Top Banner

of 12

CF-2014-58

Jul 07, 2018

Download

Documents

Ammar Ajmal
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 CF-2014-58

    1/12

    1

    Complex Variables 5.8 The z Transformation 

    Taken samples of a function f (t ) at intervals of T   : f (nT )

    DEFINITION (z  Transfo rm) The z   transform of the function f (z ), that is, Z[f (t )], is given

    by

    Where T >0. So, we define a function: F (z ) = Z[f (t )].

    The convergent in a dom ain ser ies Z[f (t )] is a Laurent series with no positive

    exponent in it.

    This is not a unique transform ! Z[sin( t )] = Z[sin2( t )] = 0 (T =1) 

    Substitute:  ,which gives a Maclaurin series , that converges

    inside a disk , so F (z ) is an analyt ic func t ion in and

    0;

    n   nn

    n   nT  f  c z c

     z w   1  

     

    0;

    n   nn

    n   nT  f  cwc

    0 r w   r  z       0)0(lim   c f   z  F  z   

  • 8/18/2019 CF-2014-58

    2/12

  • 8/18/2019 CF-2014-58

    3/12

    3

    Complex Variables

    EXAMPLE 2 Find the z transform of f (t ) = tu (t ) .

    Solut ion. First f (nT ) = nT  . Thus

    Recall:

    Now for

    and

    Linear i ty of the Transform ation

    For any constant c :

     And (for the same T )

    More:

    For instance:

    11     z  z w

  • 8/18/2019 CF-2014-58

    4/12

    EXAMPLE 3 If find

    Solut ion . F (z ) is two term series, so: and (from the definition):

    EXAMPLE 4 If , find

    Solut ion . F (z ) is a Laurent series ( ):

    Now:

    and:

    An in verse transform is pos sible OLNLY for fun ct ion s presented by ser ies .

    Transfo rm fo r translations .

    Let So:

    If

    Thus: 4

    Complex Variables

    1 z 

    211)(   z  z  z  F   

    1

    21

    1

    1)(

     z  z 

     z  z  F 

      3,0;1)2(;0)0( 210     ncT  f  T  f  cc f  c n

    11)(     z  z  z  F 

      

      

      ...

    111

    2

    11

    2

    1

    22 z  z  z  z 

     z 

     z 

    1;2)(;1)0(0     nnT  f  c f  c n

    k nkT nT  f  t t  f       ,0)(0,0)(

  • 8/18/2019 CF-2014-58

    5/12

    5

    Complex Variables

    Or:

    First Translat ion Formu la

    For

    Consider k =1:

    Or:

    That is

    Consider k =2:

    That is

    Secon d Translat ion Formula

    for k   0 .

  • 8/18/2019 CF-2014-58

    6/12

    6

    EXAMPLE 5 Use Z[e at u (t )] = F (z ) = z /(z - e aT ) for  |z | > |e aT | find G (z )=Z[e a (t-T )u (t - T )] and

    H (z )= Z[e a (t+T )u (t + T )].

    Solut ion.  For the “t - T ” translation and k  = 1:

    For the “t + T ” translation and k  = 1 (f (0) = 1):

    z  Transform s of Products o f Funct ions

    Let and

    where . Thus:

    For two analytic functions F (z ) and G (z )  in the same domain |z | > R   we write Laurent

    series:

    Complex Variables

    )(and)(   nT  g d nT  f  c nn  

    0 0

    0

    ;)(

    ;)(

    n n

    nn

    n

    n

    n

    m

    m

    m

    w R z  z wd w z d w z G

     Rwwcw F 

  • 8/18/2019 CF-2014-58

    7/12

    7

    Complex Variables

    Product is uniformly convergent( ):

    For circle of the radius > R  we consider for

    the following Laurent expansion (uniformly convergent inside)

    So, after integration term by term around

    But, all integrals in the sum are zero, except one: n  –  m = 0,

    which is 2i   z -1

    Thus:

    Or

    with F  and G  analytic in

    w R z  Rw     ;

           R z w     ;

      w

     Rw  

    )(w F 

  • 8/18/2019 CF-2014-58

    8/12

    8

    Complex Variables

    EXAMPLE 6 Find Z[te at u (t )] 

    Solution. Let f (t ) = tu (t ) and g (t ) = e at  

    We know: Z[f (t )]=Tz /(1- z )2=F (z ) and Z[g (t )] = z /(z - e aT )=G (z ) , and they are analytic except

    z =1 and z =e aT . Thus

    We need > R > 1 and R >|e aT |.

    Observe that a singular point w   = 1 is in the range of integration, but w   = ze -aT   is not

    because: |we aT | < |w |R < |z |. Thus, we can use the Extender Cauchy integral formula

    at w  = 1:

  • 8/18/2019 CF-2014-58

    9/12

    9

    Complex Variables

    Inverse z  Transform of a Product of Two Funct ions

    What is Z-1[F (z )G(z )] for given f (t ) and g (t ) ?

    But first:

    DEFINITION (Convolut ion )

    actually: 0 k n

    Observe:

    Let: , t = nT .

    Now: 0 k n  

    If f (kT ) = a k  ; g ( jT ) = b  j ; 

    Or and:

    the z  transform of the convolut ion of two fun ct ionsis the product of the z  transform s of each funct ion or Z-1[F (z )G (z )] = f (t )*g (t )

    )(t h

  • 8/18/2019 CF-2014-58

    10/12

    10

    Complex Variables

    EXAMPLE 7 Using the concept of convolution, find

    Solution. Observe, that if

    we can write

    We also have demonstrated

    and

    So,

    Now u ((n - k )T ) = 0 for k > n and u ((n- k )T ) = 1 for n  k . Thus

    and

    l bl

  • 8/18/2019 CF-2014-58

    11/12

    11

    Complex Variables

    Difference Equat ion s and the z Transfo rm

    A prob lem involv in g a di f ference equat ion : Let f (nT ) be a function defined for n = 0 , 1

    , 2 , . . . and assume T  > 0. Obtain a closed-form expression fo r the solu t ion of the

    equation

    given that f (0) = 1

    Step by step [ f ((n+1)T )=2 f (nT ) ] : f (T ) = 2, f (2T ) = 4,…, f (nT ) = 2n  

    One more method : perform a z   transformation on both sides of the given equation

    taking:

    and the translation formula (f (0) = 1):

    The equation transform gives

    Or

    Thus: f (nT ) = 2n  

    l bl

  • 8/18/2019 CF-2014-58

    12/12

    12

    Complex Variables

    The general form of th e l inear di f ference equat ion:

    EXAMPLE 8 (The Fibon acci sequence ) The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

    … : f (n +  2) = f (n + 1) + f (n ) [f (0)=0; f (1)=1; f (2)=1;.... ] 

    or : f (n +  2) - f (n + 1) - f (n ) = 0 

    For the general form: T =1, N =2, a 0=1, a 1=-1, a 2 =-1, a n >2= 0.

    Find a closed form solution.

    Solut ion. Use

    For  (T =1; f (0)=0; f (1)=1):

    We obtain: or

    Now

    which give the expansion:

    )(n f