Top Banner

of 39

Ch 10 Lecture

Jun 04, 2018

Download

Documents

siskieo
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/13/2019 Ch 10 Lecture

    1/39

    Chapter 10 - 1

    ISSUES TO ADDRESS... When we combine two elements...

    what is the resulting equilibrium state?

    In particular, if we specify...

    -- the composition (e.g., wt% Cu - wt% Ni), and

    -- the temperature (T

    )then...

    How many phases form?

    What is the composition of each phase?

    What is the amount of each phase?

    Chapter 10: Phase Diagrams

    Phase BPhase A

    Nickel atom

    Copper atom

  • 8/13/2019 Ch 10 Lecture

    2/39

    Chapter 10 - 2

    Phase Equilibria: Solubility Limit

    Question: What is the

    solubility limit for sugar inwater at 20C?

    Answer: 65 wt% sugar.At 20C, if C< 65 wt% sugar:syrup

    At 20C,if C> 65 wt% sugar:syrup + sugar

    65

    Solubility Limit:Maximum concentration forwhich only a single phase

    solution exists.

    Sugar/Water Phase Diagram

    S

    ugar

    Temperature(C)

    0 20 40 60 80 100C= Composition (wt% sugar)

    L (liquid solution

    i.e., syrup)

    SolubilityLimit L

    (liquid)

    +S

    (solidsugar)20

    406080

    100

    W

    ater

    Adapted from Fig. 10.1,

    Callister & Rethwisch 4e.

    Solutionsolid, liquid, or gas solutions, single phase Mixturemore than one phase

  • 8/13/2019 Ch 10 Lecture

    3/39

    Chapter 10 - 3

    Components:

    The elements or compounds which are present in the alloy(e.g., Al and Cu)

    Phases:The physically and chemically distinct material regions

    that form (e.g., aand b).

    Aluminum-

    Copper

    Alloy

    Components and Phases

    a (darkerphase)

    b(lighter

    phase)

    Adapted from chapter-

    opening photograph,

    Chapter 9, Callister,

    Materials Science &

    Engineering: An

    Introduction, 3e.

  • 8/13/2019 Ch 10 Lecture

    4/39

    Chapter 10 - 4

    70 80 1006040200

    Temperature(C

    )

    C = Composition (wt% sugar)

    L(liquid solution

    i.e., syrup)

    20

    100

    40

    60

    80

    0

    L(liquid)+S

    (solidsugar)

    Effect of Temperature & Composition

    Altering Tcan change # of phases: pathAto B.

    Altering Ccan change # of phases: path Bto D.

    water-

    sugar

    system

    Adapted from Fig. 10.1,

    Callister & Rethwisch 4e.

    D(100C,C= 90)2 phases

    B(100C,C= 70)1 phase

    A(20C,C= 70)2 phases

  • 8/13/2019 Ch 10 Lecture

    5/39

  • 8/13/2019 Ch 10 Lecture

    6/39

    Chapter 10 - 6

    Phase Diagrams

    Indicate phases as a function of T, C, and P.

    For this course:- binary systems: just 2 components.

    - independent variables: Tand C (P= 1 atm is almost always used).

    PhaseDiagram

    for Cu-Ni

    system

    Adapted from Fig. 10.3(a), Callister &

    Rethwisch 4e.(Fig. 10.3(a) is adapted

    from Phase Diagrams of Binary Nickel

    Alloys, P. Nash (Ed.), ASM International,

    Materials Park, OH (1991).

    2 phases:L(liquid)a(FCC solid solution)

    3 different phase fields:LL+

    a

    a

    wt% Ni20 40 60 80 10001000110012001300140015001600T(C)

    L(liquid)

    a(FCC solidsolution)

  • 8/13/2019 Ch 10 Lecture

    7/39

    Chapter 10 - 7

    Cu-Ni

    phase

    diagram

    Isomorphous Binary Phase Diagram

    Phase diagram:

    Cu-Ni system.

    System is:

    Adapted from Fig. 10.3(a), Callister &

    Rethwisch 4e.(Fig. 10.3(a) is adapted

    from Phase Diagrams of Binary Nickel

    Alloys, P. Nash (Ed.), ASM International,

    Materials Park, OH (1991).

    -- binaryi.e., 2 components:

    Cu and Ni.

    -- isomorphousi.e., complete

    solubility of one

    component in

    another; aphase

    field extends from

    0 to 100 wt% Ni.wt% Ni20 40 60 80 10001000

    110012001300140015001600T(C)

    L(liquid)

    a(FCC solidsolution)

  • 8/13/2019 Ch 10 Lecture

    8/39

    Chapter 10 -

    wt% Ni20 40 60 80 1000100011001200

    1300140015001600T(C)

    L(liquid)

    a(FCC solid

    solution)

    Cu-Ni

    phase

    diagram

    8

    Phase Diagrams:Determination of phase(s) present

    Rule 1: If we know Tand Co, then we know:-- which phase(s) is (are) present.

    Examples:

    A(1100C, 60 wt% Ni):

    1 phase: a

    B(1250C, 35 wt% Ni):2 phases: L+ a

    B(12

    50

    C,35)

    A (1100C,60)Adapted from Fig. 10.3(a), Callister &Rethwisch 4e.(Fig. 10.3(a) is adaptedfrom Phase Diagrams of Binary Nickel

    Alloys, P. Nash (Ed.), ASM International,

    Materials Park, OH (1991).

  • 8/13/2019 Ch 10 Lecture

    9/39

    Chapter 10 - 9

    wt% Ni201200

    1300

    T(C)L(liquid)

    a(solid)

    30 40 50

    Cu-Ni

    system

    Phase Diagrams:Determination of phase compositions

    Rule 2: If we know Tand C0, then we can determine:-- the composition of each phase.

    Examples:TA A

    35C032CL

    At TA = 1320C:Only Liquid (L) presentCL= C0 ( = 35 wt% Ni)

    At TB = 1250C:Both aand L presentCL = Cliquidus ( = 32 wt% Ni)Ca = Csolidus ( = 43 wt% Ni)

    At TD = 1190C:Only Solid (a) presentCa= C0 ( = 35 wt% Ni)

    Consider C0= 35 wt% Ni

    DTD

    tie line

    4Ca3Adapted from Fig. 10.3(a), Callister &

    Rethwisch 4e.(Fig. 10.3(a) is adapted from

    Phase Diagrams of Binary Nickel Alloys, P.

    Nash (Ed.), ASM International, Materials

    Park, OH (1991).

    BTB

  • 8/13/2019 Ch 10 Lecture

    10/39

    Chapter 10 - 10

    Rule 3: If we know Tand C0, then can determine:-- the weight fraction of each phase. Examples:

    At TA : Only Liquid (L) present

    WL = 1.00, Wa= 0

    At TD : Only Solid (a) presentWL = 0, Wa = 1.00

    Phase Diagrams:Determination of phase weight fractions

    wt% Ni201200

    1300

    T(C)L(liquid)

    a(solid)

    30 40 50

    Cu-Ni

    system

    TAA

    35C0

    32CL

    BTB

    DTD

    tie line

    4Ca3

    R SAt TB : Both a and L present

    73.03243

    3543=

    =

    = 0.27

    WL= SR+SWa= RR+S

    Consider C0= 35 wt% Ni

    Adapted from Fig. 10.3(a), Callister &

    Rethwisch 4e.(Fig. 10.3(a) is adapted from

    Phase Diagrams of Binary Nickel Alloys, P.

    Nash (Ed.), ASM International, Materials

    Park, OH (1991).

  • 8/13/2019 Ch 10 Lecture

    11/39

    Chapter 10 - 11

    Tie lineconnects the phases in equilibrium with

    each otheralso sometimes called an isotherm

    The Lever Rule

    What fraction of each phase?

    Think of the tie line as a lever

    (teeter-totter)

    ML Ma

    R S

    M x S=MLx R

    L

    L

    LL

    L

    LCC

    CC

    SR

    RW

    CC

    CC

    SR

    S

    MM

    MW

    =

    +

    =

    =

    +

    =

    +

    =

    a

    a

    a

    a

    a

    00

    wt% Ni20

    1200

    1300T(C)

    L(liquid)

    a(solid)

    30 40 50

    BTB

    tie line

    C0CL CaSR

    Adapted from Fig. 10.3(b),

    Callister & Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    12/39

  • 8/13/2019 Ch 10 Lecture

    13/39

    Chapter 10 -

    Slow rate of cooling:Equilibrium structure

    Fast rate of cooling:Cored structure

    First ato solidify:46 wt% Ni

    Last ato solidify:

    < 35 wt% Ni

    13

    Cachanges as we solidify.

    Cu-Ni case: First ato solidify has Ca= 46 wt% Ni.Last ato solidify has Ca= 35 wt% Ni.

    Cored vs Equilibrium Structures

    Uniform Ca:35 wt% Ni

  • 8/13/2019 Ch 10 Lecture

    14/39

    Chapter 10 - 14

    Mechanical Properties:Cu-Ni System

    Effect of solid solution strengthening on:

    -- Tensile strength (TS) -- Ductility (%EL)

    Adapted from Fig. 10.6(a),

    Callister & Rethwisch 4e.

    TensileStrength

    (MPa)

    Composition, wt% NiCu Ni

    0 20 40 60 80 100200

    300

    400

    TSforpure Ni

    TSfor pure Cu

    Elongation

    (%EL)

    Composition, wt% NiCu Ni

    0 20 40 60 80 10020

    30

    40

    50

    60

    %ELfor

    pure Ni

    %ELfor pure Cu

    Adapted from Fig. 10.6(b),

    Callister & Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    15/39

    Chapter 10 - 15

    2 components

    has a special composition

    with a min. melting T.

    Adapted from Fig. 10.7,

    Callister & Rethwisch 4e.

    Binary-Eutectic Systems

    3 single phase regions

    (L, a, b)

    Limited solubility:a: mostly Cu

    b: mostly Ag

    TE : No liquid below TE

    : Composition at

    temperature TE

    CE

    Ex.: Cu-Ag system

    Cu-Ag

    system

    L(liquid)

    a L+ a L+bba + b

    C, wt% Ag20 40 60 80 1000

    200

    1200T(C)

    400

    600

    800

    1000

    CE

    TE 8.0 71.9 91.2779C

    Ag)wt%1.29(Ag)wt%.08(Ag)wt%9.71( b+L

    cooling

    heating

    Eutectic reaction

    L(CE) a(CaE) + b(CbE)

  • 8/13/2019 Ch 10 Lecture

    16/39

    Chapter 10 - 16

    L+a L+b

    a+b

    200

    T(C)

    18.3

    C, wt% Sn

    20 60 80 1000

    300

    100

    L(liquid)

    a 183C61.9 97.8

    b

    For a 40 wt% Sn-60 wt% Pb alloy at 150C, determine:

    -- the phases present Pb-Snsystem

    EX 1: Pb-Sn Eutectic System

    Answer:a+ b-- the phase compositions

    -- the relative amountof each phase

    150

    40C0

    11Ca

    99Cb

    SR

    Answer:Ca= 11 wt% SnCb= 99 wt% Sn

    Wa= Cb- C0Cb- Ca=

    99 - 4099 - 11

    =5988

    = 0.67

    SR+S

    =

    Wb=C0 - CaCb - Ca

    =R

    R+S

    =29

    88= 0.33=

    40 - 11

    99 - 11

    Answer:

    Adapted from Fig. 10.8,

    Callister & Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    17/39

    Chapter 10 - 17

    Answer:Ca= 17 wt% Sn

    -- the phase compositions

    L+b

    a+b

    200

    T(C)

    C, wt% Sn

    20 60 80 1000

    300

    100

    L(liquid)

    a bL+a

    183C

    For a 40 wt% Sn-60 wt% Pb alloy at 220C, determine:

    -- the phases present: Pb-Snsystem

    EX 2: Pb-Sn Eutectic System

    -- the relative amountof each phase

    Wa= CL- C0CL- Ca

    =46 - 40

    46 - 17

    =6

    29= 0.21

    WL=C0- CaCL- Ca

    =23

    29= 0.79

    40C0

    46CL

    17Ca

    220 SR

    Answer:a+ L

    CL= 46 wt% Sn

    Answer:

    Adapted from Fig. 10.8,

    Callister & Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    18/39

    Chapter 10 - 18

    For alloys for which

    C0< 2 wt% Sn

    Result: at room temperature-- polycrystalline with grains of

    aphase havingcomposition C0

    Microstructural Developments

    in Eutectic Systems I

    0

    L+a200

    T(C)

    C , wt% Sn10

    220

    C0

    300

    100

    L

    a

    30

    a+b

    400

    (room Tsolubility limit)

    TE(Pb-SnSystem)

    aLL: C0wt% Sn

    a: C0wt% Sn

    Adapted from Fig. 10.11,

    Callister & Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    19/39

    Chapter 10 - 19

    For alloys for which

    2 wt% Sn < C0< 18.3 wt% Sn

    Result:

    at temperatures in a+ brange

    -- polycrystalline with agrains

    and small b-phaseparticles

    Adapted from Fig. 10.12,

    Callister & Rethwisch 4e.

    Microstructural Developments

    in Eutectic Systems II

    Pb-Snsystem

    L+ a200

    T(C)

    C, wt% Sn10

    18.3

    200C0

    300

    100

    L

    a

    30

    a+b

    400

    (sol. limit at TE)

    TE

    2(sol. limit at Troom)

    L

    a

    L: C0wt% Sn

    ab

    a: C0wt% Sn

  • 8/13/2019 Ch 10 Lecture

    20/39

    Chapter 10 - 20

    For alloy of composition C0= C

    E

    Result: Eutectic microstructure (lamellar structure)-- alternating layers (lamellae) of aand bphases.

    Adapted from Fig. 10.13,Callister & Rethwisch 4e.

    Microstructural Developments

    in Eutectic Systems III

    Adapted from Fig. 10.14,

    Callister & Rethwisch 4e.

    160m

    Micrograph of Pb-Sneutectic

    microstructure

    Pb-Sn

    system

    L+b

    a + b

    200

    T(C)

    C, wt% Sn

    20 60 80 1000

    300

    100

    L

    a bL+a

    183C

    40

    TE

    18.3

    a: 18.3 wt%Sn

    97.8

    b: 97.8 wt% Sn

    CE

    61.9

    L: C0wt% Sn

  • 8/13/2019 Ch 10 Lecture

    21/39

    Chapter 10 - 21

    Lamellar Eutectic Structure

    Adapted from Figs. 10.14 & 10.15,

    Callister & Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    22/39

    Chapter 10 - 22

    For alloys for which 18.3 wt% Sn < C0< 61.9 wt% Sn Result: aphase particles and a eutectic microconstituent

    Microstructural Developments

    in Eutectic Systems IV

    18.3 61.9

    SR

    97.8

    SR

    primary aeutectic a

    eutectic b

    WL= (1-Wa)= 0.50

    Ca = 18.3 wt% Sn

    CL = 61.9 wt% SnS

    R+ SWa= = 0.50

    Just above TE :

    Just below TE:

    Ca = 18.3 wt% SnCb = 97.8 wt% Sn

    S

    R+ SWa= = 0.73

    Wb= 0.27Adapted from Fig. 10.16,

    Callister & Rethwisch 4e.

    Pb-Sn

    systemL+

    b200

    T(C)

    C, wt% Sn

    20 60 80 1000

    300

    100

    L

    a bL+a

    40

    a+bTE

    L: C0wt% Sn LaL

    a

  • 8/13/2019 Ch 10 Lecture

    23/39

    Chapter 10 - 23

    L+aL+b

    a+b200

    C, wt% Sn20 60 80 1000

    300

    100

    L

    a bTE

    40

    (Pb-SnSystem)

    Hypoeutectic & Hypereutectic

    Adapted from Fig. 10.8,

    Callister & Rethwisch 4e.

    (Fig. 10.8 adapted from

    Binary Phase Diagrams,

    2nd ed., Vol. 3, T.B.

    Massalski (Editor-in-Chief),

    ASM International,

    Materials Park, OH, 1990.)

    160 m

    eutectic micro-constituentAdapted from Fig. 10.14,

    Callister & Rethwisch 4e.

    hypereutectic: (illustration only)

    bbb

    bbb

    Adapted from Fig. 10.17,

    Callister & Rethwisch 4e.

    (Illustration only)

    (Figs. 10.14 and

    10.17 from Metals

    Handbook, 9th ed.,

    Vol. 9,

    Metallography and

    Microstructures,

    American Society for

    Metals, Materials

    Park, OH, 1985.)

    175 m

    aaa

    aaa

    hypoeutectic: C0= 50 wt% Sn

    Adapted from

    Fig. 10.17, Callister &

    Rethwisch 4e.

    T(C)

    61.9

    eutectic

    eutectic: C0=61.9wt% Sn

  • 8/13/2019 Ch 10 Lecture

    24/39

    Chapter 10 - 24

    Intermetallic Compounds

    Mg2Pb

    Note: intermetallic compound exists as a line on the diagram - not an

    area - because of stoichiometry (i.e. composition of a compound

    is a fixed value).

    Adapted from

    Fig. 10.20, Callister &

    Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    25/39

    Chapter 10 - 25

    Eutectoidone solid phase transforms to two other

    solid phases

    S2 S1+S3

    a+ Fe3C (For Fe-C, 727C, 0.76 wt% C)

    intermetallic compound

    - cementite

    cool

    heat

    Eutectic, Eutectoid, & Peritectic

    Eutectic- liquid transforms to two solid phases

    L a+ b (For Pb-Sn, 183C, 61.9 wt% Sn)coolheat

    cool

    heat

    Peritectic- liquid and one solid phase transform to a

    second solid phaseS1 + L S2

    + L (For Fe-C, 1493C, 0.16 wt% C)

  • 8/13/2019 Ch 10 Lecture

    26/39

    Chapter 10 - 26

    Eutectoid & Peritectic

    Cu-Zn Phase diagram

    Adapted from Fig. 10.21,

    Callister & Rethwisch 4e.

    Eutectoid transformation +

    Peritectic transformation + L

  • 8/13/2019 Ch 10 Lecture

    27/39

    Chapter 10 - 27

    Ceramic Phase Diagrams

    MgO-Al2O3 diagram:

    Adapted from Fig.

    10.24, Callister &

    Rethwisch 4e.

  • 8/13/2019 Ch 10 Lecture

    28/39

    Chapter 10 - 28

    Iron-Carbon (Fe-C) Phase Diagram

    2 important

    points

    - Eutectoid (B):

    a+Fe3C

    - Eutectic (A):L +Fe3C

    Adapted from Fig. 10.28,Callister & Rethwisch 4e.

    Fe3C(cementite)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    a+Fe3C

    (Fe) C, wt% C

    1148C

    T(C)

    a 727C = Teutectoid

    4.30

    Result: Pearlite =alternating layers ofaand Fe3C phases

    120 m

    (Adapted from Fig. 10.31,Callister & Rethwisch 4e.)

    0.76

    B

    AL+Fe3C

    Fe3C (cementite-hard)

    a(ferrite-soft)

  • 8/13/2019 Ch 10 Lecture

    29/39

  • 8/13/2019 Ch 10 Lecture

    30/39

    Chapter 10 - 30

    Fe3C(cem

    entite)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    a+Fe3C

    L+Fe3C

    (Fe) C, wt% C

    1148C

    T(C)

    a727C

    (Fe-C

    System)

    C0

    0.76

    Hypoeutectoid Steel

    a

    aa

    srWa= s/(r+s)W=(1 - Wa)

    RSa

    pearlite

    Wpearlite=W

    Wa= S/(R+S)

    W =(1Wa)Fe3C

    Adapted from Figs. 10.28

    and 10.33,Callister &Rethwisch 4e.

    (Fig. 10.28 adapted from

    Binary Alloy Phase

    Diagrams, 2nd ed., Vol.

    1, T.B. Massalski (Ed.-in-

    Chief), ASM International,

    Materials Park, OH,

    1990.)

    Adapted from Fig. 10.34, Callister & Rethwisch 4e.

    proeutectoid ferritepearlite

    100 mHypoeutectoid

    steel

  • 8/13/2019 Ch 10 Lecture

    31/39

    Chapter 10 - 31

    Hypereutectoid Steel

    Fe3C(cem

    entite)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    a+Fe3C

    L+Fe3C

    (Fe) C, wt%C

    1148C

    T(C)

    a

    Adapted from Figs. 10.28

    and 10.36,Callister &Rethwisch 4e. (Fig.

    10.28 adapted from

    Binary Alloy Phase

    Diagrams, 2nd ed., Vol.

    1, T.B. Massalski (Ed.-in-

    Chief), ASM International,

    Materials Park, OH,

    1990.)

    (Fe-C

    System)

    0.7

    6 C0

    Fe3C

    Adapted from Fig. 10.37, Callister & Rethwisch 4e.

    proeutectoid Fe3C

    60 mHypereutectoidsteel

    pearlite

    pearlite

  • 8/13/2019 Ch 10 Lecture

    32/39

    Chapter 10 - 32

    Fe3C(cem

    entite)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    a+Fe3C

    L+Fe3C

    (Fe) C, wt%C

    1148C

    T(C)

    a

    Hypereutectoid Steel

    (Fe-C

    System)

    0.7

    6 C0

    pearlite

    Fe3C

    xv

    V X

    Wpearlite=W

    Wa=X/(V+X)

    W =(1 - Wa)Fe3C

    W =(1-W)

    W =x/(v+x)

    Fe3C

    Adapted from Fig. 10.37, Callister & Rethwisch 4e.

    proeutectoid Fe3C

    60 mHypereutectoidsteel

    pearlite

    Adapted from Figs. 10.28

    and 10.36,Callister &Rethwisch 4e. (Fig.

    10.28 adapted from

    Binary Alloy Phase

    Diagrams, 2nd ed., Vol.

    1, T.B. Massalski (Ed.-in-

    Chief), ASM International,

    Materials Park, OH,

    1990.)

  • 8/13/2019 Ch 10 Lecture

    33/39

    Chapter 10 - 33

    Example Problem

    For a 99.6 wt% Fe-0.40 wt% C steel at atemperature just below the eutectoid,

    determine the following:

    a) The compositions of Fe3C and ferrite (a).

    b) The amount of cementite (in grams) thatforms in 100 g of steel.

    c) The amounts of pearlite and proeutectoid

    ferrite (a) in the 100 g.

  • 8/13/2019 Ch 10 Lecture

    34/39

    Chapter 10 - 34

    Solution to Example Problem

    WFe3C=

    R

    R+S=

    C0 CCFe3C

    C

    = 0.40 0.022

    6.70 0.022 = 0.057

    b) Using the lever rule with

    the tie line shown

    a) Using the RStie line just below the eutectoid

    Ca= 0.022 wt% CCFe3C= 6.70 wt% C

    Fe3C(cementite)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    a+Fe3C

    L+Fe3C

    C, wt% C

    1148C

    T(C)

    727

    C

    C0

    R S

    CFe C3C

    Amount of Fe3C in 100 g

    = (100 g)WFe3C

    = (100 g)(0.057) =5.7 g

  • 8/13/2019 Ch 10 Lecture

    35/39

    Chapter 10 - 35

    Solution to Example Problem (cont.)

    c) Using the VXtie line just above the eutectoid and

    realizing thatC0= 0.40 wt% C

    Ca= 0.022 wt% C

    Cpearlite= C= 0.76 wt% C

    Fe3C(cementite)

    1600

    1400

    1200

    1000

    800

    600

    4000 1 2 3 4 5 6 6.7

    L

    (austenite)

    +L

    +Fe3C

    a+Fe3C

    L+Fe3C

    C, wt% C

    1148C

    T(C)

    727

    C

    C0

    VX

    CC

    Wpearlite =V

    V+X=C0 CC C

    = 0.40 0.022

    0.76 0.022 = 0.512

    Amount of pearlite in 100 g

    = (100 g)Wpearlite

    = (100 g)(0.512) =51.2 g

  • 8/13/2019 Ch 10 Lecture

    36/39

    Chapter 10 -

    VMSE: Interactive Phase Diagrams

    36Change alloy composition

    Microstructure, phase compositions, and phase fractions respond interactively

  • 8/13/2019 Ch 10 Lecture

    37/39

    Chapter 10 - 37

    Alloying with Other Elements

    Teutectoidchanges:

    Adapted from Fig. 10.38,Callister & Rethwisch 4e.(Fig. 10.38 from Edgar C. Bain, Functions of the

    Alloying Elements in Steel, American Society for

    Metals, 1939, p. 127.)

    TEutectoid(C)

    wt. % of alloying elements

    Ti

    Ni

    MoSi

    W

    Cr

    Mn

    Ceutectoidchanges:

    Adapted from Fig. 10.39,Callister & Rethwisch 4e.(Fig. 10.39 from Edgar C. Bain, Functions of the

    Alloying Elements in Steel, American Society for

    Metals, 1939, p. 127.)

    wt. % of alloying elements

    Ceutectoid(wt%C

    )

    Ni

    Ti

    Cr

    Si MnW

    Mo

  • 8/13/2019 Ch 10 Lecture

    38/39

    Chapter 10 - 38

    Phase diagramsare useful tools to determine:-- the number and types of phases present,

    -- the compositionof each phase,

    -- and the weight fraction of each phase

    given the temperature and composition of the system. The microstructure of an alloy depends on

    -- its composition, and

    -- whether or not cooling rate allows for maintenance of

    equilibrium.

    Important phase diagram phase transformations include

    eutectic, eutectoid, and peritectic.

    Summary

  • 8/13/2019 Ch 10 Lecture

    39/39

    Ch t 10 39

    Core Problems:

    Self-help Problems:

    ANNOUNCEMENTS

    Reading: