Top Banner
Cavity-enhanced dipole forces for dark-field seeking atoms and molecules Tim Freegarde Dipartimento di Fisica, Università di Trento 38050 Povo (TN), Italy J F Allen Physics Research Laboratories, University of St Andrews, Fife KY16 9SS, Scotland David McGloin, Kishan Dholakia R 2 R 1 even even odd Cartesi an cylindr ical Hermite- Gaussian Laguerre- Gaussian i + j 2p + |m | RAY OPTICS • 2 round trips before repeating • inverted image after 1 round trip • returning beam forward beam GAUSSIAN BEAMS CAVITY MODES • half modes simultaneously resonant • (anti-)symmetric image = superposition of even(odd) modes 0 1 0 f f 1 0 0 1 HALF TRIP ROUND TRIP q f q 2 L/ R 1 L/ R 2 0 1 1 confocal high low towards low intensity towards high intensity L 20 L 00 OPTICAL BOTTLE BEAM Freegarde & Dholakia, Phys Rev A, in press see Arlt & Padgett, Opt. Lett. 25 (2000) 191-193 Laguerre-Gaussian superposition: CONFOCAL CAVITIES COAXIAL RING ARRAY Freegarde & Dholakia, Opt. Commun. 201 99 (2002) see Zemánek & Foot, Opt. Commun. 146 119 (1998) use single Gaussian beam of waist w 1 larger than that of the fundamental cavity mode (w 0 = w 1 ) counterpropagating beam smaller by same factor (w 2 = w 0 ) beams of equal power cancel where nodal surfaces intersect 2 1 2 2 2 1 2 0 1 1 ln z w z w z w z w z r intensity minima form a series of coaxial rings spaced by /2 traps deepest when = 0.492 r 0 ~ 0.7 w 0 (z) pm pm pm z r a z r , , L with = 0.492, 99% of power in first 5 modes OPTICAL DIPOLE FORCE LAGUERRE-GAUSSIAN BEAMS return beam larger than forward beam to avoid nodal surfaces cancellation at cavity centre constructive interference elsewhere thanks to different radial dependences and Gouy shifts with = 0.5, the maximum modulation depth is 7%. Intensity distribution within a perfectly confocal resonator. Above left: mean intensity shown for central 40% of the cavity. The solid lines show where the forward beam has fallen to e -2 of its on-axis intensity. Above: viewed on a wavelength scale around the cavity centre, the modulation due to interference between the counter-propagating beams is apparent. Here, l = 100 mm, = 780nm, = 2. Left: depth of modulation due to interference between forward and return beams. Black=0, white=100%. MECHANICAL AMPLIFIER Amplitudes a p0 of mode components forming the complete five-component optical bottle beam with =2. 40 30 20 10 00 525 . 0 332 . 0 165 . 0 332 . 0 691 . 0 L L L L L E five component superposition optimizes trap depth for given radius: COMPOSITION trap intensity nearly half that at centre of simple Gaussian beam with same waist and power as forward beam 99.99% mirrors with 100 mW at 780 nm would give 5 K trap depth for 85 Rb at 0.2 nm detuning Variation of trap col (dotted) and trap centre (dashed) intensities – in units of the well depth at zero mirror displacement – and trap centre position (right hand scale) as mirrors are displaced from their confocal separation. Intensity distribution when the cavity mirrors are 0.1 mm from their confocal separation (l/l = 0.001), for r 2 = 0.99, t 2 = 0.01. The nodal surfaces, shown dashed, are now curved, reflecting the increase in Gouy phase with mode number. Central and trapping intensities are reduced by about a third. Intensity distribution around the centre of a confocal cavity. Dashed and solid lines indicate the nodal and antinodal planes; the dotted line shows where the lowest part of the trap wall is maximum. Logarithmic contours (four per decade) refer to the peak intensity on axis. l = 100 mm, = 780 nm, = 0.492. trapping of spectrally complex atoms and molecules investigation of vortices in quantum degenerate gases 14 coupling between adjacent microtraps 15 cooling via coupling to cavity radiation field 16-18 Applicatio ns: SINGLE TOROID • in preparation dissimilar forward/return waist sizes eliminate nodal planes magnetic field free toroidal trap for study of vortices in condensates 14 REFERENCES 1 R. Grimm, M. Weidemüller, Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42 (2000) 95-170 2 S. L. Rolston, C. Gerz, K. Helmerson, P. S. Jessen, P. D. Lett, W. D. Phillips, R. J. Spreeuw, C. I. Westbrook, Proc. SPIE 1726 (1992) 205-211 3 J. D. Miller, R. A. Cline, D. J. Heinzen, Phys. Rev. A 47 (1993) R4567-4570 4 M. D. Barrett, J. A. Sauer, M. S. Chapman, Phys. Rev. Lett. 87 (2001) 010404 5 T. Takekoshi, B. M. Patterson, R. J. Knize, Phys. Rev. Lett. 81 (1998) 5105-5108 6 N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, S. Chu, Phys. Rev. Lett. 74 (1995) 1311- 1314 7 P. Rudy, R. Ejnisman, A. Rahman, S. Lee, N. P. Bigelow, Optics Express 8 (2001) 159-165 8 S. A. Webster, G. Hechenblaikner, S. A. Hopkins, J. Arlt, C. J. Foot, J. Phys. B 33 (2000) 4149-4155 9 T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimuzu, H. Sasada, Phys. Rev. Lett. 78 (1997) 4713-4716 10 R. Ozeri, L. Khaykovich, N. Davidson, Phys. Rev. A 59 (1999) R1759-1753 11 J. Ye, D. W. Vernooy, H. J. Kimble, Phys. Rev. Lett. 83 (1999) 4987-4990 12 S. Jochim, Th. Elsässer, A. Mosk, M. Weidemüller, R. Grimm, Int. Conf. on At. Phys., Firenze, Italy, poster G.11 (2000) 13 P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, G. Rempe, J. Mod. Opt. 47 (2000) 2769-2787 14 E. M. Wright, J. Arlt, K. Dholakia, Phys. Rev. A 63 (2000) 013608 15 P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, G. Rempe, Phys. Rev. Lett. 84 (2000) 4068-4071 16 T. Zaugg, M. Wilkens, P. Meystre, G. Lenz, Opt. Commun. 97 (1993) 189-193 17 M. Gangl, H. Ritsch, Phys. Rev. A 61 (1999) 011402 18 V. Vuletic, S. Chu, Phys. Rev. Lett. 84 (2000) 3787-3790 dipole traps eliminate the magnetic fields needed for MOTs 1 FAR OFF RESONANCE 2-5 broadband interaction and minimal scattering, hence suitable for spectrally complex atoms and molecules intense laser beam needed to compensate for interaction weakness BLUE-DETUNED 6-10 dark-field seeking to minimize residual perturbations need isolated islands of low intensity for closed trapping region RESONANT CAVITIES 11-13 can greatly increase circulating intensity, as optical absorption is low optical field not a single cavity mode transverse mode degeneracy allows enhancement of mode superpositions for complex field geometries an arbitrary field may be written as a superposition pm L kz m z R kr z w r z w r z w r L z w z z m p m p p z r m m p R m pm i i 2 i exp 2 2 tan 1 2 i exp ! 1 ! 4 , , 2 2 2 2 2 2 1 0 L z z z z R R 2 the Laguerre-Gaussian cavity modes are solutions to the paraxial wave equation in cylindrical polar coordinates, where are Laguerre polynomials and , , . x L m p three different views of physics: Dipole force traps for dark-field seeking states of atoms and molecules require regions of low intensity that are completely surrounded by a bright optical field. Confocal cavities allow the resonant enhancement of these interesting transverse mode superpositions, and put deep off- resonant dark-field seeking dipole traps within reach of low-power diode lasers. 2 1 0 R z z w z w 2 0 w z R Laguerre-Gaussian beams , of non-resonant waist radius w 1 , correspond to superpositions of resonant L-G beams with the same azimuthal index m = s. The first three coefficients are: ) ( qm 1 L pmq a p s ps s p s p a sin ! ! ! cos 1 0 2 2 1 1 1 sin 1 cos sin ! 1 ! ! cos s p s p s p a p s ps 2 2 2 2 2 2 1 2 cos sin 2 cos sin 1 cos sin ! 2 ! ! 2 ! cos p s p s p s p s p a p s ps 0 1 1 0 0 1 1 0 sin w w w w w w w w col intensi ty trap centre intensity trap centre position moving the mirrors from their confocal separation causes an amplified displacement of the trap centre amplification by same factor as intensity enhancement LARGE PERIOD STANDING WAVE • in preparation • see D M Giltner et al, Opt. Commun. 107 227 (1994) pattern period = /sin 2-D Hermite-Gaussian analysis; astigmatism renders out-of-plane direction non-confocal high Q: all (odd) even modes give (anti-)symmetric field pattern finite Q: half-axial modes contribute amplification mechanism may be compared to Vernier scale between Gouy phases of different Laguerre-Gaussian components
1

Cavity-enhanced dipole forces for dark-field seeking atoms and molecules

Feb 11, 2016

Download

Documents

Ion

L 20. L 00. Cavity-enhanced dipole forces for dark-field seeking atoms and molecules. David McGloin, Kishan Dholakia. Tim Freegarde. Dipartimento di Fisica, Università di Trento 38050 Povo (TN), Italy. J F Allen Physics Research Laboratories, University of St Andrews, - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cavity-enhanced dipole forces for      dark-field seeking atoms and molecules

Cavity-enhanced dipole forces for dark-field seeking atoms and moleculesTim Freegarde

Dipartimento di Fisica,Università di Trento38050 Povo (TN), Italy

J F Allen Physics Research Laboratories,University of St Andrews,Fife KY16 9SS, Scotland

David McGloin, Kishan Dholakia

R2R1

even evenoddCartesiancylindrical

Hermite-GaussianLaguerre-Gaussian

i + j2p + |m |

RAY OPTICS• 2 round trips before repeating• inverted image after 1 round trip• returning beam forward beam

GAUSSIAN BEAMS

CAVITY MODES• half modes simultaneously

resonant• (anti-)symmetric image =

superposition of even(odd) modes

010

f

f

1001

HALF TRIP ROUND TRIP

qfq2

L/R1

L/R2

0 1

1confocal

• high

• low

towardslow intensity

towardshigh intensity

L20

L00

OPTICAL BOTTLE BEAM• Freegarde & Dholakia, Phys Rev A, in press• see Arlt & Padgett, Opt. Lett. 25 (2000) 191-193

• Laguerre-Gaussian superposition:

CONFOCAL CAVITIES

COAXIAL RING ARRAY• Freegarde & Dholakia, Opt. Commun. 201 99 (2002)• see Zemánek & Foot, Opt. Commun. 146 119 (1998)

• use single Gaussian beam of waist w1 larger than that of the fundamental cavity mode (w0 = w1)

• counterpropagating beam smaller by same factor (w2 = w0)

• beams of equal power cancel where nodal surfaces intersect

2

12

22

120

11lnzwzwzw

zwzr

• intensity minima form a series of coaxial rings spaced by /2

• traps deepest when = 0.492

• r0 ~ 0.7 w0(z)

pm

pmpm zrazr ,, L

• with = 0.492, 99% of power in first 5 modes

OPTICAL DIPOLE FORCE

LAGUERRE-GAUSSIAN BEAMS

• return beam larger than forward beam to avoid nodal surfaces

• cancellation at cavity centre• constructive interference

elsewhere thanks to different radial dependences and Gouy shifts

• with = 0.5, the maximum modulation depth is 7%.

Intensity distribution within a perfectly confocal resonator.

Above left: mean intensity shown for central 40% of the cavity. The solid lines show where the forward beam has fallen to e-2 of its on-axis intensity.

Above: viewed on a wavelength scale around the cavity centre, the modulation due to interference between the counter-propagating beams is apparent. Here,l = 100 mm, = 780nm, = 2.

Left: depth of modulation due to interference between forward and return beams. Black=0, white=100%.

MECHANICAL AMPLIFIER

Amplitudes ap0 of mode components forming the complete five-component optical bottle beam with =2.

4030201000 525.0332.0165.0332.0691.0 LLLLLE

• five component superposition optimizes trap depth for given radius:

COMPOSITION

• trap intensity nearly half that at centre of simple Gaussian beam with same waist and power as forward beam• 99.99% mirrors with 100 mW at 780 nm would give 5 K trap depth for 85Rb at 0.2 nm detuning

Variation of trap col (dotted) and trap centre (dashed) intensities – in units of the well depth at zero mirror displacement – and trap centre position (right hand scale) as mirrors are displaced from their confocal separation.

Intensity distribution when the cavity mirrors are 0.1 mm from their confocal separation (l/l = 0.001), for r2

= 0.99,t2 = 0.01. The nodal surfaces, shown dashed, are now curved, reflecting the increase in Gouy phase with mode number. Central and trapping intensities are reduced by about a third.

Intensity distribution around the centre of a confocal cavity. Dashed and solid lines indicate the nodal and antinodal planes; the dotted line shows where the lowest part of the trap wall is maximum. Logarithmic contours (four per decade) refer to the peak intensity on axis. l = 100 mm, = 780 nm, = 0.492.

• trapping of spectrally complex atoms and molecules

• investigation of vortices in quantum degenerate gases14

• coupling between adjacent microtraps15

• cooling via coupling to cavity radiation field16-18

Applications:

SINGLE TOROID• in preparation

• dissimilar forward/return waist sizes eliminate nodal planes

• magnetic field free toroidal trap for study of vortices in condensates14

REFERENCES1 R. Grimm, M. Weidemüller, Y. B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42 (2000) 95-1702 S. L. Rolston, C. Gerz, K. Helmerson, P. S. Jessen, P. D. Lett, W. D. Phillips, R. J. Spreeuw, C. I. Westbrook, Proc.

SPIE 1726 (1992) 205-2113 J. D. Miller, R. A. Cline, D. J. Heinzen, Phys. Rev. A 47 (1993) R4567-45704 M. D. Barrett, J. A. Sauer, M. S. Chapman, Phys. Rev. Lett. 87 (2001) 0104045 T. Takekoshi, B. M. Patterson, R. J. Knize, Phys. Rev. Lett. 81 (1998) 5105-51086 N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, S. Chu, Phys. Rev. Lett. 74 (1995) 1311-13147 P. Rudy, R. Ejnisman, A. Rahman, S. Lee, N. P. Bigelow, Optics Express 8 (2001) 159-1658 S. A. Webster, G. Hechenblaikner, S. A. Hopkins, J. Arlt, C. J. Foot, J. Phys. B 33 (2000) 4149-41559 T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimuzu, H. Sasada, Phys. Rev. Lett. 78 (1997) 4713-471610 R. Ozeri, L. Khaykovich, N. Davidson, Phys. Rev. A 59 (1999) R1759-175311 J. Ye, D. W. Vernooy, H. J. Kimble, Phys. Rev. Lett. 83 (1999) 4987-499012 S. Jochim, Th. Elsässer, A. Mosk, M. Weidemüller, R. Grimm, Int. Conf. on At. Phys., Firenze, Italy, poster G.11

(2000)13 P. W. H. Pinkse, T. Fischer, P. Maunz, T. Puppe, G. Rempe, J. Mod. Opt. 47 (2000) 2769-278714 E. M. Wright, J. Arlt, K. Dholakia, Phys. Rev. A 63 (2000) 01360815 P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, G. Rempe, Phys. Rev. Lett. 84 (2000) 4068-407116 T. Zaugg, M. Wilkens, P. Meystre, G. Lenz, Opt. Commun. 97 (1993) 189-19317 M. Gangl, H. Ritsch, Phys. Rev. A 61 (1999) 01140218 V. Vuletic, S. Chu, Phys. Rev. Lett. 84 (2000) 3787-3790

dipole traps eliminate the magnetic fields needed for MOTs1

FAR OFF RESONANCE2-5

broadband interaction andminimal scattering, hence suitable for

spectrally complex atoms and molecules

intense laser beam needed to compensate for interaction weakness

BLUE-DETUNED6-10

dark-field seeking to minimize residual perturbations

need isolated islands of low intensity for closed trapping region

RESONANT CAVITIES11-13

can greatly increase circulating intensity, as optical absorption is low

optical field not a single cavity mode

• transverse mode degeneracy allows enhancement of mode superpositions for complex field geometries

• an arbitrary field may be written as a superposition

pmL

kzmzR

krzwr

zwr

zwrL

zwzzmp

mppzr

m

mp

R

mpm ii

2iexp22tan12iexp

!1!4,,

2

2

2

22

21

0

L

zzzzR R2

• the Laguerre-Gaussian cavity modes are solutions to the paraxial wave equation in cylindrical polar coordinates,

where are Laguerre polynomials and , , . xLmp

•three different views of physics:

Dipole force traps for dark-field seeking states of atoms and molecules require regions of low intensity that are completely surrounded by a bright optical field. Confocal cavities allow the resonant enhancement of these interesting transverse mode superpositions, and put deep off-resonant dark-field seeking dipole traps within reach of low-power diode lasers.

210 Rzzwzw

20wzR

• Laguerre-Gaussian beams , of non-resonant waist radius w1, correspond to superpositions of resonant L-G beams with the same azimuthal index m = s. The first three coefficients are:

)(qm1L

pmqa

psps sp

spa sin!!!cos 1

0

2211

1 sin1cossin!1!!cos

spspspa ps

ps

2222221

2 cossin2cossin1cossin!2!!2!cos pspsp

spspa ps

ps

0110

0110sinwwwwwwww

col intensity

trap centreintensity

trap centre position

• moving the mirrors from their confocal separation causes an amplified displacement of the trap centre

• amplification by same factor as intensity enhancement

LARGE PERIOD STANDING WAVE • in preparation

• see D M Giltner et al, Opt. Commun. 107 227 (1994)

• pattern period = /sin• 2-D Hermite-Gaussian

analysis; astigmatism renders out-of-plane direction non-confocal

• high Q: all (odd) even modes

give (anti-)symmetric

field patternfinite Q: half-axial modes

contribute

• amplification mechanism may be compared to Vernier scale between Gouy phases of different Laguerre-Gaussian components