Top Banner
Fundamental Engineering Materials (MA1002) Associate Professor Sandy Chian School of Mechanical & Aerospace Engineering MA1002Fundamental EngineeringOn Line Course Materials 1
146

Ceramics

Dec 22, 2015

Download

Documents

Amos Yap

Materials and Its Properties
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ceramics

Fundamental  Engineering  Materials  (MA1002)  

Associate  Professor  Sandy  Chian  School  of  Mechanical  &  Aerospace  Engineering  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   1  

Page 2: Ceramics

Text  Book  •  William  D.  Callister,  David  G.Rethwisch  “Materials  Science  and  Engineering  –      An  IntroducMon”  8th  EdiMon,  John  Wiley  and    Sons,  2011  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   2  

Page 3: Ceramics

Course  Learning  ObjecBves  •  To  understand  the  Materials  around  us:  

– Understand  the  fundamental  building  blocks  of  Materials  [(Chapters  1  &  2)]  

–  The  inter-­‐relaBonship  between  •  these  building  blocks  (atoms),    •  their  arrangements  (structures  and  processes)  and  •  their  impact  on  properBes  (applicaBons)    [(Chapters  3  –  9)]  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   3  

Page 4: Ceramics

Topics  to  be  Introduced  Ceramics  (Chapter  12)  

Polymers  (Chapters  14,  15)  Composites  (Chapter  16)  

•  What  are  these  materials?  •  What  are  their  structures  and  properBes?  •  What  are  they  used  for?  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   4  

Page 5: Ceramics

Review  QuesBons  on  Bondings  •  Important  to  recap  the  different  types  primary  and  secondary  bonds  in  materials.  – Refer  to  Professor  Shearwood’s  notes  if  needed.  

•  See  Ceramic  Review  QuesBon  Set  1  MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   5  

Page 6: Ceramics

Review  QuesBon  Set  (1)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   6  

Page 7: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   7  

Page 8: Ceramics

Ceramics  

Structures  &  ProperBes    

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   8  

Page 9: Ceramics

What  are  Ceramics?  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   9  

Common  items  associated  with  the  term  Ceramics:    Porcelain,  chinawares,  bricks,  crystal  vase,  floor  Mles,  oven  ware,  etc.…..    Materials  known  for  their  high  compressive  strengths,  heat  resistance  BUT  briWle  

Page 10: Ceramics

Atoms  in  Ceramics  •  Ceramics  are  inorganic,  non-­‐metallic  materials  consisMng  of  

– Metal  atoms  (e.g.  Iron,  Aluminum,  Calcium,  etc  )and    –  non-­‐metal   atoms   (e.g.   Oxides   (O),   Nitrides   (N),   and   Carbides  (C))  elements    

•  Refer  to  Periodic  Table  for  examples  of  Metals  and  Non-­‐Metals  

•  These   metallic   and   non-­‐metallic   elements   are   bonded   together  primarily  by  ionic  or  covalent  bonds  or  both  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   10  

Page 11: Ceramics

Periodic  Table  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   11  Figure  2.6:  Callister  &  Rethwisch,  8th  ediMon  

Page 12: Ceramics

Examples  of  Ceramics  Oxide  based  Ceramics  

– Aluminum  oxides  (Al2O3)  

–  Silicon  dioxide  (SiO2)  

–  Sodium  Silicate  (Na2SiO3)  

Non-­‐oxide  based  Ceramics  – Silicon  nitride  (Si3N4)  

– Tungsten  carbide  (WC)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   12  

Page 13: Ceramics

Comparison  with  Metals  Metals  •  Crystalline  •  Metallic  bond  •  Free  electrons  •  Good  thermal/electrical  conducMvity  •  Opaque  •  High  tensile  strength  •  Low  shear  strength  •  PlasMc  flow  •  High  density  •  Moderate  hardness  

Ceramics  •  Crystalline/Amorphous  •  Ionic/Covalent  •  CapMve  electrons  •  Poor  thermal/electrical  conducMvity  •  Transparent/Opaque  •  Poor  tensile  strength  •  High  shear  strength  •  None  •  IniMal  low  density  •  High  hardness  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   13  

Page 14: Ceramics

See  Review  QuesBon  set  (2)  on  Molecular  Structures  

•  The  concept  of  Crystal  and  Amorphous  structures  were  covered  in  previous  lectures  (Prof  Shearwood  &  Prof  Tan)  and  its  Mmely  to  recap  them  at  this  juncture  before  proceeding.  

•  ObjecMve  is  to  re-­‐cap  what  the  terms  “crystalline”  and  “amorphous”  structures  mean  and  how  these  properMes  and  bonding  influence  material  behaviours.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   14  

Page 15: Ceramics

Review  QuesBon  Set  (2)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   15  

Page 16: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   16  

Page 17: Ceramics

Ceramic  Materials  Outline  •  Firstly  we  shall  introduce  Ceramics  in  terms  of  their  ApplicaMon  classificaMons  …..  

•  Following  that  we  will  explore  their  various  Structures  and  Morphologies  

•  And  finally,  how  these  structures  &  morphologies  affect  their  properMes  (and  applicaMons)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   17  

Page 18: Ceramics

2  Main  ClassificaBons  of  Ceramics  in  Terms  of  their  ApplicaBons  

•  TradiBonal  (ConvenMonal)  Ceramics  –  Clay  based  products  

•  Porcelains,  tableware,  pokeries,  etc.  

•  Fine  Ceramics  –  Structural  Ceramics  

•  Used  for  their  mechanical  and  engineering  properMes  

–  FuncBonal  Ceramics  •  ApplicaMons  other  than  mechanical  strength  such  as  electrical,  opMcal  and  or  

magneMc  properMes  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   18  

Page 19: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   19  

ConvenBonal  Ceramics  

versus  

Fine  Ceramics  

Page 20: Ceramics

TradiBonal  (ConvenBonal)  Ceramics  •  Made  from  3  Principal  Components:    

•  Clay:  Consists  of  hydrated  aluminum  silicates  with  small  amounts  of      other  oxides  such  as  TiO2,  Fe2O3,  MgO,  CaO,  Na2O  and  K2O  

–  FuncMon  is  to  provide  workability  of  the  materials  before  firing  hardens  it  and  consMtutes  the  major  body  material.  

•  Silica:  (Also  known  as  flint  or  quartz)  has  a  high  melBng  component  and      its  funcMon  is  to  provide  high  temperature  properMes  

•  Potash  feldspar:  Basic  composiMon  K2O/Al2O3.6SiO2  –  has  a  low  melBng  temperature  and  makes  a  glass  when  the  

ceramic  mix  is  fired  and  bonds  the  refractory  components  together.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   20  

Page 21: Ceramics

PlasBcity  of  clay  allows  shaping  of  tradiBonal  ceramic  product  

21  

hkps://www.youtube.com/watch?v=aCkIgAcj644  

Page 22: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   24  

Fine  Ceramics  

Page 23: Ceramics

Structural  (Engineering)  Ceramics  •  Refers  mainly  to  ceramics  with  excepBonal  mechanical  properBes  (i.e.  

high  tensile  load,  compressive  strength,  wear  resistance,  etc.)  

•  Mainly  pure  compounds  or  nearly  pure  compounds  of  predominantly  oxides,  carbides  or  nitrides.  

•  Examples  of  important  engineering  ceramics:  –  Alumina  (Al2O3)  –  Silicon  nitride  (Si3N4)  –  Silicon  carbide  (SiC)  –  Zirconia  (ZrO2)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   25  

Page 24: Ceramics

FuncBonal  Ceramics  •  Refers  to  ceramics  that  have  special  properBes  such  as  electrical,  magneMc,  dielectrical,  opMcal,  etc.  

•  Examples  include:    –  Barium  Mtanate:  mechanical  transducer,  ceramic  capacitors  

–  Bismuth  stronMum  calcium  copper  oxide:  High  temperature  super  conductors  

–  Lead  zirconate  Mtanate  (PZT):  Ultrasonic  transducer  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   26  

Page 25: Ceramics

FuncBonal  Ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   27  

Ni-­‐LaNbO4   La-­‐(Sr)MnO3   Fibre  opMcs  

Page 26: Ceramics

Advanced  Ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   28  

HydroxyapaMte  for  bone  implants  

Space  shukle  shield  

Page 27: Ceramics

Ceramics  in  Space  Engineering  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   29  

Page 28: Ceramics

Ceramic  Review  QuesBon  Set  (3)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   30  

Page 29: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   31  

Page 30: Ceramics

Structure  &  Morphology  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   32  

Page 31: Ceramics

4  ClassificaBons  of  Ceramics  Morphology  •  Polycrystalline  ceramics  

–  Alumina,  Silicon  carbide,  silica  

•  Glass  –  Amorphous  

•  non-­‐crystalline  

–  Glass  Ceramics  •  Small  crystalline  precipitates  in  glass  matrix    •  (Schok’s  Ceran™  ceramic  cooktop  panels)  

–  Porcelain  •  Large  crystals  in  glass  matrix  •  Heterogeneous  microstructures  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  33  

Page 32: Ceramics

General  ProperBes  of  Ceramics  •  Hard  and  brikle  with  low  toughness  and  ducMlity  

•  Low  thermal  and  electrical  conducMvity  

•  High  melMng  point  and  chemical  resistance  

•  Low  thermal  coefficient  of  thermal  expansion  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   34  

Page 33: Ceramics

ProperBes  (Density)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   35  

Lower  than  metals  

Page 34: Ceramics

ProperBes  (Mechanical)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   36  

Similar  to  metals  

Page 35: Ceramics

ProperBes  (  Toughness)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   37  

Lower  than  metals  

Page 36: Ceramics

ProperBes  (Electrical)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   38  

insulators  

Lower  conducBvity  than  metals  

Page 37: Ceramics

What  Determines  Ceramic  ProperBes?  •  Chemical  composiBons  

–  Types  of  atoms  and  bondings  

•  Micro-­‐  and  Nano-­‐  Structures  

•  Defects  –  Point,  line,  or  planar  defects  –  Refer  to  Prof.  Shearwood’s  notes  on  defects  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   39  

Page 38: Ceramics

Bonding  in  Ceramics  •  Can  be  ionic  and/or  covalent.    

– Many  ceramics  exhibit  both  bonds  

–  Ionic  character  of  the  bond  depends  on  the  electronegaMviMes  of  the  atoms  present  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   40  

Page 39: Ceramics

Percentage  Ionic  Character  •  Greater  the  difference  in  electronegaBvity  of  the  atoms,  the  more  ionic  the  bond.  

•  Percentage  Ionic  Character:    

 where  XA  and  XB  are  the  electronegaBviBes  for  the  respecMve  elements  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   41  

% Ionic character = {1- exp[- (0.25)(XA - XB )2 ]} *100

Page 40: Ceramics

42

Adapted  from  Fig.  2.7,  Callister  &  Rethwisch  8e.    (Fig.  2.7  is  adapted  from  Linus  Pauling,  The  Nature  of  the  Chemical  Bond,  3rd  ediMon,  Copyright  1939  and  1940,  3rd  ediMon.    Copyright  1960  by  Cornell  University.)  

•    Degree  of  ionic  character  may  be  large  or  small:  

Ionic Characteristics in Ceramics

SiC:  small  

CaF2:  large  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 41: Ceramics

Is  Si-­‐C  bond  Ionic  or  Covalent?  •  ElectronegaMvity  values  of  Si  and  C  are  1.8  and  2.5  respecMvely  

•  Si-­‐C  bond  is  88.5%  covalent  in  character  MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   43  

% ionic character = 100 {1-exp[-0.25(XSi − XC )2 ]} =11.5%

Page 42: Ceramics

Review  QuesBon  Set  (4)  •  Sample  calculaMons  for  the  students  to  try  ….  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   44  

Page 43: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   45  

Page 44: Ceramics

Ceramic  Structure  Stability  •  Two  important  condiMons  for  ceramic  crystal  structure  stability:  – Charge  Neutrality  – Maximum  contact  between  CaBons  and  Anions  • Determined  by  the  Co-­‐OrdinaBon  Number  (CN)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   46  

Page 45: Ceramics

•  Bulk  ceramic  must  remain  electrically  neutral  – i.e.  the  Net  Charge  must  be  Zero  – Determined  by  the  molecular  formula  (AmXp,  where  m  and  p  values  to  achieve  charge  neutrality)  • “m”  and  “p”  are  associated  with  the  valencies  of  atoms  X  and  A  respecMvely.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   47  

Charge Neutrality

Page 46: Ceramics

Does  MgO2  exists?  •  Consider  the  element’s  electronic  valence  state:  

– Mg:    Mg2+  (divalent)  – O:      O2-­‐    (divalent)  

•  Net  charge  per  MgO2  molecule          =  1(2+)  +  2(2-­‐)  =  -­‐2  –  i.e.  a  net  negaBve  charge,  which  is  Not  Allowed  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   48  

Page 47: Ceramics

Allowable  Ceramic  Stoichiometry  •  Mn-­‐O:    Mn2+O2-­‐;    Net  charge  =  1(2+)+1(2-­‐)  =  0  

•  Mn-­‐F2:    Mn2+F2-­‐;      Net  charge  =  1(2+)+2(1-­‐)  =  0  

•  Ti-­‐O2:      Ti4+O2-­‐2;      Net  charge  =  1(4+)+2(2-­‐)  =  0  

•  Al2-­‐O3:    Al3+2O2-­‐3;    Net  charge  =  2(3+)+3(2-­‐)  =  0  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   49  

Page 48: Ceramics

50

Significance of Cation-Anion Contact

“Stable”  and  “Unstable”  structures  

Adapted  from  Fig.  12.1,  Callister  &  Rethwisch  8e.  

-­‐   -­‐  -­‐   -­‐  +  

unstable  

-­‐   -­‐  -­‐   -­‐  +  

stable  

-­‐   -­‐  

-­‐   -­‐  +  

stable  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

CaBon  &  Anions    not  in  contact  

CaBon  &  Anions    in  contact  

Page 49: Ceramics

•  The  maximum  contact  between  caMons  and  anions  is  determined  by  the  relaMve  size  of  the  ions.  

•  Co-­‐ordinaBon  number  (CN)  &  Ionic  Radii  –  Dependent  on  radius  raBo  of  caBon  to  anion    (rc  /  ra)  

–  For  a  given  co-­‐ordinaMon  number,  there  is  a  criBcal  (minimum)  radius  raBo  rc  /  ra  ,  for  which  this  caBon-­‐anion  contact  is  established.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   51  

Co-­‐OrdinaBon  Number  

Page 50: Ceramics

52

•    On  the  basis  of  ionic  radii,  what  crystal  structure  would  you  predict  for  FeO?    

•    Answer:  

550014000770

anion

cation

...

rr

=

=

based  on  this  raMo,  -­‐-­‐  C.N  =  6  because    

     0.414  <  0.550  <  0.732    

-­‐-­‐  crystal  structure  is  NaCl  Data  from  Table  12.3,  Callister  &  Rethwisch  8e.  

Sample Problem: Predicting the Crystal Structure of FeO

Ionic  radius  (nm)  0.053  0.077  0.069  0.100  

0.140  0.181  0.133  

CaBon  

Anion    

Al   3+  

Fe   2  +  

Fe   3+  

Ca   2+  

O   2-­‐  

Cl   -­‐  

F   -­‐  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 51: Ceramics

53

Ionic Radius Ratio, Coordination Number and Crystal Structure

ZnS    (zinc  blende)  

NaCl  (sodium    chloride)  

CsCl  (cesium    chloride)  

Adapted  from  Table  12.2,  Callister  &  Rethwisch  8e.  

2    

r  caBon  r  anion  

Coord    No.  

<  0.155    

0.155  -­‐  0.225    

0.225  -­‐  0.414  

0.414  -­‐  0.732    

0.732  -­‐  1.0  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.3    

4  

6  

8  

linear

triangular

tetrahedral

octahedral

cubic

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 52: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   54  

Page 53: Ceramics

Types  of  Crystal  Structures  AX  AX2  

ABX3  (not  covered)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   55  

Page 54: Ceramics

AX-­‐Type  Crystal  Structures  •  Ceramics  with  equal  numbers  of  caBons  and  anions.  

•  Several  different  crystal  structures  possible,  which  are  named  axer  a  common  material  that  assumes  the  parMcular  structure  –  Rocksalt  (NaCl)  :-­‐  Octohedral  –  Caesium  Chloride  (CsCl)  :-­‐  Cubic  –  Zinc  Blende  (ZnS)  :-­‐  Tetrahedral  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   56  

Page 55: Ceramics

57

Rock Salt Structure i.e. NaCl (sodium chloride or rock salt) structure

rNa = 0.102 nm

rNa/rCl = 0.564 (bet 0.414 and 0.732) (i.e. CN = 6)

∴  anion (Cl-) prefers octahedral sites

Adapted  from  Fig.  12.2,  Callister  &  Rethwisch  8e.  

rCl = 0.181 nm

4  Na+  and  4  Cl-­‐  ions  per  unit  cell  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 56: Ceramics

Octahedral  Sites  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   58  

Page 57: Ceramics

59

CsCl Structure 939.0

181.0170.0

Cl

Cs ==−

+

r

r

Adapted  from  Fig.  12.3,  Callister  &  Rethwisch  8e.  

∴ Since 0.732 < 0.939 < 1.0, Hence CN = 8 and cubic

sites preferred

So each Cs+ has 8 neighbor Cl-

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Each  unit  cell  of  CsCl  has  1-­‐Cs  ion  and  8-­‐Cl  ions  

Page 58: Ceramics

Zn  Blende  (ZnS)  Crystal  Structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   60  

All  corners  and  faces  are  occupied    by  sulfur  ions  (4  per  unit  cell)  

Zn  atoms  fill  interior  tetrahedral  posiMons    

Most  highly  covalently  bonded  compounds  exhibit  this  type  of  crystal  structure  

rZn2+/rS2-­‐  =  0.402,  hence  CN  =  4  

4  ZnS  molecules  per  unit  cell  

Page 59: Ceramics

Tetrahedral  Sites  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   61  

Page 60: Ceramics

AmXp  Type  Crystal  Structures  •  Where  charges  on  CaMons  and  Anions  are  not  the  same  where  “m”  and/or  “p”  ≠  1  –  i.e.  AX2  

•  Common    crystal  structure  is  found  in  fluorite  (CaF2)  

•  Other  compounds  include  ZrO2  (cubic),  UO2,  PuO2  and  ThO2  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   62  

Page 61: Ceramics

63

CaF2 Crystal Structure •  Molecular formula of Calcium

Fluorite (CaF2) •  No of Ca2+/unit cell = 4 •  No of F-/unit must be 8

•  Ca2+ cations in FCC (CN=8) •  F- anions in tetrahedral (CN = 4)

• i.e. Each Ca2+ co-ordin. with 8 F- Each F- co-ordin with 4 Ca2+

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

fluorine  

calcium  

Page 62: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   64  

Page 63: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   65  

Page 64: Ceramics

66

Density Computations for Ceramics

A

AC )(NV

AAn

C

Σ+Σ"=ρ

Number  of  formula  units/unit  cell  

Volume  of  unit  cell  Avogadro’s number

=  sum  of  atomic  weights  of  all  anions  in  formula  unit  

ΣAA

ΣAC =  sum  of  atomic  weights  of  all  caBons  in  formula  unit  

Formula  unit  =  All  the  ions  that  are  included  in  the  chemical  formula  unit.  For  example:  BaTiO3  =  one  Barium,  one  Ti,  and  three  Oxygen.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 65: Ceramics

(n’):  Formula  Units/Unit  Cell  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   67  

No.  of  Na+  per  unit  cell  =  4  

To  maintain  charge  neutrality  in  NaCl,  there  must  also  be  4  Cl-­‐  

Hence  there  are  4  molecules  of  NaCl  per  unit  cell,  i.e.  n’  =  4  

Refer  to  Example  problem  12.3  in  Callister’s  8th  EdiBon  (page  463)  

Page 66: Ceramics

What  about  n’  for  CaF2  ?  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   68  

No.  of  Ca2+/unit  cell  =  4    

There  must  be  4  molecules  of  CaF2  per  unit  cell  of  CaF2  

n’  for  CaF2  is  therefore  4  

Page 67: Ceramics

Summary  (1)  •  Interatomic  bonding  in  ceramics  ranges  from  purely  ionic  

to  totally  covalent  

•  Predominantly  Ionic  –  Metallic  caMons  are  posiMvely  charged;    Non-­‐metallic  anions  are  negaMvely  charged  

–  Crystal  structure  is  determined  by  (a)  the  charge  magnitude  on  each  ion,  and  (b)  the  radius  of  each  type  of  ion  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   69  

Page 68: Ceramics

Summary  (1)  •  Many  of  the  simpler  crystal  structures  are  described  in  terms  of  

unit  cells:  –  Rock  Salt  (AX)  –  Cesium  chloride  (AX)  –  Zinc  blende  (AX)  –  Calcium  Fluorite  (AmXp)  

•  Some  crystal  structures  may  be  generated  from  the  stacking  of  close-­‐packed  planes  of  anions;  caMons  fill  intersMMal  tetrahedral  and/or  octahedral  posiMons  that  exists  between  adjacent  planes.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   70  

Page 69: Ceramics

Ceramics  Review  QuesBons  5  •  Re-­‐cap  on  calculaMng  unit  cell  dimensions  and  unit  cell  volumes,  etc…  

•  PracMce  calculaMon  on  co-­‐ordinaMon  number  and  determinaMon  of  crystal  structures.  

   MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   71  

Page 70: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   72  

Page 71: Ceramics

Common,  Abundant  Ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   73  

Silicates  

Page 72: Ceramics

Silicate  Ceramics  •  Silicate  ceramics  consist  of  silicon  and  oxygen  atoms  (ions)  bonded  

together  in  various  arrangements.  –  Silicon  and  oxygen  are  the  two  most  abundant  elements  found  in  the  earth’s  

crust  

•  Commonly  found  in  naturally  occurring  minerals  like  clay,  feldspars  and  micas  

•  Useful  engineering  materials  due  to  low  cost,  availability,  and  special  properMes  –  ConstrucMon  materials  as  glass,  portland  cement,  and  brick  –  Electrical  insulators    

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   74  

Page 73: Ceramics

Structure  of  Sand  •  Common  name  is  Silicon  Oxide  (SiO2)  or  silica  •  In  reality  there  is  no  discrete  molecules  of  SiO2  in  sand  but  a  network  of  bonds:  –  Each  silicon  atom  is  bonded  to  4  oxygen  atoms  –  Each  oxygen  is  bonded  to  2  silicon  atoms  

•  Structure  of  sand  is  formed  by  bonding  of  structural  repeaMng  units  of  SiO4

4-­‐  ions  (orthosilicates)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   75  

Page 74: Ceramics

Silicate  Ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   76  

Si4+

O2-

Adapted  from  Figs.  12.9-­‐10,  Callister  &  Rethwisch  8e  

Tetrahedral  structure  (i.e.  Orthosilicate  Ion)  

Basic  building  block  of  silicate  ceramics  is  the  Tetrahedral  SiO44-­‐  

Each  singly  bonded  oxygen  has  a  single  negaBve  charge  

Page 75: Ceramics

Various  Silicate  Structures  •  Different  silicate  structures  can  be  formed  depending  on  how  the  tetrahedra  are  linked  together  through  their  verBces.  

•  Tetrahedra  are  linked  through  a  shared  oxygen  atom  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   77  

Page 76: Ceramics

78

Bonding of adjacent SiO44- accomplished by the sharing of

common corners, edges, or faces

Silicates

Adapted  from  Fig.  12.12,  Callister  &  Rethwisch  8e.  

Mg2SiO4 Ca2MgSi2O7

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Example  of  silicate  

compounds:  Na2Ca2Si3O9

Page 77: Ceramics

Single  Strand  Silicate  Structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   79  

Single  strand  silicate  formed  by  tetrahedra  linked  through  a  shared  oxygen  atom.  

RepeaBng  unit  =  Si2O64-­‐    or  as  simplest  formula  SiO3

2-­‐  

Example  of  single  strand  silicate  structure:  enstaBte,  MgSiO3  which  consist  of  rows  of  single-­‐strand  silicate  chains  with  Mg2+  ions  between  the  strands  to  maintain  charge  neutrality    

Page 78: Ceramics

Other  of  Silicate  Structures  •  Ordered  Structures  

– 2-­‐D  Layered  sheet    – 3-­‐D  Crystalline  (Network)  

•  Disordered  structured  – Glass  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   80  

Page 79: Ceramics

81

2-D Layered Silicates •  Tetrahedra connected to 3 others to form

2-D sheet structure •  Repeating unit for layered silicate sheet

is (Si2O5)2-

•  Negative charge balanced by

adjacent plane rich in positively charged cations

•  Examples: Talc, mica, clay

•  Layered structure offers lubricity MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 80: Ceramics

82

•  Kaolinite clay alternates (Si2O5)2- layer with Al2(OH)42+ layer

Layered Silicates (cont.)

Adjacent  sheets  of  this  type  are  loosely  bound  to  one  another  by  van  der  Waal’s  forces.

Adapted  from  Fig.  12.14,  Callister  &  Rethwisch  8e.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

NegaMvely  charged  layer  

PosiMvely  charged  layer  

Page 81: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   83  

Forms  a  Network  Structure  which  gives  SiO2  its  strength  and  high  melBng  point.  

 i.e.  similar  to  Diamond  

3-­‐D  Network  Crystalline  Silicate  Quartz  (Silica)  is  a  crystalline  silicate  

containing  pure  silicon  dioxide  (SiO2)  

Diamond  

Quartz  

Page 82: Ceramics

84

Glass  is  non-­‐crystalline  (amorphous)  contains  impurity  ions  such  as    Na+,  Ca2+,  Al3+,  and  B3+  (which  are  network  disruptors)  

(soda  glass)  

Adapted  from  Fig.  12.11,  Callister  &  Rethwisch  8e.  

Glass Silicate

Si   4+  

Na   +  

O   2   -­‐  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Network  is  disrupted  &  losing  

3D  regularity  

Page 83: Ceramics

Summary  (2)  •  Silicate  structures  are  more  conveniently  represented  in  terms  of  interconnecBng  SiO4

4-­‐  tetrahedra.  

•  Complex  structures  may  result  when  other  caMons  (e.g  Ca2+,  Mg2+,  Al3+)  and  anions  (e.g.  OH-­‐)  are  added.  

•  Silicate  ceramics  include  crystalline  silica  (Quartz),  layered  silicates  and  non-­‐crystalline  silica  glasses  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   85  

Page 84: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   86  

Page 85: Ceramics

Carbon  HybridisaMon  of  Carbon  

Graphite  Diamonds  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   87  

Page 86: Ceramics

88  

Structure  of  Carbon  

•  Atomic  number  =  6  •  No.  of  proton  =  6  •  No.  of  electrons  =  6  •  Atomic  mass  =  12g/mole  

•  Electronic  configuraBon  –  1s2    –  2s2  2p2  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  

Page 87: Ceramics

89  

Various  Structural  Forms  of  Carbon  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Sheet-­‐like  (Graphite)  

Fullerene  (Ball)  

Diamond  (Network)  

Page 88: Ceramics

90  

Methane  •  Simplest  organ  compound  of  carbon.  

•  Molecular  structure  :    CH4  

•  All  the  C-­‐H  bonds  are  the  same.  

•  Important  QuesBon:    –  How  can  carbon  with  two  kinds  of  orbitals  (2s  and  2p)  forms  4  idenBcal  bonds  with  hydrogen  (1s)?  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 89: Ceramics

Carbon-­‐Hydrogen  Covalent  Bond  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   91  

Unhybridised  C:  1S2,  2S2  2P2  

C   H

2S1  

2S1  

1S1  2P1   2P1  

Expect  at    two  different  bond  lengths    when  the  C  forms  covalent  bond  with  4  hydrogen    

atoms  to  form  methane  

BUT  all  C-­‐H  covalent  bonds  are  the  same  length  

Page 90: Ceramics

ResoluBon  to  QuesBon?  •  Have  to  find  a  way  of  resolving  how  electrons  with  different  orbitals  in  C  (i.e.  2s  and  2p)  combine  to  form  equivalent  orbitals.  

•  Need  to  introduce  the  concept  of  HybridisaBon.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   92  

Page 91: Ceramics

HybridisaBon  •  HybridisaMon   relates   to   a   combinaMon   of   atomic   orbitals   of   a  

single  atom.    A  mathemaMcal  concept  introduced  by  Linus  Pauling.  

•  For  Carbon,     one   s  orbital   and   three  p  orbitals   can   combine   or  hybridise   to   form   4   equivalent   (sp3)   atomic   orbitals   with  tetrahedral  orientaBon.  

 •  Other  hybridisaMon  of  Carbon   involving   combinaMon  of  different  

orbitals  are  also  possible,  i.e.  sp2  and  sp  MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   93  

Page 92: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   94  

Other  types  of    hybridisaBon  and  the  resultant  shapes  of  the  orbital  

Page 93: Ceramics

95  

sp3  Hybrid  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

S  

p  

sp3  

 4  sp3  

Page 94: Ceramics

96  

Methane  Structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

109.5o  

Page 95: Ceramics

97  

Ethane  Structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

sp3  hybridised  

Page 96: Ceramics

98  

Other  Carbon  HybridisaBon  •  One  2s-­‐orbital  and  three  2p-­‐orbitals  can  be  hybridised  into  the  following  states:  

–  Four  sp3    (as  in  carbon  in  methane,  C-­‐H)  

–  Three   sp2   hybrid   orbitals   with   one   2p-­‐orbital  unhybridised  (e.g.  alkene,  -­‐C=C-­‐)  

–  Two   sp   hybrid   orbitals   with   two   2p-­‐orbital  unhybridised  (e.g.  alkyne,  -­‐C≡C-­‐)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 97: Ceramics

99  

sp2  HybridisaBon  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

sp2  

3  sp2  

s  

p  

Page 98: Ceramics

100  

Ethylene  Structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

120o  

sp2  hybridised  

Page 99: Ceramics

Double  Bonds  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   101  hkp://en.wikipedia.org/wiki/Double_bond  

The  double  bonds  in  ethylene  C=C  is  due  to    (1)  sp2-­‐sp2  overlap  (sigma  bond)  and    (2)  overlapping  of  the  unhybridised  p-­‐orbitals  of  both  carbons  (pi-­‐

bond)  

Page 100: Ceramics

102  

sp  HybridisaBon  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

2  sp  orbitals  

s  

p  

Page 101: Ceramics

103  

Ethyne  Structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

sp  -­‐  hybridised    

Page 102: Ceramics

CΞC  Triple  Bond  •  The  triple  bond  between  the  two  carbon  atoms  are  due  to:  

•  (1)  sp  –  sp  overlap  (sigma  bond)  •  (2)  py  –  py  overlap  (pi  bond)  •  (3)  pz  –  pz  overlap  (pi  bond)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   104  

Page 103: Ceramics

Insert  separate  video  on  the  impact  of  hybridisaMon  on  shape  

of  atoms  and  molecules  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   105  

Page 104: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   106  

Page 105: Ceramics

Summary  3  •  The  hybridisaMon  state  of  carbon  determines  the  type  of  bond  formed:  –  sp3  =>  Single  Bond  (all  sigma  bonds)  –  sp2  =>  Double  Bond  (one  sigma  +  one  pi-­‐bond)  –  sp      =>  Triple  Bond  (one  sigma  +  two  pi-­‐bonds)  

–  The  overlapping  pi-­‐orbitals  to  form  pi-­‐bonds  give  rise  to  bond  sBffness  and  enables  electrons  in  pi-­‐orbitals  to  delocalise.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   107  

Page 106: Ceramics

Allotropes  of  Carbon  

108  

a  =  Diamond  b  =  Graphite  c  =  Lonsdaleite  d  =  Buckyball  (C60)  e  =  C540  f  =  C70  g  =  Amorphous  carbon  h  =  Single  walled  carbon  nanotube  (Buckytube)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Atoms  of  the  element  are  bonded  differently  together.  

Page 107: Ceramics

Graphite  •  A  polymorphic  form  of  Carbon  

•  Although  not  a  compound  of  a  metal  and  a  non-­‐metal,  it  is  someMmes  considered  a  ceramic  material.  

•  Graphite  has  a  layered  structure  in  which  the  carbon  atoms  in  the  layers  are  strongly  covalently  bonded  in  hexagonal  arrays  

•  The  layers  are  weakly  bonded  by  secondary  bonds  so  allowing  the  layers  to  slide  past  each  other.  Hence  giving  graphite  its  lubricaMng  properMes.  

109  MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 108: Ceramics

110

Structure of Graphite –  layered structure – parallel hexagonal arrays of carbon

atoms

–  weak van der Waal’s forces between layers –  planes slide easily over one another

Adapted  from  Fig.  12.17,  Callister  &  Rethwisch  8e.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Line  indicates  VDW  

forces  not  primary  bonds  

Page 109: Ceramics

C-­‐HybridisaBon  in  Graphite    

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   111  

Adapted  from  NTU.AC.UK  Unhybridised  p-­‐orbital  overlaps.  Graphite  layer  is  flat.  Electrons  are  delocalised  in  the  p-­‐orbital,  i.e.  electron  conducBve  

overlappingpi-­‐bond  

sigma-­‐bond  

Page 110: Ceramics

112

Structure of Diamond –  Tetrahedral bonding of carbon –  Network structure

•  hardest material known •  very high thermal conductivity but

electrical insulator –  large single crystals – gem

stones –  small crystals – used to grind/

cut other materials –  diamond thin films

•  hard surface coatings – used for cutting tools, medical devices, etc.

Adapted  from  Fig.  12.15,  Callister  &  Rethwisch  8e.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

sp3-­‐sp3  sigma  bond  

Page 111: Ceramics

Show  model  of  Graphite  and  Diamond  

The  impact  of  hybridisaMon    on  shape  of  Molecules  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   113  

Page 112: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   114  

Page 113: Ceramics

Diamond  versus  Graphite  

•  Diamond  –  Carbon  is  sp3-­‐hybridised  –  Pyramidal  (tetrahedral)  structure  –  All  electrons  are  Mghtly  held  by  the  

carbon  atoms  –  Non-­‐electron  conducMve  –  OpMcally  clear  due  to  high  

refracMve  index  –  Structure  is  very  rigid  –  Good  thermal  conductor  (800  

Mmes  beker  than  graphite)  

•  Graphite  –  Carbon  has  3  sp2  and  one  p-­‐orbital  –  Flat  hexagonal  structure  –  Electrons  in  the  p-­‐orbital  are  delocalised  

and  are  electron  conducMve  –  The  p-­‐orbital  absorbs  electrons/phonons,  

hence  opMcally  opaque  –  Sheet  structure  held  together  by  weak  

VDW  forces.  Appears  as  smooth  and  sox  as  layers  can  slide.  

–  Bonds  in  each  graphite  sheet  are  very  strong.  

–  Good  thermal  conductor  but  less  than  diamond  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   115  

Page 114: Ceramics

116

Other Polymorphic Forms of Carbon Fullerenes and Nanotubes

•  Fullerenes – spherical cluster of 60 carbon atoms, C60 Like a soccer ball

•  Carbon nanotubes – sheet of graphite rolled into a tube –  Ends capped with fullerene hemispheres

Adapted  from  Figs.  12.18  &  12.19,  Callister  &  Rethwisch  8e.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 115: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   117  

Page 116: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   118  hkp://www.youtube.com/watch?v=xVZRGcg-­‐BXI  

Buckyball  

Page 117: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   119  

Carbon  Nanotubes  

hkp://www.youtube.com/watch?v=-­‐OKyTmM_faA  

Page 118: Ceramics

Summary  4  •  The  hybridisaMon  state  of  carbon  determines  the  nature  of  the  bond  present:  – Single  (sp3)  –  Tetrahedral  (Diamond)  – Double  (sp2)  –  Planar  (Graphite)  – Triple  (sp)  -­‐  Linear  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   120  

Page 119: Ceramics

Summary  4  •  Carbon  may  exist  in  several  polymorphic  forms:  Diamond,  

Graphite,  Fullerenes,  and  Nanotubes  

•  Each  of  these  material  has  its  own  unique  properMes:  –  Diamond  (hardness,  high  thermal  conducMvity)  –  Graphite  (high-­‐temperature  chemical  stability,  good  lubricity)  –  Fullerenes  (electrically  insulaMve,  conducMve  or  semi-­‐conducMve)  

–  Carbon  nanotubes  (extremely  strong  and  sMff,  electrically  conducMve  or  semi-­‐conducMve)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   121  

Page 120: Ceramics

Review  QuesBon  Set  (6)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   122  

Page 121: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   123  

Page 122: Ceramics

ImperfecBons  in  Ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   124  

Page 123: Ceramics

Causes  of  ImperfecBon  •  Structural  imperfecMon  has  significant  impact  on  the  properMes  of  the  material/product  

•  ImperfecMon  could  be  due  to:  – Manufacturing  processes  giving  rise  to  porosity,  cracks,  etc  

–  Inherent  structural  defects  due  to  atoms  arrangement  creaMng  point  defects.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   125  

Page 124: Ceramics

Atomic  Level  Point  Defects  •  ImperfecMon  at  atomic  level  is  due  to  the  introducBon  of  caBons  and/or  anions  with  different  charges  OR  size  as  addiMves  or  impuriMes  in  the  ceramics.  

– The  necessity  to  maintain  charge  neutrality  gives  rise  to  several  point  defects  in  ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   126  

Page 125: Ceramics

127

•    Vacancies          -­‐-­‐  vacancies  exist  in  ceramics  for  both  caBons  and  anions •  IntersBBals          -­‐-­‐  intersMMals  exist  for  caBons   -­‐-­‐  intersMMals  are  not  normally  observed  for  anions  because  of  their  size  

Adapted  from  Fig.  12.20,  Callister  &  Rethwisch  8e.    (Fig.  12.20  is  from  W.G.  Moffak,  G.W.  Pearsall,  and  J.  Wulff,  The  Structure  and  Proper=es  of  Materials,  Vol.  1,  Structure,  John  Wiley  and  Sons,  Inc.,  p.  78.)  

Point Defects in Ceramics (i)

CaMon    IntersMMal  

CaMon    Vacancy  

Anion    Vacancy  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

Page 126: Ceramics

128

•    Frenkel  Defect          -­‐  a  caBon  vacancy-­‐caBon  intersBBal  pair.  •    ShoWky  Defect          -­‐  a  paired  set  of  caBon  and  anion  vacancies.  

Adapted  from  Fig.12.21,  Callister  &  Rethwisch  8e.  (Fig.  12.21  is  from  W.G.  Moffak,  G.W.  Pearsall,  and  J.  Wulff,  The  Structure  and  Proper=es  of  Materials,  Vol.  1,  Structure,  John  Wiley  and  Sons,  Inc.,  p.  78.)  

Point Defects in Ceramics (ii)

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials  

These  defects  occur  in  pairs  to  maintain  charge  neutrality  

ShoWky    Defect  

Frenkel    Defect  

Page 127: Ceramics

Example  of  Point  Defect  FormaBon  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   129  

Case  (1):  SubsBtuBonal  CaBon  

Pure  NaCl  

Ca  2+  

AddiMon  of  Ca2+  impurity  

Each  Ca2+  (divalent)  will  replace    2  Na+  (monovalent)    

to  maintain  charge  neutrality  

             with  impurity  

Ca  2+  

caBon    vacancy  

One  Ca2+  occupy  the  displaced  Na+  caBon    and  to  maintain  charge  neutrality  another  Na+  has  to  be  removed,  i.e.  caBon  vacancy    

Na  +   Cl   -­‐  

Page 128: Ceramics

Case  (2):  SubsBtuBonal  Anion    

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   130  

Pure  NaCl  

2-­‐    O    impurity  

O  

Each  O2-­‐  (divalent)  will  replace  2  Cl-­‐  (monovalent)  to  maintain  

charge  neutrality  

One  O2-­‐  occupy  the  displaced  Cl-­‐  anion  and  to  maintain  charge  neutrality  another  Cl-­‐  has  to  be  removed,  i.e.  anion  vacancy    

Cl-­‐  vacancy  

           NaCl  with  oxygen  impurity  

Oxygen  anion  

Page 129: Ceramics

Case  (3):  OxidaBon  of  Fe2+  to  Fe3+  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   131  

Fe2+  

O2-­‐  Before  Fe2+  oxidaBon  

What  happens  when  2  Fe2+  oxidised    

to  form  Fe3+  

Page 130: Ceramics

SoluBon  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   132  

(Col  A)    

Original  of  +’ve  charges  (i.e.  Fe2+)    

 

(Col  B)    

Original  –’ve  charges  

(O2-­‐)    

Col  A  +  Col  B    

NeW  Charge    

Before  OxidaBon  

(Col  C)    

Final  +’ve  charges  aser  

Fe2+  oxidaBon  

(Col  D)    

Final  –’ve  charges  

Col  C  +  Col  D    

NeW  Charge    

Aser  oxidaBon    

10(2+)  =  20+  

10(2-­‐)  =  20-­‐  

0   8(2+)  +  2(3+)  =  22+  

10(2-­‐)  =  20-­‐  

2+  

One  neW  2+  charge  forms  for  every  2  Fe2+  undergoing  oxidaBon  to  Fe3+  

To  maintain  charge  neutrality  two  possible  scenarios:  

(a)  Create  a  Fe2+  vacancy   (b)  Create  a  O2-­‐  intersBBal  OR   X  

Page 131: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   133  

Fe2+  vacancy  

Fe3+  

Fe2+  

O2-­‐  

Point  Defect  aser  Fe2+  to  Fe3+  transformaBon  

Page 132: Ceramics

Porosity  in  Ceramics  •  Ceramics  are  oxen  processed  from  powder  and  involved  

compacMon  under  very  high  pressure  and  temperature.  

•  Pores  and  voids  between  parMcles  are  present  during  compacMon,  and  during  heat  treatments  much  of  these  pores  are  eliminated.  Oxen  some  pores  sMll  remain.  

•  Porosity  in  ceramics  significantly  reduces  their  elasMc  property  and  strength.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   134  

Page 133: Ceramics

Summary  5  •  Atomic  point  defects,  intersMMals  and  vacancies  for  each  anion  and  caMon  type  are  possible.  

•  Electrical  charges  are  associated  with  atomic  point  defects  in  ceramic  materials,  defects  someMmes  occur  in  pairs  (e.g.  Frenkel  and  Schokky)  in  order  to  maintain  charge  neutrality.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   135  

Page 134: Ceramics

Summary  5  •  In  stoichiometric  ceramic  the  raMo  of  caMons  to  anions  is  the  same  as  predicted  

by  the  chemical  formula.  

•  Non-­‐stoichiometric  materials  are  possible  in  cases  where  one  of  the  ions  may  exist  in  more  than  one  ionic  state,  e.g.  Fe(1-­‐x)O  for  Fe2+  and  Fe3+  

•  AddiMon  of  impurity  atoms  may  result  in  the  formaMon  of  subsBtuBonal  or  intersBBal  solid  soluMons.  For  subsMtuMonal,  an  impurity  atom  will  subsMtute  for  that  host  atom  to  which  it  is  most  similar  in  an  electrical  sense.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   136  

Page 135: Ceramics

Review  QuesBon  Set  (7)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   137  

Page 136: Ceramics

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   138  

Page 137: Ceramics

Mechanical  ProperBes    of  Ceramics  

Why  are  Ceramics  BriWle?  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   139  

Page 138: Ceramics

Crystalline  Ceramics  •  At  room  temperature  (or  sub-­‐ambient)  most  ceramics  fracture  before  the  onset  of  plasMc  deformaMon.  

•  Most  crystalline  ceramics,  which  are  predominantly  ionic  bonding,  have  very  few  slip  systems  along  which  dislocaMons  may  move.  

•  Porous  nature  of  ceramics    MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   140  

Page 139: Ceramics

Effect  of  Bonds  in  Ceramics    on  PlasBc  DeformaBon  

•  Crystalline  (ionic)  ceramics  –  electrostaMc  repulsion  between  ions  when  brought  into  close  proximity  of  each  other  limits  the  amount  slip.  

•  Crystalline  (covalent)  ceramics  –  Strong  covalent  bonds  between  atoms  –  Very  limited  slip  system  –  Complex  dislocaMon  structure  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   141  

Page 140: Ceramics

Crystalline  (Ionic)  Ceramics  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   142  

(a):  Atoms  are  held  by  ionic  bonds,  i.e.    each  ion  is  surrounded  by  oppositely  charged  ions  

(b):  Any  aWempt  by  the  ions  to  slip  past  one  another  in  response  to  the  applied  force  is  faced  with  strong  repulsive  coulombic  forces.  This  makes  slipping  very  difficult  and  the  material  responds  by  breaking.    This  is  briWle  failure.  

Page 141: Ceramics

DeformaBon  in  Non-­‐Crystalline  Ceramics  

•  No  plasMc  deformaMon  can  occur  by  dislocaBon  moBon  due  to  absence  of  regular  atomic  structure.  

•  Material  deforms  by  viscous  flow  

•  In  viscous  flow,  the  material  response  to  an  applied  shear  stress,  by  sliding  atoms  or  ions  past  each  other  by  the  breaking  and  re-­‐forming  of  interatomic  bonds.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   143  

Page 142: Ceramics

Impact  of  Porosity  of  Tensile  Strength  •  Pores  

– Reduces  the  cross-­‐secMonal  area  across  which  load  is  applied  

– Acts  as  stress  concentrator  •  For  an  isolated  spherical  pore,  an  applied  tensile  stress  is  amplified  by  a  factor  of  2  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   144  

Page 143: Ceramics

Effects  of  Porosity  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   145  

σ fs =σ o exp −nP( )E = Eo 1−1.9P + 0.9P2( )

Modulus  of  ElasBcity   Flexural  Strength  

Eo  =  Modulus  of  non-­‐porous  material   σ0  and  n  are  experimental  constants;    P  =  volume  fracMon    

Page 144: Ceramics

Summary  6  •  Microcracks  in  ceramics  are  hard  to  control  and  tensile  

stresses  are  amplified  resulMng  in  low  fracture  strengths  (flexural  strengths)  

•  Fracture  strengths  varies  according  to  size  of  crack-­‐iniBaBng  flaws,  and  vary  from  sample  to  sample.  

•  Stress  amplificaMon  does  not  occur  in  compression,  hence  ceramics  are  stronger  in  compression.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   146  

Page 145: Ceramics

Summary  6  •  Brikleness  is  due  to  the  limited  operable  slip  systems  and  

dislocaBon  moBon  

•  PlasMc  deformaMon  for  non-­‐crystalline  is  by  viscous  flow.  ViscosiMes  of  many  non-­‐crystalline  ceramics  are  very  high.  

•  Many  ceramics  have  residual  pores  and  this  reduces  their  modulus  of  elasMcity  and  flexural  strengths.  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   147  

Page 146: Ceramics

Review  QuesBon  Set  (8)  

MA1002-­‐Fundamental  Engineering-­‐On  Line  Course  Materials   148