Top Banner
vity solitons in semiconduc microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy [email protected] rators: a Tissoni, Reza Kheradmand partimento di Scienze, Università dell'Insubria, Como, Italy edicce, Massimo Giudici, Stephane Barland t Non Lineaire de Nice, France o Brambilla, Tommaso Maggipinto ipartimento di Fisica Interateneo, Università e Politecnico di Bari, Italy
27

Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy [email protected].

Mar 28, 2015

Download

Documents

Lillian Doherty
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Cavity solitons in semiconductormicrocavities

Luigi A. Lugiato

INFM, Dipartimento di Scienze, Università dell'Insubria, Como, [email protected]

Collaborators:Giovanna Tissoni, Reza KheradmandINFM, Dipartimento di Scienze, Università dell'Insubria, Como, ItalyJorge Tredicce, Massimo Giudici, Stephane BarlandInstitut Non Lineaire de Nice, FranceMassimo Brambilla, Tommaso MaggipintoINFM, Dipartimento di Fisica Interateneo, Università e Politecnico di Bari, Italy

Page 2: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

MENU

What are cavity solitons and why are they interesting?

The experiment at INLN (Nice):

First experimental demonstration of CS insemiconductors microcavities

“Tailored” numerical simulations steering the experiment

Thermally induced and guided motion of CS in presence of phase/amplitude gradients: numerical simulations

Page 3: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Solitons in propagation problems

Temporal Solitons: no dispersion broadening

z

“Temporal” NLSE: 02

22

t

uuu

z

ui

dispersionpropagation

Solitons are localized waves that propagate (in nonlinear media) without change of form

Spatial Solitons: no diffraction broadening

“Spatial” NLSE:

02

22

x

uuu

z

ui 1D

02

2

2

22

y

u

x

uuu

z

ui 2D

x

y

z diffraction

Page 4: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Input

Nonlinear Medium

nl

Cavity Output(Plane Wave) (Pattern)

Nonlinear Medium

nl

Nonlinear media in cavities

Hexagons Honeycomb Rolls

Optical Pattern Formation

Diffraction in the paraxialapproximation:

2

2

2

22

yx

022

injuiuuiuut

ui

diffractiondissipation

“Dissipative” NLSE:

Kerr medium in cavity.Lugiato Lefever, PRL 58, 2209 (1987).

Page 5: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

1 1

1 1

1

0

00

0

Encoding a binary number in a 2D pattern??

Problem: different peaks of the pattern are strongly correlated

Page 6: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Spatial structures concentrated in a relatively small regionof an extended system, created by stable fronts connecting

two spatial structures coexisting in the system

Solution: Localised Structures

1D case

Page 7: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Localised Structures Tlidi, Mandel, Lefever

Page 8: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

In

tens

ity

x y

CAVITY SOLITONS

Cavity solitons persist after the passage of the pulse, and their position can be controlled by appropriate phase and amplitude gradients in the holding field

Phase profile

Intensity profileIn a semiconductor microcavity: Brambilla, Lugiato, Prati, Spinelli, Firth,

Phys. Rev. Lett.79, 2042 (1997).

Nonlinear medium nl

Holding beam Output field

Writingpulses

Possible applications:realisation of reconfigurablesoliton matrices, serial/parallelconverters, etc

Page 9: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Cavity Solitons

Cavity

Mean field limit: field is assumed uniform along the cavity (along z)

CS height, width, number and interaction properties do not depend directly on the total energy of the system

Dissipation

Non-propagative problem: CS profiles

Inte

nsit

y

x y x

y

Cavity Solitons are individual entities, independent from one another

Page 10: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

What are the mechanisms responsible for CS formation?

AbsorptionCS as Optical Bullet Holes (OBH):

the pulse locally creates a bleached area where the material is transparent

Interplay between cavitydetuning and diffraction

At the soliton peak the system is closer to resonance with the cavity

Refractive effectsSelf-focusing action of the material:

the nonlinearity counteracts diffraction broadening

Page 11: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Long-Term Research Project PIANOS

Processing of Information with Arrays of Nonlinear Optical Solitons

France Telecom, Bagneux (Kuszelewicz, now LPN, Marcoussis )PTB, Braunschweig (Weiss, Taranenko)INLN, Nice (Tredicce)University of Ulm (Knoedl)Strathclyde University, Glasgow (Firth)INFM, Como + Bari, (Lugiato, Brambilla)

1999-2001

Page 12: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Nature 419, 699 (2002)

The experiment at INLN (Nice) and its theoretical interpretation

was published in

Page 13: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Tunable Laser

CCD

Holding beam

Writing beam

Detector linear array

VCSEL

BS

BS BS

BS

aom

aom

C

L L

L L

C

M M

Experimental Set-upS. Barland, M. Giudici and J. Tredicce, Institut Non-lineaire de Nice (INLN)

BS: beam splitter, C: collimator, L: lens, aom: acousto-optic modulator

Page 14: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Active layer (MQW)

E R

Bottom Emitter (150m)

Features1) Current crowding at borders (not critical for CS)2) Cavity resonance detuning (x,y)3) Cavity resonance roughness (layer jumps) See R.Kuszelewicz et al. "Optical self-organisation in bulk and MQW GaAlAs Microresonators", Phys.Rev.Lett. 84, 6006 (2000)

n-contact

The VCSELTh. Knoedl, M. Miller and R. Jaeger, University of Ulm

Bragg reflector

Bragg reflector

GaAs Substrate

E In

p-contact

Page 15: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Experimental results

In the homogeneous region: formation of a single spot of about

10 m diameter

Observation of differentstructures (symmetry and spatial wavelength) in different spatial regions

Interaction disappears on the right side of the device due to cavity resonance gradient (400 GHz/150 m, imposed by construction)

Intensity (a.u.)

x (m)

Fre

quen

cy (

GH

z)

x

Above threshold,no injection (FRL)

Intensity (a.u.)

x (m)

Fre

quen

cy (

GH

z)x

Below threshold,injected field

Page 16: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Control of two independent spots

Spots can be interpreted

as CS

50 W writing beam(WB) in b,d. WB-phase changed by in h,k

All the circled statescoexist when only the broad

beam is present

Page 17: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

E = normalized S.V.E. of the intracavity fieldEI = normalized S.V.E. of the input fieldN = carrier density scaled to transp. value = cavity detuning parameter = bistability parameter 1 NiN

,),(),(1 2EaiENiyxEEyxit

EI

NdyxIENNt

N 22),(Im

Where

Choice of a simple model: it describes the basic physics and more refined models showed no qualitatively different behaviours.

(x,y) = (C - in) / + (x,y)

),( yxEIn Broad Gaussian (twice the VCSEL)

The ModelL.Spinelli, G.Tissoni, M. Brambilla, F. Prati and L. A. Lugiato, Phys.Rev.A 58 , 2542 (1998)

Page 18: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Theoretical interpretation

-2.25 -2.00 -1.75 -1.50 -1.250

1

2

3112.537.5

x (m)150750

|ES|

x (m)0 37.5 75 112.5 150

-2.25 -2.00 -1.75 -1.50 -1.25

Patterns (rolls, filaments)

Cavity Solitons

The vertical line corresponds to the MI boundary

CS form close to the MI boundary, on the red side

Page 19: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Pinning by inhomogeneities

Broad beam only

Experiment

Add local perturbation

Broad beam only

Cavity Solitonsappear close to the MI boundary, Final Position is imposed by roughnessof the cavity resonance frequency

Numerics

(x,y)

Page 20: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

7 Solitons: a more recent achievement

Courtesy of Luca Furfaro e Xavier Hacier

Page 21: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

CS in presence of a doughnut-shaped (TEM10 or 01) input beam: they experience

a rotational motion due to the input phase profile e i (x,y)

Numerical simulations of CS dynamics in presence of gradients in the input fields or/and thermal effects

Output intensity profileInput intensity profile

Page 22: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Intensity profile Temperature profile

Thermal effects induce on CS a spontaneous translational motion,originated by a Hopf instability with k 0

Page 23: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

The thermal motion of CS can be guided on “tracks”, createdby means of a 1D phase modulation in the input field

Output intensity profileInput phase modulation

0 10 20 30 40 50 60

-0,2

-0,1

0,0

0,1

0,2

0,3

X

Page 24: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

The thermal motion of CS can be guided on a ring, created by means of an input amplitude modulation

Output intensity profileInput amplitude modulation

Page 25: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

CS in guided VCSEL above threshold: they are “sitting”on an unstable background

Output intensity profile

By reducing the input intensity, the system passes from the pattern branch (filaments) to CS

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.00

1

2

3

4

|ES|

EI

Page 26: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Next step:

Conclusions

Cavity solitons look like very interesting objects

To achieve control of CS position and of CS motion

by means of phase-amplitude modulations in the holding beam

There is by now a solid experimental demonstration of CS

in semiconductor microresonators

Page 27: Cavity solitons in semiconductor microcavities Luigi A. Lugiato INFM, Dipartimento di Scienze, Università dell'Insubria, Como, Italy luigi.lugiato@uninsubria.it.

Thermal effects induce on CS a spontaneous translational

motion, that can be guided by means of appropriate

phase/amplitude modulations in the holding beam.

Preliminary numerical simulations demonstrate that

CS persist also above the laser threshold