Top Banner
Class-XII-Maths Determinants 1 Practice more on Determinants www.embibe.com CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of Chapter Questions Exercise . 1. Evaluate the determinant | 2 4 −5 −1 | Solution: Given determinant is | 2 4 −5 −1 | Expanding along 1 , we get = (2 × (−1)) − (4 × (−5)) = −2 + 20 = 18 Hence, | 2 4 −5 −1 | = 18 2. Evaluate the determinants (i) | cos − sin sin cos | (ii) | 2 −+1 −1 +1 +1 | Solution: i) Given determinant is | cos − sin sin cos | Now, | cos − sin sin cos | = (cos × cos ) − (sin × (− sin )) = cos 2 + sin 2 =1 Hence | cos − sin sin cos |=1 ii) Given determinant is | 2 −+1 −1 +1 +1 |
64

CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Oct 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

1 Practice more on Determinants www.embibe.com

CBSE NCERT Solutions for Class 12 Maths Chapter 04

Back of Chapter Questions

Exercise 𝟒. 𝟏

1. Evaluate the determinant |2 4

−5 −1|

Solution:

Given determinant is |2 4

−5 −1|

Expanding along 𝑅1, we get

= (2 × (−1)) − (4 × (−5))

= −2 + 20 = 18

Hence, |2 4

−5 −1| = 18

2. Evaluate the determinants

(i) |cos𝜃 − sin𝜃sin𝜃 cos 𝜃

|

(ii) |𝑥2 − 𝑥 + 1 𝑥 − 1𝑥 + 1 𝑥 + 1

|

Solution:

i) Given determinant is |cos 𝜃 −sin 𝜃sin 𝜃 cos 𝜃

|

Now, |cos 𝜃 −sin 𝜃sin 𝜃 cos 𝜃

|

= (cos 𝜃 × cos 𝜃) − (sin𝜃 × (− sin 𝜃))

= cos2 𝜃 + sin2 𝜃 = 1

Hence |cos 𝜃 − sin𝜃sin 𝜃 cos𝜃

| = 1

ii) Given determinant is |𝑥2 − 𝑥 + 1 𝑥 − 1𝑥 + 1 𝑥 + 1

|

Page 2: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

2 Practice more on Determinants www.embibe.com

Now, |𝑥2 − 𝑥 + 1 𝑥 − 1𝑥 + 1 𝑥 + 1

|

= (𝑥2 − 𝑥 + 1) × (𝑥 + 1) − (𝑥 − 1) × (𝑥 + 1)

= 𝑥3 + 𝑥2 − 𝑥2 − 𝑥 + 𝑥 + 1 − (𝑥2 − 1)

= 𝑥3 − 𝑥2 + 2

Hence, |𝑥2 − 𝑥 + 1 𝑥 − 1𝑥 + 1 𝑥 + 1

| = 𝑥3 − 𝑥2 + 2

3. If 𝐴 = [1 24 2

], then show that |2𝐴| = 4|𝐴|

Solution:

Given that 𝐴 = [1 24 2

]

Now, 2𝐴 = [2 × 1 2 × 22 × 4 2 × 2

]

= [2 48 4

]

|2𝐴| = |2 48 4

|

Expanding along 𝑅1, we get

= 2 × 4 − 4 × 8 = 8 − 32 = −24 …(i)

And 4|𝐴| = 4 |1 24 2

|

Expanding along 𝑅1, we get

= 4(1 × 2 − 2 × 4) = 4(−6) = −24 …(ii)

From the equation (i) and (ii),

we get |2𝐴| = 4|𝐴|

Hence proved.

4. If 𝐴 = [1 0 10 1 20 0 4

], then show that |3𝐴| = 27|𝐴|

Page 3: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

3 Practice more on Determinants www.embibe.com

Solution:

Given that 𝐴 = [1 0 10 1 20 0 4

]

⇒ 3𝐴 = [3 0 30 3 60 0 12

]

Now, |3𝐴| = |3 0 30 3 60 0 12

|

Expanding along 𝑅1, we get

= 3(36 − 0) − 0(0 − 0) + 3(0 − 0) = 108 …(i)

And 27|𝐴| = 27 |1 0 10 1 20 0 4

|

Expanding along 𝑅1, we get

= 27{1(4 − 0) − 0(0 − 0) + 1(0 − 0)} = 27(4) = 108 …(ii)

From the equation (i) and (ii),

we get |3𝐴| = 27|𝐴|

Hence proved.

5. Evaluate the determinants:

(i) |3 −1 −20 0 −13 −5 0

|

(ii) |3 −4 51 1 −22 3 1

|

(iii) |0 1 2

−1 0 −3−2 3 0

|

(iv) |2 −1 −20 2 −13 −5 0

|

Solution:

(i) Given determinant is |3 −1 −20 0 −13 −5 0

|

Page 4: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

4 Practice more on Determinants www.embibe.com

Now, expanding the determinant along 𝑅1, we get

|3 −1 −20 0 −13 −5 0

| = 3(0 − 5) + 1(0 + 3) − 2(0 − 0) = −15 + 3 − 0 = −12

Hence |3 −1 −20 0 −13 −5 0

| = −12

Given determinant is |3 −4 51 1 −22 3 1

|

Now, expanding the determinant along 𝑅1, we get

|3 −4 51 1 −22 3 1

| = 3(1 + 6) + 4(1 + 4) + 5(3 − 2) = 21 + 20 + 5 = 46

Hence |3 −4 51 1 −22 3 1

| = 46

(iii) Given determinant is |0 1 2

−1 0 −3−2 3 0

|

Now, expanding the determinant along 𝑅1, we get

|0 1 2

−1 0 −3−2 3 0

| = 0(0 + 9) − 1(0 − 6) + 2(−3 − 0) = 0 + 6 − 6

So, the given determinant |0 1 2

−1 0 −3−2 3 0

| = 0

Given determinant is |2 −1 −20 2 −13 −5 0

|

Now, expanding the determinant along 𝑅1, we get

|2 −1 −20 2 −13 −5 0

| = 2(0 − 5) + 1(0 + 3) − 2(0 − 6) = −10 + 3 + 12 = 5

Hence, |2 −1 −20 2 −13 −5 0

| = 5

6. If 𝐴 = [1 1 −22 1 −35 4 −9

], find |𝐴|.

Page 5: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

5 Practice more on Determinants www.embibe.com

Solution:

Given that 𝐴 = [1 1 −22 1 −35 4 −9

]

Now, |𝐴| = |1 1 −22 1 −35 4 −9

|

Expanding the determinant along 𝑅1, we get

= 1(−9 + 12) − 1(−18 + 15) − 2(8 − 5) = 3 + 3 − 6 = 0

Hence, |𝐴| = 0

7. Find values of 𝑥, if

(i) |2 45 1

| = |2𝑥 46 𝑥

|

(ii) |2 34 5

| = |𝑥 32𝑥 5

|

Solution:

(i) Given that |2 45 1

| = |2𝑥 46 𝑥

|

⇒ 2 − 20 = 2𝑥2 − 24

⇒ 𝑥2 = 3

⇒ 𝑥 = ±√3

Hence, the values of 𝑥 are ± √3

(ii) Given that |2 34 5

| = |𝑥 32𝑥 5

|

⇒ 10 − 12 = 5𝑥 − 6𝑥

⇒ −2 = −𝑥

⇒ 𝑥 = 2

Hence, the value of 𝑥 is 2

8. If |𝑥 218 𝑥

| = |6 218 6

|, then 𝑥 is equal to:

(A) 6

Page 6: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

6 Practice more on Determinants www.embibe.com

(B) ±6

(C) −6

(D) 0

Solution:

(B)

Given that |𝑥 218 𝑥

| = |6 218 6

|

⇒ 𝑥2 − 36 = 36 − 36

⇒ 𝑥2 = 36

⇒ 𝑥 = ±6

Hence, the option (𝐵) is correct.

Exercise 𝟒. 𝟐

Using the property of determinants and without expanding, prove that:

1. |𝑥 𝑎 𝑥 + 𝑎𝑦 𝑏 𝑦 + 𝑏𝑧 𝑐 𝑧 + 𝑐

| = 0

Solution:

LHS = |𝑥 𝑎 𝑥 + 𝑎𝑦 𝑏 𝑦 + 𝑏𝑧 𝑐 𝑧 + 𝑐

|

= |𝑥 + 𝑎 𝑎 𝑥 + 𝑎𝑦 + 𝑏 𝑏 𝑦 + 𝑏𝑧 + 𝑐 𝑐 𝑧 + 𝑐

| [Applying C1 → 𝐶1 + 𝐶2]

= 0 = RHS [∵ 𝐶1 = 𝐶3]

Hence, LHS = RHS

2. |𝑎 − 𝑏 𝑏 − 𝑐 𝑐 − 𝑎𝑏 − 𝑐 𝑐 − 𝑎 𝑎 − 𝑏𝑐 − 𝑎 𝑎 − 𝑏 𝑏 − 𝑐

| = 0

Page 7: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

7 Practice more on Determinants www.embibe.com

Solution:

LHS = |𝑎 − 𝑏 𝑏 − 𝑐 𝑐 − 𝑎𝑏 − 𝑐 𝑐 − 𝑎 𝑎 − 𝑏𝑐 − 𝑎 𝑎 − 𝑏 𝑏 − 𝑐

|

= |0 𝑏 − 𝑐 𝑐 − 𝑎0 𝑐 − 𝑎 𝑎 − 𝑏0 𝑎 − 𝑏 𝑏 − 𝑐

| [Applying 𝐶1 → 𝐶1 + 𝐶2 + 𝐶3]

= 0 = RHS [∵ In column 𝐶1 every element is zero. ]

Hence, LHS = RHS

3. |2 7 653 8 755 9 86

| = 0

Solution:

LHS = |2 7 653 8 755 9 86

|

= |2 7 633 8 725 9 81

| [Applying C3 → 𝐶3 − 𝐶1]

= 9 [2 7 73 8 85 9 9

] [Taking common 9 from C3]

= 0 = RHS [∵ 𝐶2 = 𝐶3]

Hence, LHS = RHS

4. |1 𝑏𝑐 𝑎(𝑏 + 𝑐)

1 𝑐𝑎 𝑏(𝑐 + 𝑎)

1 𝑎𝑏 𝑐(𝑎 + 𝑏)| = 0

Solution:

𝐿𝐻𝑆 = |

1 𝑏𝑐 𝑎(𝑏 + 𝑐)

1 𝑐𝑎 𝑏(𝑐 + 𝑎)

1 𝑎𝑏 𝑐(𝑎 + 𝑏)|

Page 8: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

8 Practice more on Determinants www.embibe.com

= |1 𝑏𝑐 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎1 𝑐𝑎 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎1 𝑎𝑏 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

| [Applying C3 → 𝐶3 + 𝐶2]

= (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) |1 𝑏𝑐 11 𝑐𝑎 11 𝑎𝑏 1

| [Taking 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 as common from 𝐶3]

= 0 = 𝑅𝐻𝑆 [∵ 𝐶1 = 𝐶3]

Hence, LHS = RHS

5. |𝑏 + 𝑐 𝑞 + 𝑟 𝑦 + 𝑧𝑐 + 𝑎 𝑟 + 𝑝 𝑧 + 𝑥𝑎 + 𝑏 𝑝 + 𝑞 𝑥 + 𝑦

| = 2 |𝑎 𝑝 𝑥𝑏 𝑞 𝑦𝑐 𝑟 𝑧

|

Solution:

𝐿𝐻𝑆 = |

𝑏 + 𝑐 𝑞 + 𝑟 𝑦 + 𝑧𝑐 + 𝑎 𝑟 + 𝑝 𝑧 + 𝑥𝑎 + 𝑏 𝑝 + 𝑞 𝑥 + 𝑦

|

= |

2𝑐 2𝑟 2𝑧𝑐 + 𝑎 𝑟 + 𝑝 𝑧 + 𝑥𝑎 + 𝑏 𝑝 + 𝑞 𝑥 + 𝑦

| [Applying R1 → 𝑅1 + 𝑅2 − 𝑅3]

= 2 |

𝑐 𝑟 𝑧𝑐 + 𝑎 𝑟 + 𝑝 𝑧 + 𝑥𝑎 + 𝑏 𝑝 + 𝑞 𝑥 + 𝑦

| [Taking 2 as common from R1]

= 2 |

𝑐 𝑟 𝑧𝑎 𝑝 𝑥

𝑎 + 𝑏 𝑝 + 𝑞 𝑥 + 𝑦| [Applying 𝑅2 → 𝑅2 − 𝑅1]

= 2 |

𝑐 𝑟 𝑧𝑎 𝑝 𝑥𝑏 𝑞 𝑦

| [Applying 𝑅3 → 𝑅3 − 𝑅2]

= −2 |

𝑎 𝑝 𝑥𝑐 𝑟 𝑧𝑏 𝑞 𝑦

| [Interchanging 𝑅1 ⟷ 𝑅2]

= 2 |𝑎 𝑝 𝑥𝑏 𝑞 𝑦𝑐 𝑟 𝑧

| = 𝑅𝐻𝑆 [Interchanging 𝑅2 ⟷ 𝑅3]

Hence, LHS = RHS

Page 9: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

9 Practice more on Determinants www.embibe.com

6. |0 𝑎 −𝑏

−𝑎 0 −𝑐𝑏 𝑐 0

| = 0

Solution:

𝐿𝐻𝑆 = |0 𝑎 −𝑏

−𝑎 0 −𝑐𝑏 𝑐 0

|

= |0 𝑎 −𝑏

−𝑎𝑏 0 −𝑏𝑐𝑎𝑏 𝑎𝑐 0

| [Applying 𝑅2 → 𝑏𝑅2 and R3 → 𝑎𝑅3]

= |0 𝑎 −𝑏0 𝑎𝑐 −𝑏𝑐𝑎𝑏 𝑎𝑐 0

| [Applying 𝑅2 → 𝑅2 + 𝑅3]

= 𝑎𝑏(−𝑎𝑏𝑐 + 𝑎𝑏𝑐) [Expanding along 𝐶1]

= 𝑎𝑏(0) = 0 = 𝑅𝐻𝑆

Hence, LHS = RHS

7. |−𝑎2 𝑎𝑏 𝑎𝑐𝑏𝑎 −𝑏2 𝑏𝑐𝑐𝑎 𝑐𝑏 −𝑐2

| = 4𝑎2𝑏2𝑐2

Solution:

𝐿𝐻𝑆 = |−𝑎2 𝑎𝑏 𝑎𝑐𝑏𝑎 −𝑏2 𝑏𝑐𝑐𝑎 𝑐𝑏 −𝑐2

|

= 𝑎𝑏𝑐 |−𝑎 𝑎 𝑎𝑏 −𝑏 𝑏𝑐 𝑐 −𝑐

| [Taking a, b, c as common from C1, 𝐶2, 𝐶3 respectively]

= 𝑎2𝑏2𝑐2 |−1 1 11 −1 11 1 −1

| [Taking a, b, c as common from R1, 𝑅2, 𝑅3 respectively]

= 𝑎2𝑏2𝑐2 |0 1 10 −1 12 1 −1

| [Applying 𝐶1 → 𝐶1 + 𝐶2]

= 𝑎2𝑏2𝑐2{2(1 + 1)} [Expanding along 𝐶1]

= 4𝑎2𝑏2𝑐2 = 𝑅𝐻𝑆

Hence, LHS = RHS

Page 10: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

10 Practice more on Determinants www.embibe.com

8. Using properties of determinants, show that

(i) |1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2

| = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)

(ii) |1 1 1𝑎 𝑏 𝑐𝑎3 𝑏3 𝑐3

| = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐)

Solution:

(i) 𝐿𝐻𝑆 = |1 𝑎 𝑎2

1 𝑏 𝑏2

1 𝑐 𝑐2

|

= |0 𝑎 − 𝑏 𝑎2 − 𝑏2

0 𝑏 − 𝑐 𝑏2 − 𝑐2

1 𝑐 𝑐2

| [Applying R1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= (𝑎 − 𝑏)(𝑏 − 𝑐) |0 1 𝑎 + 𝑏0 1 𝑏 + 𝑐1 𝑐 𝑐2

| [Taking common a − b from R1and b − c from R2] ]

= (𝑎 − 𝑏)(𝑏 − 𝑐){1(𝑏 + 𝑐 − 𝑎 − 𝑏)} [Expanding along 𝐶1]

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎) = 𝑅𝐻𝑆

Hence, LHS = RHS

(ii) |1 1 1𝑎 𝑏 𝑐𝑎3 𝑏3 𝑐3

| = (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐)

𝐿𝐻𝑆 = |1 1 1𝑎 𝑏 𝑐𝑎3 𝑏3 𝑐3

|

= |0 0 1

𝑎 − 𝑏 𝑏 − 𝑐 𝑐𝑎3 − 𝑏3 𝑏3 − 𝑐3 𝑐3

| [By C1 → 𝐶1 − 𝐶2, 𝐶2 → 𝐶2 − 𝐶3]

= (𝑎 − 𝑏)(𝑏 − 𝑐) |0 0 11 1 𝑐

𝑎2 + 𝑎𝑏 + 𝑏2 𝑏2 + 𝑏𝑐 + 𝑐2 𝑐3| [Taking common a − b from C1and b − c from C2]

= (𝑎 − 𝑏)(𝑏 − 𝑐){1(𝑏2 + 𝑏𝑐 + 𝑐2) − (𝑎2 + 𝑎𝑏 + 𝑏2)} [Expanding along 𝑅1]

= (𝑎 − 𝑏)(𝑏 − 𝑐){𝑐2 − 𝑎2 + 𝑏𝑐 − 𝑎𝑏}

= (𝑎 − 𝑏)(𝑏 − 𝑐){(𝑐 − 𝑎)(𝑐 + 𝑎) + 𝑏(𝑐 − 𝑎)}

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎){𝑐 + 𝑎 + 𝑏}

= (𝑎 − 𝑏)(𝑏 − 𝑐)(𝑐 − 𝑎)(𝑎 + 𝑏 + 𝑐) = 𝑅𝐻𝑆

Hence, LHS = RHS

Page 11: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

11 Practice more on Determinants www.embibe.com

9. Using properties of determinants, show that

|

𝑥 𝑥2 𝑦𝑧

𝑦 𝑦2 𝑧𝑥

𝑧 𝑧2 𝑥𝑦

| = (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)

Solution:

𝐿𝐻𝑆 = |

𝑥 𝑥2 𝑦𝑧

𝑦 𝑦2 𝑧𝑥

𝑧 𝑧2 𝑥𝑦

|

= |

𝑥2 𝑥3 𝑥𝑦𝑧

𝑦2 𝑦3 𝑥𝑦𝑧

𝑧2 𝑧3 𝑥𝑦𝑧

| [Applying 𝑅1 → 𝑥𝑅1, 𝑅2 → 𝑦𝑅2, 𝑅3 → 𝑧𝑅3]

= 𝑥𝑦𝑧 |𝑥2 𝑥3 1𝑦2 𝑦3 1

𝑧2 𝑧3 1

| [Taking xyz as common from C3]

= 𝑥𝑦𝑧 |𝑥2 − 𝑦2 𝑥3 − 𝑦3 0

𝑦2 − 𝑧2 𝑦3 − 𝑧3 0

𝑧2 𝑧3 1

| [Applying R1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧) |𝑥 + 𝑦 𝑥2 + 𝑥𝑦 + 𝑦2 0

𝑦 + 𝑧 𝑦2 + 𝑦𝑧 + 𝑧2 0

𝑧2 𝑧3 1

| [Taking 𝑥 − 𝑦 as common from R1and y − z from R2]

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧){(𝑥 + 𝑦)(𝑦2 + 𝑦𝑧 + 𝑧2) − (𝑦 + 𝑧)(𝑥2 + 𝑥𝑦 + 𝑦2)} [Expanding along C3]

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧){𝑥𝑦2 + 𝑥𝑦𝑧 + 𝑥𝑧2 + 𝑦3 + 𝑦2𝑧 + 𝑦𝑧2 − (𝑥2𝑦 + 𝑥𝑦2 + 𝑦3 + 𝑥2𝑧 +

𝑥𝑦𝑧 + 𝑦2𝑧)}

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧){𝑥𝑧2 + 𝑦𝑧2 − 𝑥2𝑦 − 𝑥2𝑧}

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧){𝑥𝑧2 − 𝑥2𝑧 + 𝑦𝑧2 − 𝑥2𝑦}

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧){𝑥𝑧(𝑧 − 𝑥) + 𝑦(𝑧2 − 𝑥2)}

= 𝑥𝑦𝑧(𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥){𝑥𝑧 + 𝑦(𝑧 + 𝑥)}

= (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) = 𝑅𝐻𝑆

Hence, LHS = RHS

Page 12: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

12 Practice more on Determinants www.embibe.com

10. Using properties of determinants, show that

(i) |𝑥 + 4 2𝑥 2𝑥2𝑥 𝑥 + 4 2𝑥2𝑥 2𝑥 𝑥 + 4

| = (5𝑥 + 4)(4 − 𝑥)2

(ii) |

𝑦 + 𝑘 𝑦 𝑦𝑦 𝑦 + 𝑘 𝑦𝑦 𝑦 𝑦 + 𝑘

| = 𝑘2(3𝑦 + 𝑘)

Solution:

(i) |𝑥 + 4 2𝑥 2𝑥2𝑥 𝑥 + 4 2𝑥2𝑥 2𝑥 𝑥 + 4

| = (5𝑥 + 4)(4 − 𝑥)2

𝐿𝐻𝑆 = |𝑥 + 4 2𝑥 2𝑥2𝑥 𝑥 + 4 2𝑥2𝑥 2𝑥 𝑥 + 4

|

= |5𝑥 + 4 2𝑥 2𝑥5𝑥 + 4 𝑥 + 4 2𝑥5𝑥 + 4 2𝑥 𝑥 + 4

| [Applying 𝐶1 → 𝐶1 + 𝐶2 + 𝐶3]

= (5𝑥 + 4) |1 2𝑥 2𝑥1 𝑥 + 4 2𝑥1 2𝑥 𝑥 + 4

| [Taking 5x + 4 as common from C1]

= (5𝑥 + 4) |0 𝑥 − 4 00 4 − 𝑥 𝑥 − 41 2𝑥 𝑥 + 4

| [Applying R1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= (5𝑥 + 4){(𝑥 − 4)(𝑥 − 4) − (4 − 𝑥)0} [Expanding along C1]

= (5𝑥 + 4)(4 − 𝑥)2 = 𝑅𝐻𝑆

Hence, LHS = RHS

(iii) |

𝑦 + 𝑘 𝑦 𝑦𝑦 𝑦 + 𝑘 𝑦𝑦 𝑦 𝑦 + 𝑘

| = 𝑘2(3𝑦 + 𝑘)

𝐿𝐻𝑆 = |

𝑦 + 𝑘 𝑦 𝑦𝑦 𝑦 + 𝑘 𝑦𝑦 𝑦 𝑦 + 𝑘

|

= |

3𝑦 + 𝑘 𝑦 𝑦3𝑦 + 𝑘 𝑦 + 𝑘 𝑦3𝑦 + 𝑘 𝑦 𝑦 + 𝑘

| [Applying C1 → 𝐶1 + 𝐶2 + 𝐶3]

= (3𝑦 + 𝑘) |

1 𝑦 𝑦1 𝑦 + 𝑘 𝑦1 𝑦 𝑦 + 𝑘

| [Taking 3y + k as common from C1]

= (3𝑦 + 𝑘) |0 −𝑘 00 𝑘 −𝑘1 𝑦 𝑦 + 𝑘

| [Applying R1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

Page 13: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

13 Practice more on Determinants www.embibe.com

= (3𝑦 + 𝑘){(−𝑘)(−𝑘) − (𝑘)0} [Expanding along C1]

= (3𝑦 + 𝑘)𝑘2 = 𝑅𝐻𝑆

Hence, LHS = RHS

11. Using properties of determinants, show that

(i) |𝑎 − 𝑏 − 𝑐 2𝑎 2𝑎

2𝑏 𝑏 − 𝑐 − 𝑎 2𝑏2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏

| = (𝑎 + 𝑏 + 𝑐)3

(ii) |

𝑥 + 𝑦 + 2𝑧 𝑥 𝑦𝑧 𝑦 + 𝑧 + 2𝑥 𝑦𝑧 𝑥 𝑧 + 𝑥 + 2𝑦

| = 2(𝑥 + 𝑦 + 𝑧)3

Solution:

(i) 𝐿𝐻𝑆 = |𝑎 − 𝑏 − 𝑐 2𝑎 2𝑎

2𝑏 𝑏 − 𝑐 − 𝑎 2𝑏2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏

|

= |𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐 𝑎 + 𝑏 + 𝑐

2𝑏 𝑏 − 𝑐 − 𝑎 2𝑏2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏

| [Applying R1 → 𝑅1 + 𝑅2 + 𝑅3]

= (𝑎 + 𝑏 + 𝑐) |1 1 12𝑏 𝑏 − 𝑐 − 𝑎 2𝑏2𝑐 2𝑐 𝑐 − 𝑎 − 𝑏

| [Taking a + b + c as commong from R1]

= (𝑎 + 𝑏 + 𝑐) |0 0 1

𝑎 + 𝑏 + 𝑐 −𝑎 − 𝑏 − 𝑐 2𝑏0 𝑎 + 𝑏 + 𝑐 𝑐 − 𝑎 − 𝑏

| [By C1 → 𝐶1 − 𝐶2, 𝐶2 → 𝐶2 − 𝐶3]

= (𝑎 + 𝑏 + 𝑐){(𝑎 + 𝑏 + 𝑐)2 − 0} [Expanding along R1]

= (𝑎 + 𝑏 + 𝑐)3 = 𝑅𝐻𝑆

(𝑖𝑖) |

𝑥 + 𝑦 + 2𝑧 𝑥 𝑦𝑧 𝑦 + 𝑧 + 2𝑥 𝑦𝑧 𝑥 𝑧 + 𝑥 + 2𝑦

| = 2(𝑥 + 𝑦 + 𝑧)3

𝐿𝐻𝑆 = |

𝑥 + 𝑦 + 2𝑧 𝑥 𝑦𝑧 𝑦 + 𝑧 + 2𝑥 𝑦𝑧 𝑥 𝑧 + 𝑥 + 2𝑦

|

= |

2(𝑥 + 𝑦 + 𝑧) 𝑥 𝑦

2(𝑥 + 𝑦 + 𝑧) 𝑦 + 𝑧 + 2𝑥 𝑦

2(𝑥 + 𝑦 + 𝑧) 𝑥 𝑧 + 𝑥 + 2𝑦

| [Applying C1 → C1 + C2 + C3]

Page 14: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

14 Practice more on Determinants www.embibe.com

= 2(𝑥 + 𝑦 + 𝑧) |

1 𝑥 𝑦1 𝑦 + 𝑧 + 2𝑥 𝑦1 𝑥 𝑧 + 𝑥 + 2𝑦

| [Taking 2(𝑥 + 𝑦 + 𝑧) common from C1]

= 2(𝑥 + 𝑦 + 𝑧) |

0 −(𝑥 + 𝑦 + 𝑧) 0

0 𝑥 + 𝑦 + 𝑧 −(𝑥 + 𝑦 + 𝑧)1 𝑥 𝑧 + 𝑥 + 2𝑦

| [By R1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= 2(𝑥 + 𝑦 + 𝑧){(𝑥 + 𝑦 + 𝑧)2 − 0} [Expanding along C1]

= 2(𝑥 + 𝑦 + 𝑧)3 = 𝑅𝐻𝑆

Hence, LHS = RHS

12. Using properties of determinants, show that

|1 𝑥 𝑥2

𝑥2 1 𝑥𝑥 𝑥2 1

| = (1 − 𝑥3)2

Solution:

𝐿𝐻𝑆 = |1 𝑥 𝑥2

𝑥2 1 𝑥𝑥 𝑥2 1

|

= |1 + 𝑥 + 𝑥2 𝑥 𝑥2

1 + 𝑥 + 𝑥2 1 𝑥1 + 𝑥 + 𝑥2 𝑥2 1

| [Applying C1 → 𝐶1 + 𝐶2 + 𝐶3]

= (1 + 𝑥 + 𝑥2) |1 𝑥 𝑥2

1 1 𝑥1 𝑥2 1

| [Taking 1 + 𝑥 + 𝑥2 as common from C1]

= (1 + 𝑥 + 𝑥2) |0 𝑥 − 1 𝑥2 − 𝑥0 1 − 𝑥2 𝑥 − 11 𝑥2 1

| [Applying R1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= (1 + 𝑥 + 𝑥2)(1 − 𝑥)2 |0 −1 −𝑥0 1 − 𝑥 −11 𝑥2 1

| [Taking 1 − 𝑥 as common from R1 and R2]

= (1 + 𝑥 + 𝑥2)(1 − 𝑥)2{1 + 𝑥(1 + 𝑥)} [Expanding along C1]

= (1 + 𝑥 + 𝑥2)(1 − 𝑥2)(1 + 𝑥 + 𝑥2) = (1 − 𝑥3)2 = 𝑅𝐻𝑆

Hence, LHS = RHS

Page 15: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

15 Practice more on Determinants www.embibe.com

13. Using properties of determinants, show that

|1 + 𝑎2 − 𝑏2 2𝑎𝑏 −2𝑏

2𝑎𝑏 1 − 𝑎2 + 𝑏2 2𝑎2𝑏 −2𝑎 1 − 𝑎2 − 𝑏2

| = (1 + 𝑎2 + 𝑏2)3

Solution:

𝐿𝐻𝑆 = |1 + 𝑎2 − 𝑏2 2𝑎𝑏 −2𝑏

2𝑎𝑏 1 − 𝑎2 + 𝑏2 2𝑎2𝑏 −2𝑎 1 − 𝑎2 − 𝑏2

|

=1

𝑎|1 + 𝑎2 − 𝑏2 2𝑎𝑏 −2𝑎𝑏

2𝑎𝑏 1 − 𝑎2 + 𝑏2 2𝑎2

2𝑏 −2𝑎 𝑎 − 𝑎3 − 𝑎𝑏2

| [Applying C3 → 𝑎𝐶3]

=1

𝑎|1 + 𝑎2 − 𝑏2 2𝑎𝑏 0

2𝑎𝑏 1 − 𝑎2 + 𝑏2 1 + 𝑎2 + 𝑏2

2𝑏 −2𝑎 −𝑎 − 𝑎3 − 𝑎𝑏2

| [Applying C3 → 𝐶3 + 𝐶2]

=1 + 𝑎2 + 𝑏2

𝑎|1 + 𝑎2 − 𝑏2 2𝑎𝑏 0

2𝑎𝑏 1 − 𝑎2 + 𝑏2 12𝑏 −2𝑎 −𝑎

| [Taking 1 + a2 + 𝑏2 as common from 𝐶3]

=1+𝑎2+𝑏2

𝑎2 |1 + 𝑎2 − 𝑏2 2𝑎𝑏 0

2𝑎2𝑏 𝑎 − 𝑎3 + 𝑎𝑏2 𝑎2𝑏 −2𝑎 −𝑎

| [Applying 𝑅2 → 𝑎𝑅2]

=1+𝑎2+𝑏2

𝑎2 |1 + 𝑎2 − 𝑏2 2𝑎𝑏 02𝑎2𝑏 + 2𝑏 −𝑎 − 𝑎3 + 𝑎𝑏2 0

2𝑏 −2𝑎 −𝑎

| [Applying R2 → R2 + 𝑅3]

= (1 + 𝑎2 + 𝑏2) |1 + 𝑎2 − 𝑏2 2𝑏 02𝑎2𝑏 + 2𝑏 −1 − 𝑎2 + 𝑏2 0

2𝑏 −2 −1

| [Taking 𝑎 as common from C2 and C3]

= (1 + 𝑎2 + 𝑏2)(−1){(1 + 𝑎2 − 𝑏2)(−1 − 𝑎2 + 𝑏2) − 2𝑏(2𝑎2𝑏 + 2𝑏)} [Expanding along C3]

= −(1 + 𝑎2 + 𝑏2){−1 − 𝑎2 + 𝑏2 − 𝑎2 − 𝑎4 + 𝑎2𝑏2 + 𝑏2 + 𝑎2𝑏2 − 𝑏4 − 4𝑎2𝑏2 − 4𝑏2}

= (1 + 𝑎2 + 𝑏2){1 + 𝑎4 + 4 + 2𝑎2 + 2𝑎2𝑏2 + 2𝑏2}

= (1 + 𝑎2 + 𝑏2)(1 + 𝑎2 + 𝑏2)2 = (1 + 𝑎2 + 𝑏2)3 = 𝑅𝐻𝑆

Hence, LHS = RHS

Page 16: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

16 Practice more on Determinants www.embibe.com

14. Using properties of determinants, show that

|𝑎2 + 1 𝑎𝑏 𝑎𝑐

𝑎𝑏 𝑏2 + 1 𝑏𝑐𝑐𝑎 𝑐𝑏 𝑐2 + 1

| = 1 + 𝑎2 + 𝑏2 + 𝑐2

Solution:

𝐿𝐻𝑆 = |𝑎2 + 1 𝑎𝑏 𝑎𝑐

𝑎𝑏 𝑏2 + 1 𝑏𝑐𝑐𝑎 𝑐𝑏 𝑐2 + 1

|

=1

𝑎𝑏𝑐|𝑎2 + 𝑎 𝑎2𝑏 𝑎2𝑐𝑎𝑏2 𝑏3 + 𝑏 𝑏2𝑐𝑐2𝑎 𝑐2𝑏 𝑐3 + 𝑐

| [Applying R1 → 𝑎𝑅1, 𝑅3 → 𝑏𝑅3, 𝑅3 → 𝑐𝑅3]

=𝑎𝑏𝑐

𝑎𝑏𝑐|𝑎2 + 1 𝑎2 𝑎2

𝑏2 𝑏2 + 1 𝑏2

𝑐2 𝑐2 𝑐2 + 1

| [Taking a as common from C1, 𝑏 from C2 and c from C3]

= |1 + 𝑎2 + 𝑏2 + 𝑐2 1 + 𝑎2 + 𝑏2 + 𝑐2 1 + 𝑎2 + 𝑏2 + 𝑐2

𝑏2 𝑏2 + 1 𝑏2

𝑐2 𝑐2 𝑐2 + 1

| [By R1 → 𝑅1 + 𝑅2 + 𝑅3]

= (1 + 𝑎2 + 𝑏2 + 𝑐2) |1 1 1𝑏2 𝑏2 + 1 𝑏2

𝑐2 𝑐2 𝑐2 + 1| [Taking 1 + a2 + 𝑏2 + 𝑐2 as common from R1]

= (1 + 𝑎2 + 𝑏2 + 𝑐2) |0 0 1

−1 1 𝑏2

0 −1 𝑐2 + 1| [Applying C1 → 𝐶1 − 𝐶2, 𝐶2 → 𝐶2 − 𝐶3]

= (1 + 𝑎2 + 𝑏2 + 𝑐2){1 − 0} [Expanding along R1]

= 1 + 𝑎2 + 𝑏2 + 𝑐2 = 𝑅𝐻𝑆

Hence, LHS = RHS

15. Let 𝐴 be a square matrix of order 3 × 3, then |𝑘𝐴| is equal to:

(A) 𝑘|𝐴|

(B) 𝑘2|𝐴|

(C) 𝑘3|𝐴|

(D) 3𝑘|𝐴|

Page 17: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

17 Practice more on Determinants www.embibe.com

Solution:

If 𝐵 be a square matrix of order 𝑛 × 𝑛, then |𝑘𝐵| = 𝑘𝑛−1|𝐵|

Therefore, |𝑘𝐴| = 𝑘3−1|𝐴| = 𝑘2|𝐴|

Hence, the option (𝐵) is correct.

16. Which of the following is correct

(A) Determinant is a square matrix

(B) Determinant is a number associated to a matrix

(C) Determinant is a number associated to a square matrix

(D) None of these

Solution:

Determinant is a number associated to a square matrix

Hence, the option (𝐶) is correct.

Exercise 𝟒. 𝟑

1. Find area of the triangle with vertices at the point given in each of the following:

(i) (1, 0), (6, 0), (4, 3)

(ii) (2, 7), (1, 1), (10, 8)

(iii) (−2,−3), (3, 2), (−1,−8)

Solution:

i) Given vertices of the triangle are (1, 0), (6, 0), (4, 3)

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Area of triangle =1

2|1 0 16 0 14 3 1

|

=1

2[1(0 − 3) − 0(6 − 4) + 1(18 − 0)] =

1

2(15) = 7.5 square units

Given vertices of the triangle are (2, 7), (1, 1), (10, 8)

Page 18: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

18 Practice more on Determinants www.embibe.com

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Area of triangle =1

2|2 7 11 1 110 8 1

|

=1

2[2(1 − 8) − 7(1 − 10) + 1(8 − 10)] =

1

2(47) = 25.5 square units

Given vertices of the triangle are (−2,−3), (3, 2), (−1,−8)

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Area of triangle =1

2|−2 −3 13 2 1

−1 −8 1|

=1

2[−2(2 + 8) + 3(3 + 1) + 1(−24 + 2)] =

1

2(−30) = 15

Area of triangle = 15 square units

2. Show that points 𝐴(𝑎, 𝑏 + 𝑐), 𝐵(𝑏, 𝑐 + 𝑎), 𝐶(𝑐, 𝑎 + 𝑏) are collinear.

Solution:

If the points 𝐴(𝑎, 𝑏 + 𝑐), 𝐵(𝑏, 𝑐 + 𝑎) and 𝐶(𝑐, 𝑎 + 𝑏) are collinear, then the area of triangle

𝐴𝐵𝐶 will be zero.

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Area of triangle 𝐴𝐵𝐶 =1

2|𝑎 𝑏 + 𝑐 1𝑏 𝑐 + 𝑎 1𝑐 𝑎 + 𝑏 1

|

=1

2|𝑎 𝑎 + 𝑏 + 𝑐 1𝑏 𝑎 + 𝑏 + 𝑐 1𝑐 𝑎 + 𝑏 + 𝑐 1

| [Applying C2 → 𝐶1 + 𝐶2]

=1

2(𝑎 + 𝑏 + 𝑐) |

𝑎 1 1𝑏 1 1𝑐 1 1

| [Taking 𝑎 + 𝑏 + 𝑐 as common from C2]

= 0 [∵ 𝐶1 = 𝐶3]

Hence, the points 𝐴(𝑎, 𝑏 + 𝑐), 𝐵(𝑏, 𝑐 + 𝑎) and 𝐶(𝑐, 𝑎 + 𝑏) are collinear.

Page 19: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

19 Practice more on Determinants www.embibe.com

3. Find values of 𝑘 if area of triangle is 4 square units and vertices are

(i) (𝑘, 0), (4, 0), (0, 2)

(ii) (−2, 0), (0, 4), (0, 𝑘)

Solution:

(i)Given vertices of the triangle are (𝑘, 0), (4, 0), (0, 2)

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Area of triangle =1

2|𝑘 0 14 0 10 2 1

|

=1

2[𝑘(0 − 2) − 0(4 − 0) + 1(8 − 0)] =

1

2(−2𝑘 + 8) = −𝑘 + 4

According to question, area of triangle 𝐴𝐵𝐶 = 4 square units

Therefore, |−𝑘 + 4| = 4 ⇒ −𝑘 + 4 = ±4

⇒ −𝑘 + 4 = 4 or −𝑘 + 4 = −4

⇒ 𝑘 = 0 or 𝑘 = 8

Hence, the value of 𝑘 are 0 and 8.

ii) Given vertices of the triangle are (−2, 0), (0, 4), (0, 𝑘)

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Now, area of triangle =1

2|−2 0 10 4 10 𝑘 1

|

=1

2[−2(4 − 𝑘) − 0(0 − 0) + 1(0 − 0)] =

1

2(−8 + 2𝑘) = −4 + 𝑘

According to question, Area of triangle 𝐴𝐵𝐶 = 4 square units

Therefore, |−4 + 𝑘| = 4 ⇒ −4 + 𝑘 = ±4

⇒ −4 + 𝑘 = 4 or −4 + 𝑘 = −4

⇒ 𝑘 = 8 or 𝑘 = 0

Hence, the value of 𝑘 are 0 and 8.

4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants.

Page 20: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

20 Practice more on Determinants www.embibe.com

(ii) Find equation of line joining (3, 1) and (9, 3) using determinants.

Solution:

(i) Let, 𝑃(𝑥, 𝑦) be any point lie on the line joining 𝐴(1, 2) and 𝐵(3, 6). Hence, the points 𝐴, 𝐵

and 𝑃 will be collinear and area of triangle 𝐴𝐵𝐶 will be zero.

Therefore, area of triangle 𝐴𝐵𝑃 =1

2|1 2 13 6 1𝑥 𝑦 1

| = 0

⇒1

2[1(6 − 𝑦) − 2(3 − 𝑥) + 1(3𝑦 − 6𝑥)] = 0

⇒ 6 − 𝑦 − 6 + 2𝑥 + 3𝑦 − 6𝑥 = 0

⇒ −4𝑥 + 2𝑦 = 0

⇒ 2𝑥 = 𝑦

Hence the equation of line joining the points (1, 2) and (3, 6) is 2𝑥 − 𝑦 = 0

(ii) Let, 𝑃(𝑥, 𝑦) be any point lie on the line joining 𝐴(3, 1) and 𝐵(9, 3). Hence, the points 𝐴, 𝐵

and 𝑃 will be collinear and area of triangle 𝐴𝐵𝐶 will be zero.

Therefore, area of triangle 𝐴𝐵𝑃 =1

2|3 1 19 3 1𝑥 𝑦 1

| = 0

⇒1

2[3(3 − 𝑦) − 1(9 − 𝑥) + 1(9𝑦 − 3𝑥)] = 0

⇒ 9 − 3𝑦 − 9 + 𝑥 + 9𝑦 − 3𝑥 = 0

⇒ −2𝑥 + 6𝑦 = 0

⇒ 𝑥 = 3𝑦

Hence the equation of line joining the points (3, 1) and (9, 3) is 𝑥 − 3𝑦 = 0

5. If area of triangle is 35 sq. units with vertices (2, −6), (5, 4) and (𝑘, 4). Then 𝑘 is

(A) 12

(B) −2

(C) −12,−2

(D) 12,−2

Page 21: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

21 Practice more on Determinants www.embibe.com

Solution:

Given vertices of the triangle are (2, −6), (5, 4), (𝑘, 4)

We know, area of triangle =1

2|

𝑥1 𝑦1 1𝑥2 𝑦2 1𝑥3 𝑦3 1

|

Hence, area of triangle =1

2|2 −6 15 4 1𝑘 4 1

|

=1

2[2(4 − 4) + 6(5 − 𝑘) + 1(20 − 4𝑘)] =

1

2(30 − 6𝑘 + 20 − 4𝑘) = 25 − 5𝑘

According to question, area of triangle = 35 square units

Therefore, |25 − 5𝑘| = 35

⇒ 25 − 5𝑘 = ±35

⇒ 25 − 5𝑘 = 35 or 25 − 5𝑘 = −35

⇒ 𝑘 =−10

5= −2 or 𝑘 =

60

5= 12

Hence, the option (𝐷) is correct.

Exercise 𝟒. 𝟒

1. Write Minors and Cofactors of the elements of following determinants:

(i) |2 −40 3

|

(ii) |𝑎 𝑐𝑏 𝑑

|

Solution:

(i)

Given determinant is |2 −40 3

|

We know, the minor of element 𝑎𝑖𝑗 is 𝑀𝑖𝑗 and the cofactor is 𝐴𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗, therefore,

The minor of element 𝑎11 is 𝑀11 = 3 and the cofactor is 𝐴11 = (−1)1+1𝑀11 = 3

The minor of element 𝑎12 is 𝑀12 = 0 and the cofactor is 𝐴12 = (−1)1+2𝑀12 = 0

The minor of element 𝑎21 is 𝑀21 = −4 and the cofactor is 𝐴21 = (−1)2+1𝑀21 = 4

The minor of element 𝑎22 is 𝑀22 = 2 and the cofactor is 𝐴22 = (−1)2+2𝑀22 = 2

Page 22: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

22 Practice more on Determinants www.embibe.com

(ii)

Given determinant is |𝑎 𝑐𝑏 𝑑

|

We know, the minor of element 𝑎𝑖𝑗 is 𝑀𝑖𝑗 and the cofactor is 𝐴𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗, therefore,

The minor of element 𝑎11 is 𝑀11 = 𝑑 and the cofactor is 𝐴11 = (−1)1+1𝑀11 = 𝑑

The minor of element 𝑎12 is 𝑀12 = 𝑏 and the cofactor is 𝐴12 = (−1)1+2𝑀12 = −𝑏

The minor of element 𝑎21 is 𝑀21 = 𝑐 and the cofactor is 𝐴21 = (−1)2+1𝑀21 = −𝑐

The minor of element 𝑎22 is 𝑀22 = 𝑎 and the cofactor is 𝐴22 = (−1)2+2𝑀22 = 𝑎

2. Write Minors and Cofactors of the elements of following determinants:

(i) |1 0 00 1 00 0 1

|

(ii) |1 0 43 5 −10 1 2

|

Solution:

(i)

Given determinant is |1 0 00 1 00 0 1

|

We know, minor of an element 𝑎𝑖𝑗 of a determinant is the determinant obtained by

deleting its 𝑖𝑡ℎ row and 𝑗𝑡ℎ column in which element 𝑎𝑖𝑗 lies. Minor of an element 𝑎𝑖𝑗 is

denoted by 𝑀𝑖𝑗.

Hence,

𝑀11 = |1 00 1

| = 1 − 0 = 1

𝑀12 = |0 00 1

| = 0 − 0 = 0

𝑀13 = |0 10 0

| = 0 − 0 = 0

𝑀21 = |0 00 1

| = 0 − 0 = 0

𝑀22 = |1 00 1

| = 1 − 0 = 1

Page 23: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

23 Practice more on Determinants www.embibe.com

𝑀23 = |1 00 0

| = 0 − 0 = 0

𝑀31 = |0 01 0

| = 0 − 0 = 0

𝑀32 = |1 00 0

| = 0 − 0 = 0

𝑀33 = |1 00 1

| = 1 − 0 = 1

And we know, cofactor of an element 𝑎𝑖𝑗, is denoted by 𝐴𝑖𝑗 is defined by 𝐴𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗,

therefore

𝐴11 = (−1)1+1𝑀11 = 1 𝐴12 = (−1)1+2𝑀12 = 0 𝐴13 = (−1)1+3𝑀13 = 0

𝐴21 = (−1)2+1𝑀21 = 0 𝐴22 = (−1)2+2𝑀22 = 1 𝐴23 = (−1)2+3𝑀233 = 0

𝐴31 = (−1)3+1𝑀31 = 0 𝐴32 = (−1)3+2𝑀32 = 0 𝐴33 = (−1)3+3𝑀33 = 1

(ii)

Given determinant is |1 0 43 5 −10 1 2

|

We know, minor of an element 𝑎𝑖𝑗 of a determinant is the determinant obtained by

deleting its 𝑖𝑡ℎ row and 𝑗𝑡ℎ column in which element 𝑎𝑖𝑗 lies. Minor of an element 𝑎𝑖𝑗 is

denoted by 𝑀𝑖𝑗.

Hence,

𝑀11 = |5 −11 2

| = 10 + 1 = 11

𝑀12 = |3 −10 2

| = 6 − 0 = 6

𝑀13 = |3 50 1

| = 3 − 0 = 3

𝑀21 = |0 41 2

| = 0 − 4 = −4

𝑀22 = |1 40 2

| = 2 − 0 = 2

𝑀23 = |1 00 1

| = 1 − 0 = 1

𝑀31 = |0 45 −1

| = 0 − 20 = −20

𝑀32 = |1 43 −1

| = −1 − 12 = −13

𝑀33 = |1 03 5

| = 5 − 0 = 5

And we know, cofactor of an element 𝑎𝑖𝑗, is denoted by 𝐴𝑖𝑗 is defined by 𝐴𝑖𝑗 = (−1)𝑖+𝑗𝑀𝑖𝑗,

therefore

Page 24: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

24 Practice more on Determinants www.embibe.com

𝐴11 = (−1)1+1𝑀11 = 11 𝐴12 = (−1)1+2𝑀12 = −6 𝐴13 = (−1)1+3𝑀13 = 3

𝐴21 = (−1)2+1𝑀21 = 4 𝐴22 = (−1)2+2𝑀22 = 2 𝐴23 = (−1)2+3𝑀233 = −1

𝐴31 = (−1)3+1𝑀31 = −20 𝐴32 = (−1)3+2𝑀32 = 13 𝐴33 = (−1)3+3𝑀33 = 5

3. Using cofactors of elements of second row, evaluate ∆= |5 3 82 0 11 2 3

|.

Solution:

We know, ∆ = |5 3 82 0 11 2 3

| = 𝑎21𝐴21 + 𝑎22𝐴22 + 𝑎23𝐴23

Here, 𝑎21 = 2, 𝑎22 = 0, 𝑎23 = 1 and

𝐴21 = (−1)2+1 |3 82 3

| = −(9 − 16) = 7

𝐴22 = (−1)2+2 |5 81 3

| = 15 − 8 = 7

𝐴23 = (−1)2+3 |5 31 2

| = −(10 − 3) = −7

Therefore, ∆= |5 3 82 0 11 2 3

| = 2(7) + 0(7) + 1(−7) = 7

4. Using Cofactors of elements of third column, evaluate ∆= |

1 𝑥 𝑦𝑧1 𝑦 𝑧𝑥1 𝑧 𝑥𝑦

|.

Solution:

We know, ∆= |

1 𝑥 𝑦𝑧1 𝑦 𝑧𝑥1 𝑧 𝑥𝑦

| = 𝑎13𝐴13 + 𝑎23𝐴23 + 𝑎33𝐴33

Here, 𝑎13 = 𝑦𝑧, 𝑎23 = 𝑧𝑥, 𝑎33 = 𝑥𝑦 and

𝐴13 = (−1)1+3 |1 𝑦1 𝑧

| = 𝑧 − 𝑦

𝐴23 = (−1)2+3 |1 𝑥1 𝑧

| = −(𝑧 − 𝑥) = 𝑥 − 𝑧

𝐴33 = (−1)3+3 |1 𝑥1 𝑦

| = 𝑦 − 𝑥

Therefore, ∆= |

1 𝑥 𝑦𝑧1 𝑦 𝑧𝑥1 𝑧 𝑥𝑦

| = 𝑦𝑧(𝑧 − 𝑦) + 𝑧𝑥(𝑥 − 𝑧) + 𝑥𝑦(𝑦 − 𝑥)

Page 25: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

25 Practice more on Determinants www.embibe.com

= 𝑦𝑧2 − 𝑦2𝑧 + 𝑧𝑥2 − 𝑥𝑧2 + 𝑥𝑦2 − 𝑥2𝑦

= 𝑧𝑥2 − 𝑥2𝑦 − 𝑥𝑧2 + 𝑥𝑦2 + 𝑦𝑧2 − 𝑦2𝑧

= 𝑥2(𝑧 − 𝑦) − 𝑥(𝑧2 − 𝑦2) + 𝑦𝑧(𝑧 − 𝑦)

= (𝑧 − 𝑦)[𝑥2 − 𝑥(𝑧 + 𝑦) + 𝑦𝑧]

= (𝑧 − 𝑦)[𝑥2 − 𝑥𝑧 − 𝑥𝑦 + 𝑦𝑧]

= (𝑧 − 𝑦)[𝑥(𝑥 − 𝑧) − 𝑦(𝑥 − 𝑧)]

= (𝑥 − 𝑧)(𝑧 − 𝑦)(𝑥 − 𝑦)

= (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)

Hence, |

1 𝑥 𝑦𝑧1 𝑦 𝑧𝑥1 𝑧 𝑥𝑦

| = (𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥)

5. If ∆= |

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

| 𝐴𝑖𝑗 is Cofactors of 𝑎𝑖𝑗 , then value of ∆ is given by

(A) 𝑎11𝐴11 + 𝑎12𝐴32 + 𝑎13𝐴33

(B) 𝑎11𝐴11 + 𝑎12𝐴21 + 𝑎13𝐴31

(C) 𝑎21𝐴11 + 𝑎22𝐴12 + 𝑎23𝐴13

(D) 𝑎11𝐴11 + 𝑎21𝐴21 + 𝑎31𝐴31

Solution:

The value of |

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

| is given by: 𝑎11𝐴11 + 𝑎21𝐴21 + 𝑎31𝐴31

Hence, the option (𝐷) is correct.

Exercise 𝟒. 𝟓

1. Find adjoint of the matrix [1 23 4

]

Solution:

Given matrix is [1 23 4

]

Page 26: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

26 Practice more on Determinants www.embibe.com

We know, the adjoint of a square matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛 is defined as the transpose of the

matrix [𝐴𝑖𝑗]𝑛×𝑛, where 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗. Adjoint of the matrix 𝐴 is

denoted by 𝑎𝑑𝑗 𝐴.

Let 𝐴 = [1 23 4

]

therefore, 𝐴11 = 4, 𝐴12 = −3, 𝐴21 = −2, 𝐴22 = 1

Hence, adjoint of matrix 𝐴 = [𝐴11 𝐴21

𝐴12 𝐴22] = [

4 −2−3 1

]

2. Find adjoint of the matrix [1 −1 22 3 5

−2 0 1]

Solution:

Given matrix is [1 −1 22 3 5

−2 0 1]

We know, the adjoint of a square matrix 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛 is defined as the transpose of the

matrix [𝐴𝑖𝑗]𝑛×𝑛, where 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗. Adjoint of the matrix 𝐴 is

denoted by 𝑎𝑑𝑗 𝐴.

Let 𝐴 = [1 −1 22 3 5

−2 0 1], therefore

𝐴11 = 3 𝐴12 = −12 𝐴13 = 6𝐴21 = 1 𝐴22 = 5 𝐴23 = 2

𝐴31 = −11 𝐴32 = −1 𝐴33 = 5

Hence, adjoint of matrix 𝐴 = [

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

] = [3 1 −11

−12 5 −16 2 5

]

3. Verify 𝐴(𝑎𝑑𝑗 𝐴) = (𝑎𝑑𝑗 𝐴). 𝐴 = |𝐴|. 𝐼 for the matrix [2 3

−4 −6]

Solution:

Given matrix is [2 3

−4 −6]

Page 27: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

27 Practice more on Determinants www.embibe.com

Let 𝐴 = [2 3

−4 −6],

therefore, 𝐴11 = −6 𝐴12 = 4 𝐴21 = −3 𝐴22 = 2

|𝐴| = −12 + 12 = 0

𝑎𝑑𝑗 𝐴 = [𝐴11 𝐴21

𝐴12 𝐴22] = [

−6 −34 2

]

𝐴(𝑎𝑑𝑗 𝐴) = [2 3

−4 −6] [

−6 −34 2

] = [−12 + 12 −6 + 624 − 24 12 − 12

] = [0 00 0

]

(𝑎𝑑𝑗 𝐴). 𝐴 = [−6 −34 2

] [2 3

−4 −6] = [

−12 + 12 −18 + 188 − 8 12 − 12

] = [0 00 0

]

|𝐴|. 𝐼 = 0. [1 00 1

] = [0 00 0

]

Hence, 𝐴(𝑎𝑑𝑗 𝐴) = (𝑎𝑑𝑗 𝐴). 𝐴 = |𝐴|. 𝐼 = [0 00 0

]

4. Verify 𝐴(𝑎𝑑𝑗 𝐴) = (𝑎𝑑𝑗 𝐴). 𝐴 = |𝐴|. 𝐼 for the matrix [1 −1 23 0 −21 0 3

]

Solution:

Given matrix is [1 −1 23 0 −21 0 3

]

Here, 𝐴 = [1 −1 23 0 −21 0 3

], therefore, |𝐴| = 1(0 − 0) + 1(9 + 2) + 2(0 − 0) = 11

𝐴11 = 0 𝐴12 = −11 𝐴13 = 0𝐴21 = 3 𝐴22 = 1 𝐴23 = −1𝐴31 = 2 𝐴32 = 8 𝐴33 = 3

Adjoint of matrix 𝐴 = [

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

] = [0 3 2

−11 1 80 −1 3

]

𝐴(𝑎𝑑𝑗 𝐴) = [1 −1 23 0 −21 0 3

] [0 3 2

−11 1 80 −1 3

]

= [0 + 11 + 0 3 − 1 − 2 2 − 8 + 60 + 0 + 0 9 + 0 + 2 6 + 0 − 60 + 0 + 0 3 + 0 − 3 2 + 0 + 9

] = [11 0 00 11 00 0 11

]

Now, (𝑎𝑑𝑗 𝐴). 𝐴 = [0 3 2

−11 1 80 −1 3

] [1 −1 23 0 −21 0 3

]

Page 28: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

28 Practice more on Determinants www.embibe.com

= [0 + 9 + 2 0 + 0 + 0 0 − 6 + 6

−11 + 3 + 8 11 + 0 + 0 −22 − 2 + 240 − 3 + 3 0 + 0 + 0 0 + 2 + 9

] = [11 0 00 11 00 0 11

]

|𝐴|. 𝐼 = 11. [1 0 00 1 00 0 1

] = [11 0 00 11 00 0 11

]

Hence, 𝐴(𝑎𝑑𝑗 𝐴) = (𝑎𝑑𝑗 𝐴). 𝐴 = |𝐴|. 𝐼 = [11 0 00 11 00 0 11

]

5. Find the inverse of the matrix (if it exists)

[2 −24 3

]

Solution:

Given matrix is [2 −24 3

]

Let 𝐴 = [2 −24 3

]

Therefore, 𝐴11 = 3 𝐴12 = −4 𝐴21 = 2 𝐴22 = 2

And |𝐴| = 6 + 8 = 14 ≠ 0 ⇒ 𝐴−1 exists.

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴 =

⇒ 𝐴−1 =1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22]

=> 1

14[

3 2−4 2

]

Hence, the inverse of the matrix [2 −24 3

] is 1

14[

3 2−4 2

]

6. Find the inverse of the matrix (if it exists)

[−1 5−3 2

]

Solution:

Given matrix is [−1 5−3 2

]

Page 29: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

29 Practice more on Determinants www.embibe.com

Let 𝐴 = [−1 5−3 2

]

Therefore, 𝐴11 = 2 𝐴12 = 3 𝐴21 = −5 𝐴22 = −1

|𝐴| = −2 + 15 = 13 ≠ 0 ⇒ 𝐴−1 exists.

We know 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22] =

1

13[2 −53 −1

]

Hence, the inverse of the matrix [−1 5−3 2

] is 1

13[2 −53 −1

]

7. Find the inverse of the matrix (if it exists)

[1 2 30 2 40 0 5

]

Solution:

Given matrix is [1 2 30 2 40 0 5

]

Let 𝐴 = [1 2 30 2 40 0 5

]

Therefore, |𝐴| = 1(10 − 0) − 2(0 − 0) + 3(0 − 0) = 10 ≠ 0 ⇒ 𝐴−1 exists.

𝐴11 = 10 𝐴12 = 0 𝐴13 = 0𝐴21 = −10 𝐴22 = 5 𝐴23 = 0𝐴31 = 2 𝐴32 = −4 𝐴33 = 2

We know 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

]

=1

10[10 −10 20 5 −40 0 2

]

Hence, the inverse of the matrix [1 2 30 2 40 0 5

] is 1

10[10 −10 20 5 −40 0 2

]

Page 30: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

30 Practice more on Determinants www.embibe.com

8. Find the inverse of the matrix (if it exists)

[1 0 03 3 05 2 −1

]

Solution:

Given matrix is [1 0 03 3 05 2 −1

]

Let 𝐴 = [1 0 03 3 05 2 −1

],

Therefore, |𝐴| = 1(−3 − 0) − 0(−3 − 0) + 0(6 − 15) = −3 ≠ 0 ⇒ 𝐴−1 exists.

𝐴11 = −3 𝐴12 = 3 𝐴13 = −9𝐴21 = 0 𝐴22 = −1 𝐴23 = −2𝐴31 = 0 𝐴32 = 0 𝐴33 = 3

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

]

=1

3[−3 0 03 −1 0

−9 −2 3]

Hence, the inverse of the matrix [1 0 03 3 05 2 −1

] is 1

3[−3 0 03 −1 0

−9 −2 3]

9. Find the inverse of the matrix (if it exists)

[2 1 34 −1 0

−7 2 1]

Solution:

Given matrix is [2 1 34 −1 0

−7 2 1]

Page 31: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

31 Practice more on Determinants www.embibe.com

Let 𝐴 = [2 1 34 −1 0

−7 2 1]

Therefore, |𝐴| = 2(−1 − 0) − 1(4 − 0) + 3(8 − 7) = −3 ≠ 0 ⇒ 𝐴−1 exists.

𝐴11 = −1 𝐴12 = −4 𝐴13 = 1𝐴21 = 5 𝐴22 = 23 𝐴23 = −11𝐴31 = 3 𝐴32 = 12 𝐴33 = −6

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

]

=1

3[−1 5 3−4 23 121 −11 −6

]

Hence, the inverse of the matrix [2 1 34 −1 0

−7 2 1] is

1

3[−1 5 3−4 23 121 −11 −6

]

10. Find the inverse of the matrix (if it exists)

[1 −1 20 2 −33 −2 4

]

Solution:

Given matrix is [1 −1 20 2 −33 −2 4

]

Let 𝐴 = [1 −1 20 2 −33 −2 4

]

Therefore, [𝐴] = 1(8 − 6) + 1(0 + 9) + 2(0 − 6) = −1 ≠ 0 ⇒ 𝐴−1 exists.

𝐴11 = 2 𝐴12 = −9 𝐴13 = −6𝐴21 = 0 𝐴22 = −2 𝐴23 = −1

𝐴31 = −1 𝐴32 = 3 𝐴33 = 2

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

]

Page 32: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

32 Practice more on Determinants www.embibe.com

=1

−1[

2 0 −1−9 −2 3−6 −1 2

] = [−2 0 19 2 −36 1 −2

]

Hence, the inverse of the matrix [1 −1 20 2 −33 −2 4

] is [−2 0 19 2 −36 1 −2

]

11. Find the inverse of the matrix (if it exists)

[1 0 00 cos𝛼 sin 𝛼0 sin𝛼 − cos𝛼

]

Solution:

Given matrix is [1 0 00 cos𝛼 sin𝛼0 sin𝛼 − cos𝛼

]

Let 𝐴 = [1 0 00 cos𝛼 sin𝛼0 sin𝛼 − cos𝛼

], therefore

Now, |𝐴| = 1(− cos2 𝛼 − sin2 𝛼) + 0(0 − 0) + 0(0 − 0) = −1 ≠ 0

⇒ 𝐴−1 exists. Therefore

𝐴11 = 1 𝐴12 = 0 𝐴13 = 0𝐴21 = 0 𝐴22 = −cos𝛼 𝐴23 = −sin𝛼𝐴31 = 0 𝐴32 = −sin𝛼 𝐴33 = cos𝛼

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

]

=1

−1[1 0 00 − cos𝛼 − sin𝛼0 −sin𝛼 cos𝛼

]

⇒ 𝐴−1 = [−1 0 00 cos𝛼 sin𝛼0 sin𝛼 − cos𝛼

]

Hence, the inverse of the matrix [1 0 00 cos𝛼 sin𝛼0 sin𝛼 − cos𝛼

] is [−1 0 00 cos𝛼 sin𝛼0 sin𝛼 − cos𝛼

]

12. Let 𝐴 = [3 72 5

] and 𝐵 = [6 87 9

]. Verify that (𝐴𝐵)−1 = 𝐵−1𝐴−1.

Page 33: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

33 Practice more on Determinants www.embibe.com

Solution:

Given matrices are 𝐴 = [3 72 5

] and 𝐵 = [6 87 9

]

Here, 𝐴 = [3 72 5

], therefore, 𝐴11 = 5 𝐴12 = −2 𝐴21 = −7 𝐴22 = 3

Now, |𝐴| = 15 − 14 = 1 ≠ 0 ⇒ 𝐴−1 exists.

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22]

=1

1[

5 −7−2 3

]

= [5 −7

−2 3]

and 𝐵 = [6 87 9

], therefore, 𝐵11 = 9 𝐵12 = −7 𝐵21 = −8 𝐵22 = 6

|𝐵| = 54 − 56 = −2 ≠ 0 ⇒ 𝐵−1 exists.

𝐵−1 =1

|𝐵|𝑎𝑑𝑗 𝐵

=1

|𝐵|[𝐵11 𝐵21

𝐵12 𝐵22]

=1

−2[

9 −8−7 6

]

= [−

9

24

7

2−3

]

Now, 𝐵−1𝐴−1 = [−9 2⁄ 47 2⁄ −3

] [5 −7

−2 3]

= [−

45

2− 8

63

2+ 12

35

2+ 6 −

49

2− 9

]

= [−

61

2

87

247

2−

67

2

] …(i)

And 𝐴𝐵 = [3 72 5

] [6 87 9

] = [18 + 49 24 + 6312 + 35 16 + 45

] = [67 8747 61

]

|𝐴𝐵| = 67 × 61 − 87 × 47 = 4087 − 4089 = −2 ≠ 0 ⇒ (𝐴𝐵)−1 exists.

𝐴𝐵11 = 61 𝐴𝐵12 = −47 𝐴𝐵21 = −87 𝐴𝐵22 = 67

Page 34: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

34 Practice more on Determinants www.embibe.com

(𝐴𝐵)−1 =1

|𝐴𝐵|𝑎𝑑𝑗 𝐴𝐵 =

1

|𝐴𝐵|[𝐴𝐵11 𝐴𝐵21

𝐴𝐵12 𝐴𝐵22] =

1

−2[

61 −87−47 67

] = [−

61

2

87

247

2−

67

2

] …(ii)

From (i) and (ii)

(𝐴𝐵)−1 = 𝐵−1𝐴−1

Hence verified.

13. If 𝐴 = [3 1

−1 2] show that 𝐴2 − 5𝐴 + 7𝐼 = 0. Hence, find 𝐴−1.

Solution:

Given matrix is 𝐴 = [3 1

−1 2]

𝐿𝐻𝑆 = 𝐴2 − 5𝐴 + 7𝐼 = 𝐴𝐴 − 5𝐴 + 7𝐼

= [3 1

−1 2] [

3 1−1 2

] − 5 [3 1

−1 2] + 7 [

1 00 1

]

= [9 − 1 3 + 2

−3 − 2 −1 + 4] − [

15 5−5 10

] + [7 00 7

]

= [8 − 15 + 7 5 − 5 + 0−5 + 5 + 0 3 − 10 + 7

] = [0 00 0

] = 𝑂 = 𝑅𝐻𝑆

⇒ 𝐴2 − 5𝐴 + 7𝐼 = 𝑂

⇒ 𝐴2 − 5𝐴 = −7𝐼

Multiplying by 𝐴−1(because |𝐴| ≠ 0)

⇒ 𝐴𝐴𝐴−1 − 5𝐴𝐴−1 = −7𝐼𝐴−1

⇒ 𝐴𝐼 − 5𝐼 = −7𝐴−1 [∵ 𝐴𝐴−1 = 𝐼]

⇒ 7𝐴−1 = 5𝐼 − 𝐴 = 5 [1 00 1

] − [3 1

−1 2] = [

5 00 5

] − [3 1

−1 2] = [

2 −11 3

]

⇒ 𝐴−1 =1

7[2 −11 3

]

14. For the matrix 𝐴 = [3 21 1

], find the numbers 𝑎 and 𝑏 such that 𝐴2 + 𝑎𝐴 + 𝑏𝐼 = 𝑂.

Solution:

Given matrix is 𝐴 = [3 21 1

]

Page 35: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

35 Practice more on Determinants www.embibe.com

And 𝐴2 + 𝑎𝐴 + 𝑏𝐼 = 𝑂

⇒ [3 21 1

] [3 21 1

] + 𝑎 [3 21 1

] + 𝑏 [1 00 1

] = [0 00 0

]

⇒ [9 + 2 6 + 23 + 1 2 + 1

] + [3𝑎 2𝑎𝑎 𝑎

] + [𝑏 00 𝑏

] = [0 00 0

]

⇒ [11 + 3𝑎 + 𝑏 8 + 2𝑎 + 04 + 𝑎 + 0 3 + 𝑎 + 𝑏

] = [0 00 0

]

⇒ 4 + 𝑎 = 0

⇒ 𝑎 = −4

and 3 + 𝑎 + 𝑏 = 0

⇒ 𝑏 = −3 − 𝑎 = −3 + 4

= 1

Hence, 𝑎 = −4, 𝑏 = 1

15. For the matrix 𝐴 = [1 1 11 2 −32 −1 3

]

show that 𝐴3 − 6𝐴2 + 5𝐴 + 11𝐼 = 0. Hence, find 𝐴−1.

Solution:

Given matrix is 𝐴 = [1 1 11 2 −32 −1 3

]

𝐴2 = 𝐴. 𝐴 = [1 1 11 2 −32 −1 3

] [1 1 11 2 −32 −1 3

]

= [1 + 1 + 2 1 + 2 − 1 1 − 3 + 31 + 2 − 6 1 + 4 + 3 1 − 6 − 92 − 1 + 6 2 − 2 − 3 2 + 3 + 9

] = [4 2 1

−3 8 −147 −3 14

]

𝐴3 = 𝐴2. 𝐴 = [4 2 1

−3 8 −147 −3 14

] [1 1 11 2 −32 −1 3

]

= [4 + 2 + 2 4 + 4 − 1 4 − 6 + 3

−3 + 8 − 28 −3 + 16 + 14 −3 − 24 − 427 − 3 + 28 7 − 6 − 14 7 + 9 + 42

] = [8 7 1

−23 27 −6932 −13 58

]

LHS = 𝐴3 − 6𝐴2 + 5𝐴 + 11𝐼

= [8 7 1

−23 27 −6932 −13 58

] − 6 [4 2 1

−3 8 −147 −3 14

] + 5 [1 1 11 2 −32 −1 3

] + 11 [1 0 00 1 00 0 1

]

Page 36: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

36 Practice more on Determinants www.embibe.com

= [8 7 1

−23 27 −6932 −13 58

] − [24 12 6

−18 48 −8442 −18 84

] + [5 5 55 10 −1510 −5 15

] + [11 0 00 11 00 0 11

]

= [8 − 24 + 5 + 11 7 − 12 + 5 + 0 1 − 6 + 5 + 0

−23 + 18 + 5 + 0 27 − 48 + 10 + 11 −69 + 84 − 15 + 032 − 42 + 10 + 0 −13 + 18 − 5 + 0 58 − 84 + 15 + 11

]

= [0 0 00 0 00 0 0

] = 𝑂 = 𝑅𝐻𝑆

Now, 𝐴3 − 6𝐴2 + 5𝐴 + 11 𝐼 = 𝑂

⇒ 𝐴3 − 6𝐴2 + 5𝐴 = −11 𝐼

Multiplying by 𝐴−1 (because |𝐴| ≠ 0)

⇒ 𝐴2𝐴𝐴−1 − 6𝐴𝐴𝐴−1 + 5𝐴𝐴−1 = −11𝐴−1

⇒ 𝐴2𝐼 − 6𝐴𝐼 + 5𝐼 = −11𝐴−1 [∵ 𝐴𝐴−1 = 𝐼]

⇒ 11𝐴−1 = −𝐴2 + 6𝐴 − 5𝐼

⇒ 11𝐴−1 = −[4 2 1

−3 8 −147 −3 14

] + 6 [1 1 11 2 −32 −1 3

] − 5 [1 0 00 1 00 0 1

]

⇒ 11𝐴−1 = [−4 −2 −13 −8 14

−7 3 −14] + [

6 6 66 12 −1812 −6 18

] − [5 0 00 5 00 0 5

]

⇒ 11𝐴−1 = [−4 + 6 − 5 −2 + 6 + 0 −1 + 6 + 03 + 6 − 0 −8 + 12 − 5 14 − 18 + 0

−7 + 12 + 0 3 − 6 + 0 −14 + 18 − 5] = [

−3 4 59 −1 −45 −3 −1

]

⇒ 𝐴−1 =1

11[−3 4 59 −1 −45 −3 −1

]

Hence, 𝐴−1 =1

11[−3 4 59 −1 −45 −3 −1

]

16. If 𝐴 = [2 −1 1

−1 2 −11 −1 2

]

verify that 𝐴3 − 6𝐴2 + 9𝐴 − 4𝐼 = 𝑂 and hence find 𝐴−1.

Page 37: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

37 Practice more on Determinants www.embibe.com

Solution:

𝐴2 = 𝐴. 𝐴 = [2 −1 1

−1 2 −11 −1 2

] [2 −1 1

−1 2 −11 −1 2

]

= [4 + 1 + 1 −2 − 2 − 1 2 + 1 + 2

−2 − 2 − 1 1 + 4 + 1 −1 − 2 − 22 + 1 + 2 −1 − 2 − 2 1 + 1 + 4

] = [6 −5 5

−5 6 −55 −5 6

]

𝐴3 = 𝐴2. 𝐴 = [6 −5 5

−5 6 −55 −5 6

] [2 −1 1

−1 2 −11 −1 2

]

= [12 + 5 + 5 −6 − 10 − 5 6 + 5 + 10

−10 − 6 − 5 5 + 12 + 5 −5 − 6 − 1010 + 5 + 6 −5 − 10 − 6 5 + 5 + 12

] = [22 −21 21

−21 22 −2121 −21 22

]

LHS = 𝐴3 − 6𝐴2 + 9𝐴 − 4𝐼

= [22 −21 21

−21 22 −2121 −21 22

] − 6 [6 −5 5

−5 6 −55 −5 6

] + 9 [2 −1 1

−1 2 −11 −1 2

] − 4 [1 0 00 1 00 0 1

]

= [22 −21 21

−21 22 −2121 −21 22

] − [36 −30 30

−30 36 −3030 −30 36

] + [18 −9 9−9 18 −99 −9 18

] − [4 0 00 4 00 0 4

]

= [22 − 36 + 18 − 4 −21 + 30 − 9 + 0 21 − 30 + 9 + 0−21 + 30 − 9 − 0 22 − 36 + 18 − 4 −21 + 30 − 9 + 021 − 30 + 9 − 0 −21 + 30 − 9 − 0 22 − 36 + 18 − 4

]

= [0 0 00 0 00 0 0

] = 𝑂 = 𝑅𝐻𝑆

⇒ 𝐴3 − 6𝐴2 + 9𝐴 − 4𝐼 = 𝑂 ⇒ 𝐴3 − 6𝐴2 + 9𝐴 = 4𝐼

Post multiplying by 𝐴−1(because |𝐴| ≠ 0)

𝐴2𝐴𝐴−1 − 6𝐴𝐴𝐴−1 + 9𝐴𝐴−1 = 4𝐼𝐴−1

⇒ 𝐴2𝐼 − 6𝐴𝐼 + 9𝐼 = 4𝐴−1 [Because 𝐴𝐴−1 = 𝐼]

⇒ 4𝐴−1 = 𝐴2 − 6𝐴 + 9𝐼

⇒ 4𝐴−1 = [6 −5 5

−5 6 −55 −5 6

] − 6 [2 −1 1

−1 2 −11 −1 2

] + 9 [1 0 00 1 00 0 1

]

⇒ 4𝐴−1 = [6 −5 5

−5 6 −55 −5 6

] − [12 −6 6−6 12 −66 −6 12

] + [9 0 00 9 00 0 9

]

⇒ 4𝐴−1 = [6 − 12 + 9 −5 + 6 + 0 5 − 6 + 0−5 + 6 + 0 6 − 12 + 9 −5 + 6 + 05 − 6 + 0 −5 + 6 + 0 6 − 12 + 9

] = [3 1 −11 3 1

−1 1 3]

⇒ 𝐴−1 =1

4[

3 1 −11 3 1

−1 1 3]

Page 38: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

38 Practice more on Determinants www.embibe.com

Hence, 𝐴−1 =1

4[

3 1 −11 3 1

−1 1 3]

17. Let 𝐴 be a non-singular square matrix of order 3 × 3. Then |𝑎𝑑𝑗 𝐴| is equal to:

(A) |𝐴|

(B) |𝐴|2

(C) |𝐴|3

(D) 3|𝐴|

Solution:

Given that 𝐴 be a non-singular square matrix of order 3 × 3.

We know that 𝑎𝑑𝑗 𝐴 = |𝐴|𝐼

⇒ (𝑎𝑑𝑗 𝐴)𝐴 = |𝐴| [1 0 00 1 00 0 1

]

⇒ |(𝑎𝑑𝑗 𝐴)𝐴| = |𝐴| |1 0 00 1 00 0 1

| = |

|𝐴| 0 00 |𝐴| 00 0 |𝐴|

| = |𝐴|3

⇒ |𝑎𝑑𝑗 𝐴| = |𝐴|2,

Hence, the option (𝐵) is correct.

18. If 𝐴 is an invertible matrix of order 2, then det(𝐴−1) is equal to:

(A) det(𝐴)

(B) 1

det(𝐴)

(C) 1

(D) 0

Solution:

Given that the matrix 𝐴 is invertible, hence, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

The order of matrix is 2, so, let 𝐴 = |𝑎 𝑏𝑐 𝑑

|

Page 39: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

39 Practice more on Determinants www.embibe.com

Therefore, |𝐴| = 𝑎𝑑 − 𝑏𝑐 and 𝑎𝑑𝑗 𝐴 = [𝑑 −𝑏−𝑐 𝑎

]

𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴 = 𝐴−1 =

1

|𝐴|[𝑑 −𝑏−𝑐 𝑎

] = [

𝑑

|𝐴|−

𝑏

|𝐴|

−𝑐

|𝐴|

𝑎

|𝐴|

]

det(𝐴−1) = |𝐴−1| = |

𝑑

|𝐴|−

𝑏

|𝐴|

−𝑐

|𝐴|

𝑎

|𝐴|

|

=1

|𝐴|2|𝑑 −𝑏−𝑐 𝑎

| =1

|𝐴|2(𝑎𝑑 − 𝑏𝑐) =

1

|𝐴|2|𝐴| =

1

|𝐴|

Hence, the option (𝐵) is correct.

Exercise 𝟒. 𝟔

1. Examine the consistency of the system of equations

𝑥 + 2𝑦 = 2

2𝑥 + 3𝑦 = 3

Solution:

The given system of equations are 𝑥 + 2𝑦 = 2 and 2𝑥 + 3𝑦 = 3

This system of equations can be written as 𝐴𝑋 = 𝐵.

Where, 𝐴 = [1 22 3

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

23]

Now, |𝐴| = 3 − 4 = −1 ≠ 0 ⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

2. Examine the consistency of the system of equations

2𝑥 − 𝑦 = 5

𝑥 + 𝑦 = 4

Solution:

The given system of equations are 2𝑥 − 𝑦 = 5 and 𝑥 + 𝑦 = 4

This system of equations can be written as 𝐴𝑋 = 𝐵.

Page 40: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

40 Practice more on Determinants www.embibe.com

Where, 𝐴 = [2 −11 1

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

54]

Now, |𝐴| = 2 + 1 = 3 ≠ 0 ⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

3. Examine the consistency of the system of equations

𝑥 + 3𝑦 = 5

2𝑥 + 6𝑦 = 8

Solution:

The given system of equations: 𝑥 + 3𝑦 = 5 and 2𝑥 + 6𝑦 = 8

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [1 32 6

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

58]

Now, |𝐴| = 6 − 6 = 0 ⇒ 𝐴 is a singular matrix and so 𝐴−1 does not exist.

Now, 𝑎𝑑𝑗 𝐴 = [6 −3

−2 1]

(𝑎𝑑𝑗 𝐴) 𝐵 = [6 −3

−2 1] [

58] = [

30 − 24−10 + 8

] = [6

−2] ≠ 𝑂

So, there is no solutions of the given system of equations.

Hence, the system of equations are inconsistent.

4. Examine the consistency of the system of equations

𝑥 + 𝑦 + 𝑧 = 1

2𝑥 + 3𝑦 + 2𝑧 = 2

𝑎𝑥 + 𝑎𝑦 + 2𝑎𝑧 = 4

Solution:

The given system of equations are 𝑥 + 𝑦 + 𝑧 = 1, 2𝑥 + 3𝑦 + 2𝑧 = 2 and 𝑎𝑥 + 𝑎𝑦 + 2𝑎𝑧 =4

This system of equations can be written as 𝐴𝑋 = 𝐵, where

Page 41: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

41 Practice more on Determinants www.embibe.com

𝐴 = [1 1 12 3 2𝑎 𝑎 2𝑎

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

123]

Now, |𝐴| = 1(6𝑎 − 2𝑎) − 1(4𝑎 − 2𝑎) + 1(2𝑎 − 3𝑎) = 𝑎 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

5. Examine the consistency of the system of equations

3𝑥 − 𝑦 − 2𝑧 = 2

2𝑦 − 𝑧 = −1

3𝑥 − 5𝑦 = 3

Solution:

The given system of equations are 3𝑥 − 𝑦 − 2𝑧 = 2, 2𝑦 − 𝑧 = −1 and 3𝑥 − 5𝑦 = 3

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [3 −1 −20 2 −13 −5 0

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

2−13

]

|𝐴| = 3(0 − 5) + 1(0 + 3) − 2(0 − 6) = −15 + 3 + 12 = 0

⇒ 𝐴 is a singular matrix and so 𝐴−1 does not exists. Now,

𝐴11 = −5 𝐴12 = −3 𝐴13 = −6𝐴21 = 10 𝐴22 = 6 𝐴23 = 12𝐴31 = 5 𝐴32 = 3 𝐴33 = 6

Now, 𝑎𝑑𝑗 𝐴 = [−5 10 5−3 6 3−6 12 6

]

Also (𝑎𝑑𝑗 𝐴)𝐵 = [−5 10 5−3 6 3−6 12 6

] [2

−13

] = [−10 − 10 + 15

−6 − 6 + 9−12 − 12 + 16

] = [−5−3−6

] ≠ 𝑂

So, there is no solutions of the given system of equations.

Hence, the system of equations are inconsistent.

6. Examine the consistency of the system of equations

5𝑥 − 𝑦 + 4𝑧 = 5

2𝑥 + 3𝑦 + 5𝑧 = 2

Page 42: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

42 Practice more on Determinants www.embibe.com

5𝑥 − 2𝑦 + 6𝑧 = −1

Solution:

The given system of equations are 5𝑥 − 𝑦 + 4𝑧 = 5, 2𝑥 + 3𝑦 + 5𝑧 = 2 and 5𝑥 − 2𝑦 +

6𝑧 = −1

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [5 −1 42 3 55 −2 6

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

52

−1]

Now, |𝐴| = 5(18 + 10) + 1(12 − 25) + 4(−4 − 15) = 140 − 13 − 76 = 51 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

7. Solve system of linear equations, using matrix method

5𝑥 + 2𝑦 = 4

7𝑥 + 3𝑦 = 5

Solution:

The given system of equations are 5𝑥 + 2𝑦 = 4 and 7𝑥 + 3𝑦 = 5

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [5 27 3

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

45]

|𝐴| = 15 − 14 = 1 ≠ 0 ⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

Now, 𝐴11 = 3 𝐴12 = −7 𝐴21 = −2 𝐴22 = 5

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

⇒ 𝐴−1 =1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22] =

1

1[

3 −2−7 5

]

Also 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦] = [

3 −2−7 5

] [45]

⇒ [𝑥𝑦] = [

12 − 10−28 + 25

] ⇒ [𝑥𝑦] = [

2−3

] ⇒ 𝑥 = 2, 𝑦 = −3

Page 43: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

43 Practice more on Determinants www.embibe.com

8. Solve system of linear equations, using matrix method

2𝑥 − 𝑦 = −2

3𝑥 + 4𝑦 = 3

Solution:

The given system of equations are 2𝑥 − 𝑦 = −2 and 3𝑥 + 4𝑦 = 3

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [2 −13 4

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

−23

]

|𝐴| = 8 + 3 = 11 ≠ 0 ⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

Hence, the system of equations are consistent.

Now, 𝐴11 = 4 𝐴12 = −3 𝐴21 = 1 𝐴22 = 2

𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22] =

1

11[

4 1−3 2

]

𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦] =

1

11[

4 1−3 2

] [−23

]

⇒ [𝑥𝑦] =

1

11[−8 + 36 + 6

] ⇒ [𝑥𝑦] = [

−5

1112

11

] ⇒ 𝑥 = −5

11, 𝑦 =

12

11

9. Solve system of linear equations, using matrix method

4𝑥 − 3𝑦 = 3

3𝑥 − 5𝑦 = 7

Solution:

The given system of equations are 4𝑥 − 3𝑦 = 3 and 3𝑥 − 5𝑦 = 7

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [4 −33 −5

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

37]

|𝐴| = −20 + 9 = −11 ≠ 0 ⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

Now, 𝐴11 = −5 𝐴12 = −3 𝐴21 = 3 𝐴22 = 4

Page 44: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

44 Practice more on Determinants www.embibe.com

𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22] =

1

−11[−5 3−3 4

]

Now, 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦] = −

1

11[−5 3−3 4

] [37]

⇒ [𝑥𝑦] = −

1

11[−15 + 21−9 + 28

] ⇒ [𝑥𝑦] = [

−6

11

−19

11

] ⇒ 𝑥 = −6

11, 𝑦 = −

19

11

10. Solve system of linear equations, using matrix method

5𝑥 + 2𝑦 = 3

3𝑥 + 2𝑦 = 5

Solution:

The given system of equations are 5𝑥 + 2𝑦 = 3 and 3𝑥 + 2𝑦 = 5

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [5 23 2

] , 𝑋 = [𝑥𝑦] and 𝐵 = [

35]

|𝐴| = 10 − 6 = 4 ≠ 0 ⇒ 𝐴 is non-singular and so 𝐴−1 exists.

Hence, the system of equations are consistent.

Now, 𝐴11 = 2 𝐴12 = −3 𝐴21 = −2 𝐴22 = 5

𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

|𝐴|[𝐴11 𝐴21

𝐴12 𝐴22] =

1

4[

2 −2−3 5

]

𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦] =

1

4[

2 −2−3 5

] [35]

⇒ [𝑥𝑦] =

1

4[

6 − 10−9 + 25

] ⇒ [𝑥𝑦] = [

−4

416

4

] ⇒ 𝑥 = −1, 𝑦 = 4

11. Solve system of linear equations, using matrix method

2𝑥 + 𝑦 + 𝑧 = 1

Page 45: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

45 Practice more on Determinants www.embibe.com

𝑥 − 2𝑦 − 𝑧 =3

2

3𝑦 − 5𝑧 = 9

Solution:

The given system of equations are 2𝑥 + 𝑦 + 𝑧 = 1, 𝑥 − 2𝑦 − 𝑧 =3

2 and 3𝑦 − 5𝑧 = 9

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [2 1 11 −2 −10 3 −5

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

13

2

9

]

|𝐴| = 2(10 + 3) − 1(−5 − 0) + 1(3 − 0) = 26 + 5 + 3 = 34 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

𝐴11 = 13 𝐴12 = 5 𝐴13 = 3𝐴21 = 8 𝐴22 = −10 𝐴23 = −6𝐴31 = 1 𝐴32 = 3 𝐴33 = −5

𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

34[13 8 15 −10 33 −6 −5

]

Now, 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦𝑧] =

1

34[13 8 15 −10 33 −6 −5

] [

13

2

9

]

⇒ [𝑥𝑦𝑧] =

1

34[13 + 12 + 95 − 15 + 273 − 9 − 45

] ⇒ [𝑥𝑦𝑧] =

1

34[

3417

−51] = [

11

2

−3

2

] ⇒ 𝑥 = 1, 𝑦 =1

2, 𝑧 = −

3

2

12. Solve system of linear equations, using matrix method

𝑥 − 𝑦 + 𝑧 = 4

2𝑥 + 𝑦 − 3𝑧 = 0

𝑥 + 𝑦 + 𝑧 = 2

Solution:

The given system of equations are 𝑥 − 𝑦 + 𝑧 = 4, 2𝑥 + 𝑦 − 3𝑧 = 0 and

Page 46: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

46 Practice more on Determinants www.embibe.com

𝑥 + 𝑦 + 𝑧 = 2

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [1 −1 12 1 −31 1 1

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

402]

|𝐴| = 1(1 + 3) + 1(2 + 3) + 1(2 − 1) = 4 + 5 + 1 = 10 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

𝐴11 = 4 𝐴12 = −5 𝐴13 = 1𝐴21 = 2 𝐴22 = 0 𝐴23 = −2𝐴31 = 2 𝐴32 = 5 𝐴33 = 3

Now, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

10[

4 2 2−5 0 51 −2 3

]

Also 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦𝑧] =

1

10[

4 2 2−5 0 51 −2 3

] [402]

⇒ [𝑥𝑦𝑧] =

1

10[

16 + 0 + 4−20 + 0 + 10

4 + 0 + 6] ⇒ [

𝑥𝑦𝑧] =

1

10[

20−1010

] = [2

−11

]

⇒ 𝑥 = 2, 𝑦 = −1, 𝑧 = 1

13. Solve system of linear equations, using matrix method

2𝑥 + 3𝑦 + 3𝑧 = 5

𝑥 − 2𝑦 + 𝑧 = −4

3𝑥 − 𝑦 − 2𝑧 = 3

Solution:

The given system of equations are 2𝑥 + 3𝑦 + 3𝑧 = 5, 𝑥 − 2𝑦 + 𝑧 = −4 and 3𝑥 − 𝑦 − 2𝑧 =

3

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [2 3 31 −2 13 −1 −2

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

5−43

]

|𝐴| = 2(4 + 1) − 3(−2 − 3) + 3(−1 + 6) = 10 + 15 + 15 = 40 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

Page 47: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

47 Practice more on Determinants www.embibe.com

𝐴11 = 5 𝐴12 = 5 𝐴13 = 5𝐴21 = 3 𝐴22 = −13 𝐴23 = 11𝐴31 = 9 𝐴32 = 1 𝐴33 = −7

Now, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

40[5 3 95 −13 15 11 −7

]

Also, 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦𝑧] =

1

40[5 3 95 −13 15 11 −7

] [5

−43

]

⇒ [𝑥𝑦𝑧] =

1

40[25 − 12 + 2725 + 52 + 325 − 44 − 21

] ⇒ [𝑥𝑦𝑧] =

1

40[

4080

−40] = [

12

−1]

⇒ 𝑥 = 1, 𝑦 = 2, 𝑧 = −1

14. Solve system of linear equations, using matrix method

𝑥 − 𝑦 + 2𝑧 = 7

3𝑥 + 4𝑦 − 5𝑧 = −5

2𝑥 − 𝑦 + 3𝑧 = 12

Solution:

The given system of equations are 𝑥 − 𝑦 + 2𝑧 = 7, 3𝑥 + 4𝑦 − 5𝑧 = −5 and 2𝑥 − 𝑦 + 3𝑧 =

12

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [1 −1 23 4 −52 −1 3

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

7−512

]

|𝐴| = 1(12 − 5) + 1(9 + 10) + 2(−3 − 8) = 7 + 19 − 22 = 4 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

𝐴11 = 7 𝐴12 = −19 𝐴13 = −11𝐴21 = 1 𝐴22 = −1 𝐴23 = −1

𝐴31 = −3 𝐴32 = 11 𝐴33 = 7

Now, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

4[

7 1 −3−19 −1 11−11 −1 7

]

Page 48: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

48 Practice more on Determinants www.embibe.com

Also, 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦𝑧] =

1

4[

7 1 −3−19 −1 11−11 −1 7

] [7

−512

]

⇒ [𝑥𝑦𝑧] =

1

4[

49 − 5 − 36−133 + 5 + 132−77 + 5 + 84

]

⇒ [𝑥𝑦𝑧] =

1

4[4412

] = [113]

⇒ 𝑥 = 1, 𝑦 = 1, 𝑧 = 3

15. If 𝐴 = [2 −3 53 2 −41 1 −2

], find 𝐴−1. Using 𝐴−1 solve the system of equations

2𝑥 − 3𝑦 + 5𝑧 = 11

3𝑥 + 2𝑦 − 4𝑧 = −5

𝑥 + 𝑦 − 2𝑧 = −3

Solution:

𝐴 = [2 −3 53 2 −41 1 −2

]

|𝐴| = 2(−4 + 4) + 3(−6 + 4) + 5(3 − 2) = 0 − 6 + 5 = −1 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

𝐴11 = 0 𝐴12 = 2 𝐴13 = 1𝐴21 = −1 𝐴22 = −9 𝐴23 = −5𝐴31 = 2 𝐴32 = 23 𝐴33 = 13

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

−1[0 −1 22 −9 231 −5 13

] = [0 1 −2

−2 9 −23−1 5 −13

]

The given system of equations:

2𝑥 − 3𝑦 + 5𝑧 = 11

3𝑥 + 2𝑦 − 4𝑧 = −5

𝑥 + 𝑦 − 2𝑧 = −3

This system of equations can be written as 𝐴𝑋 = 𝐵, where

Page 49: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

49 Practice more on Determinants www.embibe.com

𝐴 = [2 −3 53 2 −41 1 −2

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

11−5−3

]

𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦𝑧] = [

0 1 −2−2 9 −23−1 5 −13

] [11−5−3

]

⇒ [𝑥𝑦𝑧] = [

0 − 5 + 6−22 − 45 + 69−11 − 25 + 39

] ⇒ [𝑥𝑦𝑧] = [

123]

⇒ 𝑥 = 1, 𝑦 = 2, 𝑧 = 3

16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60. The cost of 2 kg onion, 4 kg wheat

and 6 kg rice is ₹90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is ₹70. Find cost of

each item per kg by matrix method.

Solution:

Let the cost of 1 kg of onion = ₹𝑥,

Let the cost of 1 kg of wheat = ₹𝑦 and

Let the cost of 1 kg rice = ₹𝑧

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60. So 4𝑥 + 3𝑦 + 2𝑧 = 60

The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹90. So 2𝑥 + 4𝑦 + 6𝑧 = 90 and

The cost of 6 kg onion, 2 kg wheat and 3 kg rice is ₹70. So 6𝑥 + 2𝑦 + 3𝑧 = 70

Therefore the system of equations are:

4𝑥 + 3𝑦 + 2𝑧 = 60

2𝑥 + 4𝑦 + 6𝑧 = 90

6𝑥 + 2𝑦 + 3𝑧 = 70

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [4 3 22 4 66 2 3

] , 𝑋 = [𝑥𝑦𝑧] and 𝐵 = [

609070

]

|𝐴| = 4(12 − 12) − 3(6 − 36) + 2(4 − 24) = 0 + 90 − 40 = 50 ≠ 0

⇒ 𝐴 is non-singular and so 𝐴−1 exists. Now,

𝐴11 = 0 𝐴12 = 30 𝐴13 = −20𝐴21 = −5 𝐴22 = 0 𝐴23 = 10𝐴31 = 10 𝐴32 = −20 𝐴33 = 10

Page 50: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

50 Practice more on Determinants www.embibe.com

Now, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴 =

1

50[

0 −5 1030 0 −20

−20 10 10]

Also 𝑋 = 𝐴−1𝐵 ⇒ [𝑥𝑦𝑧] =

1

50[

0 −5 1030 0 −20

−20 10 10] [

609070

]

⇒ [𝑥𝑦𝑧] =

1

50[

0 − 450 + 7001800 + 0 − 1400

−1200 + 900 + 700]

⇒ [𝑥𝑦𝑧] =

1

50[250400400

] = [588]

⇒ 𝑥 = 5, 𝑦 = 8, 𝑧 = 8

Hence,

the cost of 1 kg of onion is ₹7, the cost of 1 kg of wheat is ₹8 and the cost of 1 kg rice is ₹8.

Miscellaneous Exercise on 𝟒

1. Prove that the determinant |𝑥 sin𝜃 cos 𝜃

− sin𝜃 −𝑥 1cos 𝜃 1 𝑥

| is independent of 𝜃.

Solution:

Let the given determinant be ∆= |𝑥 sin 𝜃 cos 𝜃

− sin𝜃 −𝑥 1cos 𝜃 1 𝑥

|

= 𝑥(−𝑥2 − 1) − sin 𝜃(−𝑥 sin 𝜃 − cos 𝜃) + cos 𝜃(− sin𝜃 + 𝑥 cos𝜃)

= −𝑥3 − 𝑥 + 𝑥 sin2 𝜃 + sin 𝜃 cos 𝜃 − cos𝜃 sin𝜃 + 𝑥 cos2 𝜃

= −𝑥3 − 𝑥 + 𝑥(sin2 𝜃 + cos2 𝜃)

= −𝑥3 − 𝑥 + 𝑥 = −𝑥3, which is independent of 𝜃.

2. Without expanding the determinant, prove that |𝑎 𝑎2 𝑏𝑐𝑏 𝑏2 𝑐𝑎𝑐 𝑐2 𝑎𝑏

| = |1 𝑎2 𝑎3

1 𝑏2 𝑏3

1 𝑐2 𝑐3

|

Solution:

LHS = |𝑎 𝑎2 𝑏𝑐𝑏 𝑏2 𝑐𝑎𝑐 𝑐2 𝑎𝑏

|

Page 51: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

51 Practice more on Determinants www.embibe.com

=1

𝑎𝑏𝑐|𝑎2 𝑎3 𝑎𝑏𝑐𝑏2 𝑏3 𝑎𝑏𝑐𝑐2 𝑐3 𝑎𝑏𝑐

| [Applying 𝑅1 → 𝑎𝑅1, 𝑅2 → 𝑏𝑅2, 𝑅3 → 𝑐𝑅3]

=𝑎𝑏𝑐

𝑎𝑏𝑐|𝑎2 𝑎3 1𝑏2 𝑏3 1𝑐2 𝑐3 1

| [Taking 𝑎𝑏𝑐 as common from 𝐶3]

= (−1)1 |1 𝑎3 𝑎2

1 𝑏3 𝑏2

1 𝑐3 𝑐2

| [Interchanging 𝐶1 ⟷ 𝐶3]

= (−1)2 |1 𝑎2 𝑎3

1 𝑏2 𝑏3

1 𝑐2 𝑐3

| [Interchanging 𝐶2 ⟷ 𝐶3]

= |1 𝑎2 𝑎3

1 𝑏2 𝑏3

1 𝑐2 𝑐3

| = RHS

Hence proved.

3. Evaluate |

cos𝛼 cos𝛽 cos𝛼 sin𝛽 − sin𝛼− sin𝛽 cos𝛽 0

sin𝛼 cos𝛽 sin𝛼 sin𝛽 cos 𝛼|

Solution:

Given determinant is |

cos𝛼 cos𝛽 cos𝛼 sin𝛽 − sin𝛼− sin𝛽 cos𝛽 0

sin𝛼 cos𝛽 sin𝛼 sin𝛽 cos𝛼|

= −sin𝛼(− sin𝛼 sin2 𝛽 − sin𝛼 cos2 𝛽)

− 0(cos𝛼 cos𝛽 sin𝛼 sin𝛽 − cos𝛼 sin𝛽 sin𝛼 cos𝛽)

+cos𝛼(cos𝛼 cos2 𝛽 + cos𝛼 sin2 𝛽)

= sin2 𝛼(sin2 𝛽 + cos2 𝛽) + cos2 𝛼(cos2 𝛽 + sin2 𝛽) [Expanding along 𝐶3]

= sin2 𝛼(sin2 𝛽 + cos2 𝛽) + cos2 𝛼(cos2 𝛽 + sin2 𝛽)

= sin2 𝛼 + sin2 𝛼 = 1 [∵ sin2 𝜃 + cos2 𝜃 = 1]

4. If 𝑎, 𝑏 and 𝑐 are real numbers and

∆ = |𝑏 + 𝑐 𝑐 + 𝑎 𝑎 + 𝑏𝑐 + 𝑎 𝑎 + 𝑏 𝑏 + 𝑐𝑎 + 𝑏 𝑏 + 𝑐 𝑐 + 𝑎

| = 0

show that either 𝑎 + 𝑏 + 𝑐 = 0 or 𝑎 = 𝑏 = 𝑐.

Page 52: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

52 Practice more on Determinants www.embibe.com

Solution:

Given that ∆ = |𝑏 + 𝑐 𝑐 + 𝑎 𝑎 + 𝑏𝑐 + 𝑎 𝑎 + 𝑏 𝑏 + 𝑐𝑎 + 𝑏 𝑏 + 𝑐 𝑐 + 𝑎

| = 0

⇒ |2(𝑎 + 𝑏 + 𝑐) 2(𝑎 + 𝑏 + 𝑐) 2(𝑎 + 𝑏 + 𝑐)

𝑐 + 𝑎 𝑎 + 𝑏 𝑏 + 𝑐𝑎 + 𝑏 𝑏 + 𝑐 𝑐 + 𝑎

| = 0 [Applying 𝑅1 → 𝑅1 + 𝑅2 + 𝑅3]

⇒ 2(𝑎 + 𝑏 + 𝑐) |1 1 1

𝑐 + 𝑎 𝑎 + 𝑏 𝑏 + 𝑐𝑎 + 𝑏 𝑏 + 𝑐 𝑐 + 𝑎

| = 0 [Taking 2(𝑎 + 𝑏 + 𝑐) as common from 𝑅1][

⇒ 2(𝑎 + 𝑏 + 𝑐) |1 0 0

𝑐 + 𝑎 𝑏 − 𝑐 𝑏 − 𝑎𝑎 + 𝑏 𝑐 − 𝑎 𝑐 − 𝑏

| = 0 [Applying 𝐶2 → 𝐶2 − 𝐶1, 𝐶3 → 𝐶3 − 𝐶1]

⇒ 2(𝑎 + 𝑏 + 𝑐)1[(𝑏 − 𝑐)(𝑐 − 𝑏) − (𝑏 − 𝑎)(𝑐 − 𝑎)] = 0 [Expanding along 𝑅1]

⇒ 2(𝑎 + 𝑏 + 𝑐)[𝑏𝑐 − 𝑏2 − 𝑐2 + 𝑏𝑐 − (𝑏𝑐 − 𝑏𝑎 − 𝑎𝑐 + 𝑎2)] = 0

⇒ 2(𝑎 + 𝑏 + 𝑐)[𝑏𝑐 − 𝑏2 − 𝑐2 + 𝑎𝑏 + 𝑐𝑎 − 𝑎2] = 0

⇒ −(𝑎 + 𝑏 + 𝑐)[2𝑎2 + 2𝑏2 + 2𝑐2 − 2𝑎𝑏 − 2𝑏𝑐 − 2𝑐𝑎] = 0

⇒ −(𝑎 + 𝑏 + 𝑐)[(𝑎2 + 𝑏2 − 2𝑎𝑏) + (𝑏2 + 𝑐2 − 2𝑏𝑐) + (𝑐2 + 𝑎2 − 2𝑐𝑎)] = 0

⇒ −(𝑎 + 𝑏 + 𝑐)[(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2] = 0

⇒ 𝑎 + 𝑏 + 𝑐 = 0 or (𝑎 − 𝑏)2 = 0, (𝑏 − 𝑐)2 = 0, (𝑐 − 𝑎)2 = 0

⇒ 𝑎 + 𝑏 + 𝑐 = 0 or 𝑎 − 𝑏 = 0, 𝑏 − 𝑐 = 0, 𝑐 − 𝑎 = 0

⇒ 𝑎 + 𝑏 + 𝑐 = 0 or a = b. 𝑏 = 𝑐, 𝑐 = 𝑎

Therefore, 𝑎 + 𝑏 + 𝑐 = 0 or 𝑎 = 𝑏 = 𝑐

5. Solve the equation |𝑥 + 𝑎 𝑥 𝑥

𝑥 𝑥 + 𝑎 𝑥𝑥 𝑥 𝑥 + 𝑎

| = 0, 𝑎 ≠ 0

Solution:

Given that |𝑥 + 𝑎 𝑥 𝑥

𝑥 𝑥 + 𝑎 𝑥𝑥 𝑥 𝑥 + 𝑎

| = 0

⇒ |3𝑥 + 𝑎 3𝑥 + 𝑎 3𝑥 + 𝑎

𝑥 𝑥 + 𝑎 𝑥𝑥 𝑥 𝑥 + 𝑎

| = 0 [Applying 𝑅1 → 𝑅1 + 𝑅2 + 𝑅3]

Page 53: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

53 Practice more on Determinants www.embibe.com

⇒ (3𝑥 + 𝑎) |1 1 1𝑥 𝑥 + 𝑎 𝑥𝑥 𝑥 𝑥 + 𝑎

| = 0 [Taking (3𝑥 + 𝑎) as common from 𝑅1]

⇒ (3𝑥 + 𝑎) |1 0 0𝑥 𝑎 0𝑥 0 𝑎

| = 0 [Applying 𝐶2 → 𝐶2 − 𝐶1, 𝐶3 → 𝐶3 + 𝐶1]

⇒ (3𝑥 + 𝑎)1[𝑎2 − 0] = 0 [Expanding along 𝑅1]

⇒ 𝑎2(3𝑥 + 𝑎) = 0

⇒ (3𝑥 + 𝑎) = 0 [∵ 𝑎 ≠ 0]

⇒ 𝑥 = −𝑎

3

Value of x is −𝑎

3

6. Prove that |𝑎2 𝑏𝑐 𝑎𝑐 + 𝑐2

𝑎2 + 𝑎𝑏 𝑏2 𝑎𝑐𝑎𝑏 𝑏2 + 𝑏𝑐 𝑐2

| = 4𝑎2𝑏2𝑐2

Solution:

LHS = |𝑎2 𝑏𝑐 𝑎𝑐 + 𝑐2

𝑎2 + 𝑎𝑏 𝑏2 𝑎𝑐𝑎𝑏 𝑏2 + 𝑏𝑐 𝑐2

|

= |2𝑎2 0 2𝑎𝑐

𝑎2 + 𝑎𝑏 𝑏2 𝑎𝑐𝑎𝑏 𝑏2 + 𝑏𝑐 𝑐2

| [Applying 𝑅1 → 𝑅1 + 𝑅2 − 𝑅3]

= 𝑎𝑏𝑐 |2𝑎 0 2𝑎

𝑎 + 𝑏 𝑏 𝑎𝑏 𝑏 + 𝑐 𝑐

| [Taking 𝑎, 𝑏, 𝑐 as common from 𝐶1, 𝐶2, 𝐶3]

= 𝑎𝑏𝑐 |2𝑎 0 0

𝑎 + 𝑏 𝑏 −𝑏𝑏 𝑏 + 𝑐 𝑐 − 𝑏

| [Applying 𝐶3 → 𝐶3 − 𝐶1]

= (𝑎𝑏𝑐)2𝑎[𝑏(𝑐 − 𝑏) − (−𝑏)(𝑏 + 𝑐)] [Expanding along 𝑅1]

= 2𝑎2𝑏𝑐[𝑏𝑐 − 𝑏2 + 𝑏2 + 𝑏𝑐] = 2𝑎2𝑏𝑐[2𝑏𝑐]

= 4𝑎2𝑏2𝑐2 = RHS

Hence proved

7. If 𝐴−1 = [3 −1 1

−15 6 −55 −2 2

] and 𝐵 = [1 2 −2

−1 3 00 −2 1

], find (𝐴𝐵)−1.

Page 54: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

54 Practice more on Determinants www.embibe.com

Solution:

Given that 𝐴−1 = [3 −1 1

−15 6 −55 −2 2

] and 𝐵 = [1 2 −2

−1 3 00 −2 1

]

Here, 𝐵 = [1 2 −2

−1 3 00 −2 1

]

Therefore, |𝐵| = 1(3 − 0) − 2(−1 − 0) − 2(2 − 0) = 1 ≠ 0 ⇒ 𝐵−1 exists.

𝐵11 = 3 𝐵12 = 1 𝐵13 = 2𝐵21 = 2 𝐵22 = 1 𝐵23 = 2𝐵31 = 6 𝐵32 = 2 𝐵33 = 5

We know, 𝐵−1 =1

|𝐵|𝑎𝑑𝑗 𝐵

=1

1[

𝐵11 𝐵21 𝐵31

𝐵12 𝐵22 𝐵32

𝐵13 𝐵23 𝐵33

] = [3 2 61 1 22 2 5

]

Also (𝐴𝐵)−1 = 𝐵−1𝐴−1, therefore

(𝐴𝐵)−1 = 𝐵−1𝐴−1𝑧

= [3 2 61 1 22 2 5

] [3 −1 1

−15 6 −55 −2 2

]

= [9 − 30 + 30 −3 + 12 − 12 3 − 10 + 123 − 15 + 10 −1 + 6 − 4 1 − 5 + 46 − 30 + 25 −2 + 12 − 10 2 − 10 + 10

] = [9 −3 5

−2 1 01 0 2

]

Hence, (𝐴𝐵)−1 = [9 −3 5

−2 1 01 0 2

]

8. Let 𝐴 = [1 −2 1

−2 3 11 1 5

]. Verify that

(i) (𝑎𝑑𝑗 𝐴)−1 = 𝑎𝑑𝑗(𝐴−1)

(ii) (𝐴−1)−1 = 𝐴

Solution:

(i)

Given matrix is 𝐴 = [1 −2 1

−2 3 11 1 5

], therefore

|𝐴| = 1(15 − 1) + 2(−10 − 1) + 1(−2 − 3) = −13 ≠ 0 ⇒ 𝐴−1 exists.

Page 55: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

55 Practice more on Determinants www.embibe.com

𝐴11 = 14 𝐴12 = 11 𝐴13 = −5𝐴21 = 11 𝐴22 = 4 𝐴23 = −3𝐴31 = −5 𝐴32 = −3 𝐴33 = −1

𝑎𝑑𝑗 𝐴 = [

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

] = [14 11 −511 4 −3−5 −3 −1

]

𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴 =

1

|𝐴|[

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

] =1

−13[14 11 −511 4 −3−5 −3 −1

] …(i)

Let, 𝐵 = 𝑎𝑑𝑗 𝐴, so, 𝐵 = [14 11 −511 4 −3−5 −3 −1

], therefore

|𝐵| = 14(−4 − 9) − 11(−11 − 15) − 5(−33 + 20) = −182 + 286 + 65 = 169 ≠ 0

⇒ 𝐵−1 exists.

𝐵11 = −13 𝐵12 = 26 𝐵13 = −13𝐵21 = 26 𝐵22 = −39 𝐵23 = −13

𝐵31 = −13 𝐵32 = −13 𝐵33 = −65

𝐵−1 =1

|𝐵|[

𝐵11 𝐵21 𝐵31

𝐵12 𝐵22 𝐵32

𝐵13 𝐵23 𝐵33

] =1

169[−13 26 −1326 −39 −13

−13 −13 −65] =

1

13[−1 2 −12 −3 −1

−1 −1 −5]

⇒ (𝑎𝑑𝑗 𝐴)−1 =1

13[−1 2 −12 −3 −1

−1 −1 −5] …(ii)

Let, 𝐶 = 𝐴−1, so, 𝐶 =1

−13[14 11 −511 4 −3−5 −3 −1

] =

[ −

14

13−

11

13

5

13

−11

13−

4

13

3

135

13

3

13

1

13]

, therefore

𝐶11 = −1

13𝐶12 =

2

13𝐶13 = −

1

13

𝐶21 =2

13𝐶22 = −

3

13𝐶23 = −

1

13

𝐶31 = −1

13𝐶32 = −

1

13𝐶33 = −

5

13

𝐴𝑑𝑗 𝐶 = [

𝐶11 𝐶21 𝐶31

𝐶12 𝐶22 𝐶32

𝐶13 𝐶23 𝐶33

] =

[ −

1

13

2

13−

1

132

13−

3

13−

1

13

−1

13−

1

13−

5

13]

=1

13[−1 2 −12 −3 −1

−1 −1 −5]

⇒ 𝐴𝑑𝑗 𝐶 = 𝑎𝑑𝑗 (𝐴−1) =1

13[−1 2 −12 −3 −1

−1 −1 −5] …(iii)

From the equations (ii) and (iii) we have, (𝑎𝑑𝑗 𝐴)−1 = 𝑎𝑑𝑗(𝐴−1)

Page 56: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

56 Practice more on Determinants www.embibe.com

(ii) From the equation (i), we have,

𝐴−1 =1

−13[14 11 −511 4 −3−5 −3 −1

]

Let, 𝐷 = 𝐴−1, so, 𝐷 =1

−13[14 11 −511 4 −3−5 −3 −1

] =

[ −

14

13−

11

13

5

13

−11

13−

4

13

3

135

13

3

13

1

13]

, therefore

|𝐷| = −(1

13)3

[14(−4 − 9) − 11(−11 − 15) − 5(−33 + 20)]

= −(1

13)3(169) = −

1

13≠ 0 ⇒ 𝐷−1 exists.

𝐷11 = −1

13𝐷12 =

2

13𝐷13 = −

1

13

𝐷21 =2

13𝐷22 = −

3

13𝐷23 = −

1

13

𝐷31 = −1

13𝐷32 = −

1

13𝐷33 = −

5

13

𝐷−1 =1

|𝐷|[

𝐷11 𝐷21 𝐷31

𝐷12 𝐷22 𝐷32

𝐷13 𝐷23 𝐷33

] =1

−1 13⁄

[ −

1

13

2

13−

1

132

13−

3

13−

1

13

−1

13−

1

13−

5

13]

= [1 −2 1

−2 3 11 1 5

]

⇒ 𝐷−1 = (𝐴−1)−1 = [1 −2 1

−2 3 11 1 5

] = 𝐴

9. Evaluate |

𝑥 𝑦 𝑥 + 𝑦𝑦 𝑥 + 𝑦 𝑥

𝑥 + 𝑦 𝑥 𝑦|.

Solution:

Given determinant is |

𝑥 𝑦 𝑥 + 𝑦𝑦 𝑥 + 𝑦 𝑥

𝑥 + 𝑦 𝑥 𝑦|

= |

2(𝑥 + 𝑦) 𝑦 𝑥 + 𝑦

2(𝑥 + 𝑦) 𝑥 + 𝑦 𝑥

2(𝑥 + 𝑦) 𝑥 𝑦| [Applying 𝐶1 → 𝐶1 + 𝐶2 + 𝐶3]

= 2(𝑥 + 𝑦) |

1 𝑦 𝑥 + 𝑦1 𝑥 + 𝑦 𝑥1 𝑥 𝑦

| [Taking 2(𝑥 + 𝑦) as common from 𝐶1]

Page 57: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

57 Practice more on Determinants www.embibe.com

= 2(𝑥 + 𝑦) |

0 −𝑥 𝑦0 𝑦 𝑥 − 𝑦1 𝑦 𝑦 + 𝑘

| [Applying 𝑅1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= 2(𝑥 + 𝑦){(−𝑥)(𝑥 − 𝑦) − 𝑦. 𝑦} [Expanding along 𝐶1]

= 2(𝑥 + 𝑦)(−𝑥2 + 𝑥𝑦 − 𝑦2)

= −2(𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2) = −2(𝑥3 + 𝑦3)

Hence, |

𝑥 𝑦 𝑥 + 𝑦𝑦 𝑥 + 𝑦 𝑥

𝑥 + 𝑦 𝑥 𝑦| = −2(𝑥3 + 𝑦3)

10. Evaluate |

1 𝑥 𝑦1 𝑥 + 𝑦 𝑦1 𝑥 𝑥 + 𝑦

|

Solution:

Given determinant is |

1 𝑥 𝑦1 𝑥 + 𝑦 𝑦1 𝑥 𝑥 + 𝑦

|

= |

0 −𝑦 00 𝑦 −𝑥1 𝑥 𝑥 + 𝑦

| [Applying 𝑅1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= {(−𝑦)(−𝑥) − 𝑦. 0} [Expanding along 𝐶1]

= 𝑥𝑦

Hence, |

1 𝑥 𝑦1 𝑥 + 𝑦 𝑦1 𝑥 𝑥 + 𝑦

| = 𝑥𝑦

11. Using properties of determinants, prove that:

|

𝛼 𝛼2 𝛽 + 𝛾

𝛽 𝛽2 𝛾 + 𝛼

𝛾 𝛾2 𝛼 + 𝛽

| = (𝛽 − 𝛾)(𝛾 − 𝛼)(𝛼 − 𝛽)(𝛼 + 𝛽 + 𝛾)

Solution:

LHS = |

𝛼 𝛼2 𝛽 + 𝛾

𝛽 𝛽2 𝛾 + 𝛼

𝛾 𝛾2 𝛼 + 𝛽

|

Page 58: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

58 Practice more on Determinants www.embibe.com

= |

𝛼 𝛼2 𝛼 + 𝛽 + 𝛾

𝛽 𝛽2 𝛼 + 𝛽 + 𝛾

𝛾 𝛾2 𝛼 + 𝛽 + 𝛾

| [Applying 𝐶3 → 𝐶1 + 𝐶3]

= (𝛼 + 𝛽 + 𝛾) |𝛼 𝛼2 1𝛽 𝛽2 1

𝛾 𝛾2 1

| [Taking α + β + γ as common from 𝐶3]

= (𝛼 + 𝛽 + 𝛾) |

𝛼 − 𝛽 𝛼2 − 𝛽2 0

𝛽 − 𝛾 𝛽2 − 𝛾2 0

𝛾 𝛾2 1

| [Applying 𝑅1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= (𝛼 + 𝛽 + 𝛾)(𝛼 − 𝛽)(𝛽 − 𝛾) |

1 𝛼 + 𝛽 01 𝛽 + 𝛾 0

𝛾 𝛾2 1|

[Taking 𝛼 − 𝛽 as common from 𝑅1 and 𝛽 − 𝛾 as common from 𝑅2]

= (𝛼 + 𝛽 + 𝛾)(𝛼 − 𝛽)(𝛽 − 𝛾){(𝛽 + 𝛾) − (𝛼 + 𝛽)} [Expanding along 𝐶3]

= (𝛼 + 𝛽 + 𝛾)(𝛼 − 𝛽)(𝛽 − 𝛾)(𝛾 − 𝛼) = RHS

Hence proved.

12. Using properties of determinants, prove that:

|

𝑥 𝑥2 1 + 𝑝𝑥3

𝑦 𝑦2 1 + 𝑝𝑦3

𝑧 𝑧2 1 + 𝑝𝑧3

| = (1 + 𝑝𝑥𝑦𝑧)(𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥), where p is any scalar.

Solution:

LHS = |

𝑥 𝑥2 1 + 𝑝𝑥3

𝑦 𝑦2 1 + 𝑝𝑦3

𝑧 𝑧2 1 + 𝑝𝑧3

|

= |𝑥 𝑥2 1𝑦 𝑦2 1

𝑧 𝑧2 1

| + |

𝑥 𝑥2 𝑝𝑥3

𝑦 𝑦2 𝑝𝑦3

𝑧 𝑧2 𝑝𝑧3

|

= (−1)1 |1 𝑥2 𝑥1 𝑦2 𝑦

1 𝑧2 𝑧

| + 𝑝 |𝑥 𝑥2 𝑥3

𝑦 𝑦2 𝑦3

𝑧 𝑧2 𝑧3

| [Taking 𝑝 as common from 𝐶3]

= (−1)2 |1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

| + 𝑝𝑥𝑦𝑧 |1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

| [Taking 𝑥, 𝑦, 𝑧 as common from 𝑅1, 𝑅2, 𝑅3 respectively]

Page 59: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

59 Practice more on Determinants www.embibe.com

= (1 + 𝑝𝑥𝑦𝑧) |1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

| [Taking |1 𝑥 𝑥2

1 𝑦 𝑦2

1 𝑧 𝑧2

| as common]

= (1 + 𝑝𝑥𝑦𝑧) |0 𝑥 − 𝑦 𝑥2 − 𝑦2

0 𝑦 − 𝑧 𝑦2 − 𝑧2

1 𝑧 𝑧2

| [Applying 𝑅1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= (1 + 𝑝𝑥𝑦𝑧)(𝑥 − 𝑦)(𝑦 − 𝑧) |0 1 𝑥 + 𝑦0 1 𝑦 + 𝑧

1 𝑧 𝑧2

| [Taking 𝑥 − 𝑦 as common from 𝑅1 and 𝑦 − 𝑧 as common form 𝑅2]

= (1 + 𝑝𝑥𝑦𝑧)(𝑥 − 𝑦)(𝑦 − 𝑧){(𝑦 + 𝑧) − (𝑥 + 𝑦)} [Expanding along 𝐶1]

= (1 + 𝑝𝑥𝑦𝑧)(𝑥 − 𝑦)(𝑦 − 𝑧)(𝑧 − 𝑥) = RHS

Hence proved.

13. Using properties of determinants, prove that:

|3𝑎 −𝑎 + 𝑏 −𝑎 + 𝑐

−𝑏 + 𝑎 3𝑏 −𝑏 + 𝑐−𝑐 + 𝑎 −𝑐 + 𝑏 3𝑐

| = 3(𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

Solution:

LHS = |3𝑎 −𝑎 + 𝑏 −𝑎 + 𝑐

−𝑏 + 𝑎 3𝑏 −𝑏 + 𝑐−𝑐 + 𝑎 −𝑐 + 𝑏 3𝑐

|

= |𝑎 + 𝑏 + 𝑐 −𝑎 + 𝑏 −𝑎 + 𝑐𝑎 + 𝑏 + 𝑐 3𝑏 −𝑏 + 𝑐𝑎 + 𝑏 + 𝑐 −𝑐 + 𝑏 3𝑐

| [Applying 𝐶1 → 𝐶1 + 𝐶2 + 𝐶3]

= (𝑎 + 𝑏 + 𝑐) |1 −𝑎 + 𝑏 −𝑎 + 𝑐1 3𝑏 −𝑏 + 𝑐1 −𝑐 + 𝑏 3𝑐

| [Taking (𝑎 + 𝑏 + 𝑐) as common from 𝐶1]

= (𝑎 + 𝑏 + 𝑐) |0 −𝑎 − 2𝑏 −𝑎 + 𝑏0 2𝑏 + 𝑐 −𝑏 − 2𝑐1 −𝑐 + 𝑏 3𝑐

| [Applying 𝑅1 → 𝑅1 − 𝑅2, 𝑅2 → 𝑅2 − 𝑅3]

= (𝑎 + 𝑏 + 𝑐){(−𝑎 − 2𝑏)(−𝑏 − 2𝑐) − (2𝑏 + 𝑐)(−𝑎 + 𝑏)} [Expanding along 𝐶1]

= (𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 2𝑎𝑐 + 2𝑏2 + 4𝑏𝑐 − (−2𝑎𝑏 + 2𝑏2 − 𝑎𝑐 + 𝑏𝑐))

= (𝑎 + 𝑏 + 𝑐)(3𝑎𝑏 + 3𝑏𝑐 + 3𝑐𝑎) = 3(𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = RHS

Hence proved.

Page 60: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

60 Practice more on Determinants www.embibe.com

14. Using properties of determinants, prove that:

|

1 1 + 𝑝 1 + 𝑝 + 𝑞2 3 + 2𝑝 4 + 3𝑝 + 2𝑞3 6 + 3𝑝 10 + 6𝑝 + 3𝑞

| = 1

Solution:

LHS = |

1 1 + 𝑝 1 + 𝑝 + 𝑞2 3 + 2𝑝 4 + 3𝑝 + 2𝑞3 6 + 3𝑝 10 + 6𝑝 + 3𝑞

|

= |

1 1 + 𝑝 1 + 𝑝 + 𝑞0 1 2 + 𝑝0 3 7 + 3𝑝

| [Applying 𝑅2 → 𝑅2 − 2𝑅1, 𝑅3 → 𝑅3 − 3𝑅1]

= 1{1. (7 + 3𝑝) − (3)(2 + 𝑝)} [Expanding along 𝐶1]

= 7 + 3𝑝 − 6 − 3𝑝 = 1 = RHS

Hence proved.

15. Using properties of determinants, prove that:

|

sin 𝛼 cos𝛼 cos(𝛼 + 𝛿)

sin𝛽 cos𝛽 cos(𝛽 + 𝛿)

sin𝛾 cos 𝛾 cos(𝛾 + 𝛿)| = 0

Solution:

LHS = |

sin𝛼 cos 𝛼 cos(𝛼 + 𝛿)

sin𝛽 cos 𝛽 cos(𝛽 + 𝛿)

sin𝛾 cos 𝛾 cos(𝛾 + 𝛿)|

= |

sin𝛼 cos𝛼 cos𝛿 − sin𝛼 sin𝛿 cos(𝛼 + 𝛿)

sin𝛽 cos𝛽 cos𝛿 − sin𝛽 sin 𝛿 cos(𝛽 + 𝛿)

sin𝛾 cos 𝛾 cos 𝛿 − sin 𝛾 sin𝛿 cos(𝛾 + 𝛿)| [Applying 𝐶2 → cos𝛿𝐶2 − sin 𝛿 𝐶1]

= |

sin𝛼 cos(𝛼 + 𝛿) cos(𝛼 + 𝛿)

sin𝛽 cos(𝛽 + 𝛿) cos(𝛽 + 𝛿)

sin𝛾 cos(𝛾 + 𝛿) cos(𝛾 + 𝛿)|

= 0 = RHS [∵ 𝐶2 = 𝐶3]

Hence proved.

Page 61: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

61 Practice more on Determinants www.embibe.com

16. Solve the system of equations:

2

𝑥+

3

𝑦+

10

𝑧= 4

4

𝑥−

6

𝑦+

5

𝑧= 1

6

𝑥+

9

𝑦−

20

𝑧= 2

Solution:

The given system of equations are

2

𝑥+

3

𝑦+

10

𝑧= 4

4

𝑥−

6

𝑦+

5

𝑧= 1

6

𝑥+

9

𝑦−

20

𝑧= 2

This system of equations can be written as 𝐴𝑋 = 𝐵, where

𝐴 = [2 3 104 −6 56 9 −20

] , 𝑋 = [

1 𝑥⁄

1 𝑦⁄

1 𝑧⁄] and 𝐵 = [

412]

Now, |𝐴| = 2(120 − 45) − 3(−80 − 30) + 10(36 + 36) = 150 + 330 + 720 = 1200 ≠ 0

⇒ 𝐴−1 exists.

Therefore

𝐴11 = 75 𝐴12 = 110 𝐴13 = 72𝐴21 = 150 𝐴22 = −100 𝐴23 = 0𝐴31 = 75 𝐴32 = 30 𝐴33 = −24

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴 =

1

1200[75 150 75110 −100 3072 0 −24

]

Also, 𝑋 = 𝐴−1𝐵

⇒ [

1 𝑥⁄

1 𝑦⁄

1 𝑧⁄] =

1

1200[75 150 75110 −100 3072 0 −24

] [412]

[ 1

𝑥1

𝑦1

𝑧]

=1

1200[300 + 150 + 150440 − 100 + 60288 + 0 − 48

]

Page 62: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

62 Practice more on Determinants www.embibe.com

[ 1

𝑥1

𝑦

1

𝑧]

=1

1200[600400240

] =

[ 1

21

31

5]

⇒1

𝑥=

1

2,

1

𝑦=

1

3,

1

𝑧=

1

5⇒ 𝑥 = 2, 𝑦 = 3, 𝑧 = 5

17. Choose the correct answer.

If 𝑎, 𝑏, 𝑐 are in A.P., then the determinant |𝑥 + 2 𝑥 + 3 𝑥 + 2𝑎𝑥 + 3 𝑥 + 4 𝑥 + 2𝑏𝑥 + 4 𝑥 + 5 𝑥 + 2𝑐

| is:

(A) 0

(B) 1

(C) 𝑥

(D) 2𝑥

Solution:

Given that 𝑎, 𝑏, 𝑐 are in A.P and determinant is |𝑥 + 2 𝑥 + 3 𝑥 + 2𝑎𝑥 + 3 𝑥 + 4 𝑥 + 2𝑏𝑥 + 4 𝑥 + 5 𝑥 + 2𝑐

|

= |𝑥 + 2 𝑥 + 3 𝑥 + 2𝑎

0 0 2(2𝑏 − 𝑎 − 𝑐)𝑥 + 4 𝑥 + 5 𝑥 + 2𝑐

| [Applying 𝑅2 → 2𝑅2 − (𝑅1 − 𝑅3)]

= |𝑥 + 2 𝑥 + 3 𝑥 + 2𝑎

0 0 0𝑥 + 4 𝑥 + 5 𝑥 + 2𝑐

| [∵ 𝑎, 𝑏, 𝑐 are in AP, therefore 2𝑏 = 𝑎 + 𝑐]

= 0 [∵ All the elements of 𝑅2 is zero]

Hence, the option (𝐴) is correct.

18. Choose the correct answer.

If 𝑥, 𝑦, 𝑧 are nonzero real numbers, then the inverse of matrix 𝐴 = [𝑥 0 00 𝑦 00 0 𝑧

] is:

(A) [𝑥−1 0 00 𝑦−1 0

0 0 𝑧−1

]

Page 63: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

63 Practice more on Determinants www.embibe.com

(B) 𝑥𝑦𝑧 [𝑥−1 0 00 𝑦−1 0

0 0 𝑧−1

]

(C) 1

𝑥𝑦𝑧[𝑥 0 00 𝑦 00 0 𝑧

]

(D) 1

𝑥𝑦𝑧[1 0 00 1 00 0 1

]

Solution:

Given matrix is 𝐴 = [𝑥 0 00 𝑦 00 0 𝑧

]

Now, |𝐴| = 𝑥(𝑦𝑧 − 0) − 0(0 − 0) + 0(0 − 0) = 𝑥𝑦𝑧 ≠ 0 ⇒ 𝐴−1 exists. Therefore,

𝐴11 = 𝑦𝑧 𝐴12 = 0 𝐴13 = 0𝐴21 = 0 𝐴22 = 𝑥𝑧 𝐴23 = 0𝐴31 = 0 𝐴32 = 0 𝐴33 = 𝑥𝑦

We know, 𝐴−1 =1

|𝐴|𝑎𝑑𝑗 𝐴

=1

𝑥𝑦𝑧[

𝑦𝑧 0 00 𝑥𝑧 00 0 𝑥𝑦

]

=

[ 1

𝑥0 0

01

𝑦0

0 01

𝑧]

= [𝑥−1 0 00 𝑦−1 0

0 0 𝑧−1

]

Hence, the option (𝐴) is correct.

19. Choose the correct answer.

Let 𝐴 = [1 sin 𝜃 1

−sin 𝜃 1 sin 𝜃−1 − sin 𝜃 1

], where 0 ≤ 𝜃 ≤ 2𝜋 then:

(A) det(𝐴) = 0

(B) det(𝐴) ∈ (2,∞)

(C) det(𝐴) ∈ (2, 4)

(D) det(𝐴) ∈ [2, 4]

Page 64: CBSE NCERT Solutions for Class 12 Maths Chapter 04€¦ · Class-XII-Maths Determinants 1 Practice more on Determinants CBSE NCERT Solutions for Class 12 Maths Chapter 04 Back of

Class-XII-Maths Determinants

64 Practice more on Determinants www.embibe.com

Solution:

Given matrix is 𝐴 = [1 sin 𝜃 1

−sin 𝜃 1 sin 𝜃−1 −sin 𝜃 1

]

= 1(1 + sin2 𝜃) + sin𝜃(− sin 𝜃 + sin𝜃) + 1(sin2 𝜃 + 1) [Expanding along 𝐶1]

= 2(1 + sin2 𝜃)

Now, given that: 0 ≤ 𝜃 ≤ 2𝜋

⇒ 0 ≤ sin𝜃 ≤ 1

⇒ 0 ≤ sin2 𝜃 ≤ 1

⇒ 1 ≤ 1 + sin2 𝜃 ≤ 2

⇒ 2 ≤ 2(1 + sin2 𝜃) ≤ 4

⇒ det(𝐴) ∈ [2, 4]

Hence, the option (𝐷) is correct.