Top Banner
[SHIVOK SP211] November 1, 2015 Page 1 CH 16 WavesI I. Types of Waves A. Mechanical waves. These waves have two central features: They are governed by Newton’s laws, and they can exist only within a material medium, such as water, air, and rock. Common examples include water waves, sound waves, and seismic waves. B. Electromagnetic waves. These waves require no material medium to exist. All electromagnetic waves travel through a vacuum at the same exact speed c= 299,792,458 m/s. Common examples include visible and ultraviolet light, radio and television waves, microwaves, x rays, and radar (We will cover these in Physics II in more detail.) C. Matter waves. These waves are associated with electrons, protons, and other fundamental particles, and even atoms and molecules. These waves are also called matter waves (study in Quantum Mechanics.) II. Transverse and Longitudinal Waves A. In a transverse wave, the displacement of every such oscillating element along the wave is perpendicular to the direction of travel of the wave, as indicated in Fig. below.
20

CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

May 18, 2018

Download

Documents

hatram
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page1

CH 16 

Waves‐I

I. TypesofWaves

A. Mechanicalwaves.Thesewaveshavetwocentralfeatures:TheyaregovernedbyNewton’slaws,andtheycanexistonlywithinamaterialmedium,suchaswater,air,androck.Commonexamplesincludewaterwaves,soundwaves,andseismicwaves.

B. Electromagneticwaves.Thesewavesrequirenomaterialmediumtoexist.Allelectromagneticwavestravelthroughavacuumatthesameexactspeedc=299,792,458m/s.Commonexamplesincludevisibleandultravioletlight,radioandtelevisionwaves,microwaves,xrays,andradar(WewillcovertheseinPhysicsIIinmoredetail.)

C. Matterwaves.Thesewavesareassociatedwithelectrons,protons,andotherfundamentalparticles,andevenatomsandmolecules.Thesewavesarealsocalledmatterwaves(studyinQuantumMechanics.)

II. TransverseandLongitudinalWaves 

A. Inatransversewave,thedisplacementofeverysuchoscillatingelementalongthewaveisperpendiculartothedirectionoftravelofthewave,asindicatedinFig.below.

 

 

Page 2: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page2

B. Inalongitudinalwavethemotionoftheoscillatingparticlesisparalleltothedirectionofthewave’stravel,asshowninFig.below.

 

III. Wavevariables

A. TransverseWaveEquation

 

1. Theamplitudeymofawaveisthemagnitudeofthemaximumdisplacementoftheelementsfromtheirequilibriumpositionsasthewavepassesthroughthem.

2. Thephaseofthewaveistheargument(kx–wt)ofthesinefunction;asthewavesweepsthroughastringelementataparticularpositionx,thephasechangeslinearlywithtimet.

3. Thewavelengthofawaveisthedistanceparalleltothedirectionofthewave’stravelbetweenrepetitionsoftheshapeofthewave(orwaveshape).Itisrelatedtotheangularwavenumber,k,by

 

4. TheperiodofoscillationTofawaveisthetimeforanelementtomovethroughonefulloscillation.Itisrelatedtotheangularfrequency,w,by

 

5. Thefrequencyfofawaveisdefinedas1/Tandisrelatedtotheangularfrequencywby

 

6. Aphaseconstantfinthewavefunction:y=Ymsin(kx–t+f).Thevalueoffcanbechosensothatthefunctiongivessomeotherdisplacementandslopeatx=0whent=0.

 

Page 3: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page3

IV. TheSpeedofaTravelingWave 

 

A. AsthewaveinFig.16‐7abovemoves,eachpointofthemovingwaveform,suchaspointAmarkedonapeak,retainsitsdisplacementy.(Pointsonthestringdonotretaintheirdisplacement,butpointsonthewaveformdo.)IfpointAretainsitsdisplacementasitmoves,thephasegivingitthatdisplacementmustremainaconstant:

1.  

2. Takingthederivativeweget

 

 

 

 

3. Thus

 

 

 

 

Page 4: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page4

B. Sampleproblem:TransverseWave

1. Awavetravelingalongastringisdescribedbyy(x,t) = 0.00327 sin (72.1x – 2.72t) 

inwhichthenumericalconstantsareinSIunits(0.00327m,72.1rad/m,and2.72rad/s).

a) Whatistheamplitudeofthiswave?

(1) ym=

b) Whatisthewavelength,period,andfrequencyofthiswave? 

 

 

 

 

 

 

 

 

c) Whatisthevelocityofthiswave? 

 

 

 

d) Whatisthedisplacementofthestringatx=22.5cm,andt=18.9s? 

 

 

Page 5: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page5

V. WaveSpeedonaStretchedString

A. Thespeedofawavealongastretchedidealstringdependsonlyonthetensionandlineardensityofthestringandnotonthefrequencyofthewave.

 

 

1. AsmallstringelementoflengthlwithinthepulseisanarcofacircleofradiusRandsubtendinganangle2atthecenterofthatcircle.Aforcewithamagnitudeequaltothetensioninthestring,,pullstangentiallyonthiselementateachend.Thehorizontalcomponentsoftheseforcescancel,buttheverticalcomponentsaddtoformaradialrestoringforce.Forsmallangles,

 

 

2. Ifmisthelinearmassdensityofthestring,andmthemassofthesmallelement,

 

 

3. Theelementhasacceleration: 

 

4. Therefore, 

Page 6: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page6

VI. EnergyandPowerofaWaveTravelingalongaString

 

A. Transversespeed 

 

B. Kineticenergy

1.  

2. Thus

 

3. Finally

 

 

C. Theaveragepower,whichistheaveragerateatwhichenergyofbothkinds(kineticenergyandelasticpotentialenergy)istransmittedbythewave,is:

 

Page 7: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page7

D. Example,TransverseWave:

1. Astringalongwhichwavescantravelis2.70mlongandhasamassof260g.Thetensioninthestringis36.0N.Whatmustbethefrequencyofthetravelingwavesofamplitude7.70mmfortheaveragepowertobe85.0W?

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 8: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page8

VII. TheWaveEquation

A. Derivation

1. Letusstartwithadrawing: 

 

 

 

   

 

 

2. Ifdisplacementinthey‐directionisnotabsurdlyhigh,thentensionisequalonbothsidesofthestringsegment.Thus,

 

 

3. Then,thenetforceinthey‐directionisFy= 

 

4. ApplyingNSL: 

 

5. Deltamass: 

 

6. Usingtheslopeofthestringsegment: 

 

 

 

Page 9: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

 Page9

7. Puttingittogether: 

 

 

8. Solutionofthisdifferentialequationtakesform: 

 

 

9. UnitsoftheConstant? 

 

 

B. Using__________________wefinallygetthewaveequation:Thegeneraldifferentialequationthatgovernsthetravelofwavesofalltypes

 

 

 

 

 

 

 

 

 

 

 

 

Page 10: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page10

VIII. TheSuperpositionofWaves 

A. Thedisplacementofthestringwhenwavesoverlapisthenthealgebraicsum

 

1. Overlappingwavesalgebraicallyaddtoproducearesultantwave(ornetwave).

2. Overlappingwavesdonotinanywayalterthetravelofeachother. 

 

 

 

 

Page 11: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page11

IX. InterferenceofWaves 

A. Iftwosinusoidalwavesofthesameamplitudeandwavelengthtravelinthesamedirectionalongastretchedstring,theyinterferetoproducearesultantsinusoidalwavetravelinginthatdirection.

 

1. Letusstartwithtwowaves: 

 

 

 

2. Theiralgebraicsum:

 

 

 

3. UsingAppendixe,thesumofthesinesoftwoangles:

4. Thustheirdisplacementis: 

 

 

 

 

 

Page 12: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page12

5. Graphicalrepresentation

 

 

6. Table:

 

 

 

 

Page 13: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page13

B. Sampleproblem:

1. Twoidenticaltravelingwaves,movinginthesamedirection,areoutofphasebyπ/2rad.Whatistheamplitudeoftheresultantwaveintermsofthecommonamplitudeymofthetwocombiningwaves?

 

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 14: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page14

X. StandingWaves

A. Diagram

 

B. Iftwosinusoidalwavesofthesameamplitudeandwavelengthtravelinoppositedirectionsalongastretchedstring,theirinterferencewitheachotherproducesastandingwave.

1. Letusstartwithourtwowaves

 

 

2. Theiralgebraicsum: 

 

 

Page 15: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page15

3. UsingAppendixe,thesumofthesinesoftwoangles:

4. Thustheirdisplacementis: 

 

 

5. Inthestandingwaveequation,theamplitudeiszeroforvaluesofkxthatgive

 

 

a) Thosevaluesare

b) Since

, weget , for n =0,1,2, . . . (nodes), asthepositionsofzeroamplitudeorthenodes.

Theadjacentnodesarethereforeseparatedby, halfawavelength.

6. Theamplitudeofthestandingwavehasamaximumvalueof

, whichoccursforvaluesofkxthatgive . a) Thosevaluesare

. b) Thatis,

, asthepositionsofmaximumamplitudeortheantinodes.The

antinodesareseparatedby andarelocatedhalfwaybetweenpairsofnodes.

Page 16: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page16

XI. StandingWaves,ReflectionsataBoundary

A. Diagram

 

 

 

B. Rememberinordertotrulysolveadifferentialequationyouneedtoapplyyourboundaryconditions.

 

Page 17: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page17

XII. StandingWavesandResonance

A. Forcertainfrequencies,theinterferenceproducesastandingwavepattern(oroscillationmode)withnodesandlargeantinodeslikethoseinFig.16‐19.

 

 

1. Fig.16‐19Stroboscopicphotographsreveal(imperfect)standingwavepatternsonastringbeingmadetooscillatebyanoscillatorattheleftend.Thepatternsoccuratcertainfrequenciesofoscillation.(RichardMegna/FundamentalPhotographs)

B. Suchastandingwaveissaidtobeproducedatresonance,andthestringissaidtoresonateatthesecertainfrequencies,calledresonantfrequencies.

 

Page 18: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page18

C. Thefrequenciesassociatedwiththesemodesareoftenlabeledf1,

f2,f3,andsoon.Thecollectionofallpossibleoscillationmodesis

calledtheharmonicseries,andniscalledtheharmonicnumberofthenthharmonic.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 19: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page19

D. Sampleproblems:

1. Astringstretchedbetweentwoclampsismadetooscillateinstandingwavepatterns.WhatisthewavelengthforeachofthestandingpatternsshownbelowifL=100cm?Whatistheharmonicineachcase?

  

     

λ=________m,_____harmonic λ=________m,_____harmonic

2. StringsAandBhaveidenticallengthsandlineardensities,butstringBisundergreatertensionthanstringA.Figurebelowshowsfoursituations,(a)through(d),inwhichstandingwavepatternsexistonthetwostrings.InwhichsituationsistherethepossibilitythatstringsAandBareoscillatingatthesameresonantfrequency?

 

 

  

 

a) Answer: 

 

 

 

Page 20: CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

 [SHIVOK SP211] November 1, 2015 

 

  Page20

3. Anylonguitarstringhasalineardensityof7.20g/mandisunderatensionof150N.ThefixedsupportsaredistanceD=90.0cmapart.ThestringisoscillatinginthestandingwavepatternshowninFig.below.Calculatethe(a)speed,(b)wavelength,and(c)frequencyofthetravelingwaveswhosesuperpositiongivesthisstandingwave.

 

 

  

 

a) Solution