modified

    15/36

    Chapter 9 - 1515

    : Min. meltingTE

    2components

    has a special composition

    with a min. melting T.

    Adapted from Fig. 9.7,Callister 7e.

    Binary-Eutectic Systems

    Eutectic transition

    L(CE) (C E) + (C E)

    3 single phaseregions

    (L,

    ,

    )

    Limitedsolubility:: mostly

    Cu : mostlyAg

    TE: No liquid belowTE

    CEcomposition

    Ex.: Cu-Ag system

    Cu-Agsystem

    L (liquid)

    L + L+

    +

    Co

    ,

    wt% Ag20

    40

    60

    80

    100

    0200

    1200

    T(C)

    4

    00

    600

    800

    10

    00

    CE

    TE

    8.0

    71.9

    91.2

    779C

  • 8/2/2019 Ch09 Modified

    16/36

    Chapter 9 - 1616

    L+ L+

    +

    200

    T(C)

    18.3

    C, wt%Sn

    20

    60

    80

    100

    0

    300

    10

    0

    L

    (liquid) 183C

    61.9

    97.8

    For a 40 wt% Sn-60 wt% Pb alloy at 150C, find...

    --the phases present: Pb-Snsystem

    EX: Pb-Sn Eutectic System (1)

    + --compositions of phases:

    CO = 40 wt% Sn

    --the relative amountof each phase:

    150

    40Co

    11C

    99C

    SR

    C = 11 wt%SnC = 99 wt%

    Sn

    W=C -

    COC -7

    C

    =99 -4099 -11

    =5988

    = 67 wt%

    SR+S

    =

    W =CO -

    CC

    =R

    R+S

    =2

    988

    = 33 wt

    %

    =40 -

    1199 -11

    Adapted from Fig. 9.8,Callister 7e.

  • 8/2/2019 Ch09 Modified

    17/36

    Chapter 9 - 1717

    L+

    +

    200

    T(C)

    C, wt%Sn

    20

    60

    80

    100

    0

    300

    10

    0

    L

    (liquid)

    L+

    183C

    For a 40 wt% Sn-60 wt% Pb alloy at 220C, find...

    --the phases present: Pb-Snsystem

    Adapted from Fig. 9.8,Callister 7e.

    EX: Pb-Sn Eutectic System (2)

    + L--compositions of phases:

    CO = 40 wt% Sn

    --the relative amountof each phase:

    W=CL -COCL -

    C7

    =46 -4046 -17

    = 629

    = 21 wt%

    WL =CO -

    C7CL -C

    =2329

    = 79 wt%

    40Co

    46CL

    17C

    7

    220

    SR

    C = 17 wt%SnCL = 46 wt%

    Sn

  • 8/2/2019 Ch09 Modified

    18/36

    Chapter 9 - 1818

    Co < 2 wt% Sn Result:

    --at extreme ends--polycrystal of grains

    i.e., only one solid phase.

    Adapted from Fig. 9.11,Callister 7e.

    Microstructuresin Eutectic Systems: I

    0

    L+ 200

    T(C)

    Co

    ,

    wt%Sn

    10

    2

    20C

    o

    300

    1

    00

    L

    30

    +

    400

    (room T solubilitylimit)

    TE

    (Pb-SnSystem)

    L

    L: Co wt%Sn

    : %

  • 8/2/2019 Ch09 Modified

    19/36

    Chapter 9 - 1919

    2 wt% Sn < Co < 18.3 wt% Sn Result:

    Initially liquid + then alone7

    finally two phases polycrystal fine -phase

    inclusions

    Adapted from Fig. 9.12,Callister 7e.

    Microstructuresin Eutectic Systems: II

    Pb-Snsystem

    L +

    200

    T(C)

    Co

    ,

    wt%Sn

    10

    18

    .3

    20

    0Co

    3

    00

    100

    L

    30

    +

    400

    (sol. limit atTE)

    TE

    2(sol. limit atT

    roo

    m

    )

    L

    L: Co wt%Sn

    : %

  • 8/2/2019 Ch09 Modified

    20/36

    Chapter 9 - 2020

    Co = CE Result: Eutectic microstructure (lamellar structure)--alternating layers (lamellae) of and crystals.

    Adapted from Fig. 9.13,Callister 7e.

    Microstructuresin Eutectic Systems: III

    Adapted from Fig. 9.14, Callister 7e.

    160

    Micrograph of Pb-Sn

    eutecticmicrostructure

    Pb-Snsystem

    L

    +

    +

    200

    T(C)

    C, wt%Sn

    20

    60

    80

    10

    0

    0

    300

    100

    L

    L+

    183C

    40

    TE

    18

    .3

    : 18.3

    %

    97

    .8

    : 97.8 %

    C

    E61.9

    L: Co wt%

    Sn

  • 8/2/2019 Ch09 Modified

    21/36

    Chapter 9 - 2121

    Lamellar Eutectic Structure

    Adapted from Figs. 9.14 & 9.15, Callister7e.

  • 8/2/2019 Ch09 Modified

    22/36

    Chapter 9 - 2222

    18.3 wt% Sn < Co < 61.9 wt% Sn Result: crystals and a eutectic microstructure

    Microstructuresin Eutectic Systems: IV

    18

    .3

    61

    .9

    SR

    97

    .8

    SR

    primary

    eutectic

    eutectic

    WL

    =(1-

    W) = 50 wt%

    C = 18.3 wt%Sn

    CL

    = 61.9 wt%Sn S

    R+

    SW

    == 50 wt%

    Just aboveTE :

    Just below

    TE :C = 18.3 wt%SnC = 97.8 wt%Sn S

    R+

    SW

    =

    = 73 wt%

    W = 27 wt

    %Adapted from Fig. 9.16,

    Callister 7e.

    Pb-Snsystem

    L+200

    T(C)

    Co, wt%Sn

    20

    60

    80

    10

    0

    0

    300

    100

    L

    L+

    40

    +

    TE

    L:Co

    wt%Sn

    L

    L

  • 8/2/2019 Ch09 Modified

    23/36

    Chapter 9 - 2323

    L+ L+

    +

    200

    Co, wt%Sn

    20

    60

    80

    100

    0

    3

    00

    100

    L

    TE

    40

    (Pb-SnSystem)

    Hypoeutectic & Hypereutectic

    Adapted from Fig. 9.8,Callister 7e. (Fig. 9.8adapted from Binary PhaseDiagrams, 2nd ed., Vol. 3,T.B. Massalski (Editor-in-Chief), ASM International,Materials Park, OH, 1990.)

    160

    meutectic micro-constituentAdapted from Fig. 9.14,

    Callister 7e.

    hypereutectic: (illustrationonly)

    Adapted from Fig. 9.17,Callister 7e. (Illustration only)

    (Figs. 9.14 and 9.17from MetalsHandbook, 9th ed.,Vol. 9, Metallographyand Microstructures,

    American Society forMetals, Materials Park,OH, 1985.)

    175

    hypoeutectic: Co = 50 wt%Sn

    Adapted fromFig. 9.17, Callister 7e.

    T(C)

    61.9

    eutectic

    eutectic: Co=61.9wt%Sn

  • 8/2/2019 Ch09 Modified

    24/36

    Chapter 9 - 2424

    An Example of Complex Binary Alloy Systems

    Liquid

  • 8/2/2019 Ch09 Modified

    25/36

    Chapter 9 - 2525

    Intermetallic Compounds

    Mg2Pb

    Note: intermetallic compound forms a line - not an area - becausestoichiometry (i.e. composition) is exact.

    Adapted fromFig. 9.20, Callister 7e.

  • 8/2/2019 Ch09 Modified

    26/36

    Chapter 9 -

    2626

    Eutectoid & Peritectic

    Eutectic - liquid in equilibrium with two solidsL +cool

    heat

    intermetallic compound -cementitecool

    heat

    Eutectoid - solid phase in equation with two solid phases

    S2 S1+S3

    + Fe3C (727C)

    cool

    heat

    Peritectic - liquid + solid 1 solid 2 (Fig 9.21)S1 + L S2

    + L (1493C)

  • 8/2/2019 Ch09 Modified

    27/36

    Chapter 9 -

    2727

    Eutectoid & Peritectic

    Cu-Zn Phase diagram

    Adapted fromFig. 9.21, Callister 7e.

    Eutectoid transition +

    Peritectic transition + L7 7

  • 8/2/2019 Ch09 Modified

    28/36

    Chapter 9 -

    2828

    Iron-Carbon (Fe-C) Phase Diagram

    2 important

    points

    -Eutectoid

    (B): + Fe3C

    -Eutectic(A):L + Fe3

    C

    Adapted from Fig. 9.24,Callister 7e.

    Fe3C

    (cementite)

    160014001200100080060

    0400

    0 1 2 3 4 5 6 6.7

    L

    (austeni

    te)

    +L

    +Fe3C

    +Fe

    3C

    +

    L+Fe3C

    (Fe)

    Co, wt% C

    1148C

    T(

    C)

    727C= T

    eutectoid

    A

    SR

    4.30

    Result: Pearlite =

    alternating layers of

    and Fe3C phases

    120

    (Adapted from Fig. 9.27, Callister 7e.)

    R S

    0.76C

    eut

    ect

    oid

    B

    Fe3C (cementite-hard)

    (ferrite-soft)

  • 8/2/2019 Ch09 Modified

    29/36

    Chapter 9 -

    2929

    Hypoeutectoid Steel

    Adapted from Figs. 9.24

    and 9.29,Callister 7e.(Fig. 9.24 adapted fromBinary Alloy PhaseDiagrams, 2nd ed., Vol. 1,T.B. Massalski (Ed.-in-Chief), ASM International,Materials Park, OH,1990.)

    Fe3C

    (cementite)

    1600

    1400

    1200

    10

    008006004

    00

    0 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    +Fe3C

    L+Fe3C

    (Fe)

    Co, wt%C

    1148C

    T(C)

    727C

    (Fe-CSystem)

    C0 0 . 7 6

    Adapted from Fig. 9.30,Callister 7e.

    proeutectoid ferritepearlite

    100

    Hypoeutectoid ste

    el

    RS

    w = S/(

    R+ S)

    wFe3C

    = (1-

    w)

    w pearlite

    =

    wpearlite

    r s

    w =s /(r +s)

    w = (1-

    w)

  • 8/2/2019 Ch09 Modified

    30/36

    Chapter 9 -

    3030

    Hypereutectoid Steel

    Fe3C

    (cementi

    te)

    1600140012001

    0008006004

    00

    0 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    +Fe

    3C

    L+Fe3C

    (Fe)

    Co, wt%C

    1148C

    T(C)

    Adapted from Figs. 9.24

    and 9.32,Callister 7e.(Fig. 9.24 adapted fromBinary Alloy PhaseDiagrams, 2nd ed., Vol. 1,T.B. Massalski (Ed.-in-Chief), ASM International,Materials Park, OH,1990.)

    (Fe-CSystem)

    0.

    7 6

    Co

    Adapted from Fig. 9.33,Callister 7e.

    proeutectoid Fe3C

    60

    Hypereutectoid ste

    elpearlite

    R S

    w =S/(

    R+S)

    wFe3C

    = (1-

    w)

    wpearlite

    =

    wpearlite

    sr

    wFe3C

    =r /(r+s)

    w =(1-

    w Fe3

    C

    )

    Fe3C

  • 8/2/2019 Ch09 Modified

    31/36

    Chapter 9 -

    3131

    Example: Phase Equilibria

    For a 99.6 wt% Fe-0.40 wt% C at a temperaturejust below the eutectoid, determine thefollowing

    a) composition of Fe3C and ferrite ( )

    b) the amount of carbide (cementite) in gramsthat forms per 100 g of steel

    c) the amount of pearlite and proeutectoidferrite ( )7

  • 8/2/2019 Ch09 Modified

    32/36

    Chapter 9 -

    3232

    Chapter 9 Phase EquilibriaSolution:

    g7.77

    g.77CFe

    g7.7777333.77.7

    777.77.7

    777xCFeCFe

    7

    CFe7

    7

    7

    =

    =

    =

    =

    =

    +

    x

    CCCCo

    b) the amount of carbide (cementite) ingrams that forms per 100 g of steel

    a) composition of Fe3C and ferrite ( )

    CO = 0.40 wt% C

    C = 0.022 %

    = 6.70 %

    3

    Fe3C(cem

    entite)

    16

    0014001200100

    0800600400

    0 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3

    C

    +Fe3C

    L+Fe3C

    Co, wt% C

    1148C

    T(C)

    727C

    CO

    R S

    CFeC

    3C

  • 8/2/2019 Ch09 Modified

    33/36

    Chapter 9 -

    3333

    Chapter 9 Phase Equilibriac. the amount of pearlite and proeutectoid ferrite ( )

    note: amount of pearlite = amount ofjust above TECo = 0.40 wt% C

    C = 0.022 wt% CCpearlite = C = 0.76 wt% C

    +=CoC

    CC

    x777=77.7g

    pearlite = 51.2 g proeutectoid = 48.8 g

    Fe3C(cem

    entite)

    16

    0014001200100

    0800600400

    0 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3

    C

    +Fe3C

    L+Fe3C

    Co, wt% C

    1148C

    T(C)

    727C

    CO

    RS

    CC

  • 8/2/2019 Ch09 Modified

    34/36

    Chapter 9 -

    3434

    Alloying Steel with More Elements

    Teutectoidchanges:

    Ceutectoidchanges:

    Adapted from Fig. 9.34,Callister 7e. (Fig. 9.34 fromEdgar C. Bain, Functions of the Alloying Elements inSteel, American Society for Metals, 1939, p. 127.)

    Adapted from Fig. 9.35,Callister 7e. (Fig. 9.35 fromEdgar C. Bain, Functions of the Alloying Elements inSteel, American Society for Metals, 1939, p. 127.)

    TEute

    cto

    id

    (C)

    wt. % of alloying

    elements

    Ti

    Ni

    Mo

    Si W

    CrMn

    wt. % of alloying

    elements

    Ceute

    ctoi

    d

    (wt

    %C)

    Ni

    Ti

    Cr

    Si M

    nW

    Mo

  • 8/2/2019 Ch09 Modified

    35/36

    Chapter 9 -

    3535

    Phase diagrams are useful tools to determine:

    --the number and types of phases,--the wt% of each phase,--and the composition of eachphasefor a given T and composition of the system.

    Alloying to produce a solid solution usually

    --increases the tensile strength (TS)--decreases the ductility.

    Binary eutectics and binary eutectoids allow fora range of microstructures.

    Summary

  • 8/2/2019 Ch09 Modified

    36/36

    Chapter 9

    3636

    CoreProblems:

    Self-helpProblems:

    ANNOUNCEMENTS

    Reading: