Top Banner
© 2012 Quantum Potential Corporation | www.quantumpotential.com | CONFIDENTIAL 1 Investigation of Hydrodynamic Cavitation as a Means of Natural Crude Oil and Synthetic Biofuel Upgrading Max FomitchevZamilov 1,2 Sergei Godin 2 1 Quantum Potential Corporation, State College, PA 16803 2 Pennsylvania State University, University Park, PA 16802 Abstract Cavitational treatment of liquid hydrocarbon such as crude oil, fuel oil, bitumen, and various biofuels is known to reduce their viscosity and increase the yield of light fraction extractable via subsequent atmospheric and/or vacuum distillation. Such treatment of hydrocarbons (which is not limited to cavitation) with the objective to increase their quality is generally referred to as upgrading. The upgrading due to cavitation becomes economically viable and commercially attractive if the following three necessary conditions are met: 1) the process must produce energy densities that are high enough to brake molecular bonds and create free radicals; 2) when recombining the radicals must form new chemical species with the desired properties, which were deficient in the original mix; 3) the energy costs must be competitive compared to the established upgrading methods such as thermal, catalytic, or hydrocracking. Fortunately, hydrodynamic cavitation reactors satisfy these conditions. When powered by 15200kW electric motors these devices can generate acoustic energy density in excess of 1MW/m 2 , which is sufficiently high to break long hydrocarbon chains and upgrade crude. The problem of the radical recombination is solved via the introduction of hydrogen donors such as water, naphtha, gas, or light crude.
28

Cavitation Hydrocarbon Cracking

Nov 01, 2014

Download

Documents

faradinti

Cavitation Hydrocarbon Cracking
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   1  

   

Investigation  of  Hydrodynamic  Cavitation  as  a  Means  of  Natural  Crude  Oil  and  Synthetic  Biofuel  Upgrading  

 Max  Fomitchev-­‐Zamilov1,2  

Sergei  Godin2  1  Quantum  Potential  Corporation,  State  College,  PA  16803  2  Pennsylvania  State  University,  University  Park,  PA  16802  

Abstract  Cavitational  treatment  of   liquid  hydrocarbon  such  as  crude  oil,  fuel  oil,  bitumen,  and  

various  biofuels  is  known  to  reduce  their  viscosity  and  increase  the  yield  of  light  fraction  extractable   via   subsequent   atmospheric   and/or   vacuum   distillation.   Such   treatment   of  hydrocarbons   (which   is   not   limited   to   cavitation)   with   the   objective   to   increase   their  quality  is  generally  referred  to  as  upgrading.  

The   upgrading   due   to   cavitation   becomes   economically   viable   and   commercially  attractive   if   the   following   three   necessary   conditions   are   met:   1)   the   process   must  produce  energy  densities  that  are  high  enough  to  brake  molecular  bonds  and  create  free  radicals;   2)   when   recombining   the   radicals   must   form   new   chemical   species   with   the  desired  properties,  which  were  deficient  in  the  original  mix;  3)  the  energy  costs  must  be  competitive  compared  to  the  established  upgrading  methods  such  as  thermal,  catalytic,  or  hydrocracking.  

Fortunately,   hydrodynamic   cavitation   reactors   satisfy   these   conditions.   When  powered  by  15-­‐200kW  electric  motors  these  devices  can  generate  acoustic  energy  density  in   excess   of   1MW/m2,   which   is   sufficiently   high   to   break   long   hydrocarbon   chains   and  upgrade  crude.  The  problem  of  the  radical  recombination  is  solved  via  the  introduction  of  hydrogen  donors  such  as  water,  naphtha,  gas,  or  light  crude.  

Page 2: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   2  

Although  the  technique  of  cavitational  oil  cracking  has  been  known  in  the  Soviet  Union  since  the  early  sixties,  the  technology  is  virtually  unknown  in  the  West,  and  there  are  only  a  few  small  companies  in  Russia  and  Ukraine  that  develop,  manufacture,  and  export  the  cavitation   equipment   mostly   to   customers   in   China,   India,   Spain,   and   Brazil.   The   U.S.  petroleum   industry   and   the   American   economy   too   stand   to   benefit   from   industrial  applications   of   cavitation   to   hydrocarbon   processing   and   reap   substantial   economical  benefits  such  as  energy  savings,  reduced  fuel  costs,  and  cleaner  emissions.  

Because  of  potential  importance  of  the  applications  of  hydrodynamic  cavitation  in  oil  and  gas  industry  we  propose  to  study  the  operation  of  a  hydrodynamic  cavitation  reactor  of  Kladov/Selivanov  design  also  known  as  ‘the  activator’  or  ‘the  ultrasonic  activator’.  The  Kladov/Selivanov   activator   is   a   representative   member   of   the   family   of   hydrodynamic  cavitation  devices  employed  in  crude  oil  and  fuel  oil  upgrading.  The  ultrasonic  activator  of  Kladov/Selivanov   design   is   a   perfect   experimentation   tool   due   to   availability   of   the  experimental   data,   the   existence   of   the   detailed   design   plans,   relative   ease   of  construction,  and  high  density  of  acoustic  energy  that  it  generates  (up  to  10  MW/m2).  

The   objectives   of   the   investigation   are   to   study   the   cavitation-­‐induced   hydrocarbon  cracking,   determine   the   range   of   potential   applications   in   natural   and   synthetic   crude  processing  and  bio-­‐fuel  production,  and  verify  their  economic  viability.  The  long-­‐term  goal  is   to   achieve   better   understanding   of   the   underlying   sonochemical   processes   and   to  design   new   cavitation-­‐based   hydrocarbon   processing   equipment   for   U.S.   petroleum  industry.    

Background  –  Crude  Oil  Refining  Crude  oil  is  a  natural  mixture  of  a  wide  variety  of  light  and  heavy  hydrocarbons  such  as  

paraffins,   naphthenes,   aromatics,   and   asphaltenes,   which   must   be   separated   (e.   g.  distilled)  from  the  crude.  

Distillation-­‐based   oil   refining   to   this   day   remains   to   be   the  main   step   in   petroleum  processing   and   the   core   process   of   every   refinery   operation.   Distillation   amounts   to  heating   of   crude   with   subsequent   evaporated   fraction   condensation   in   a   distillation  tower.  Light  fractions  such  as  gasoline,  kerosene,  and  diesel  are  given  higher  priority  due  to  their   immense  economical   importance  since  they  form  the  basis  of  virtually  all  motor  fuels.   Unfortunately,   straight-­‐run   distillation   yields   only   25-­‐35%   gasoline   while  transportation  demands  alone  require  at  least  50%  yield  of  gasoline  from  crude  [1].  

To  recover  additional  gasoline  the  distilled  heavier  fractions  (heavy  oil  to  bitumen)  are  subjected  to  thermal  or  catalytic  cracking,  which  amounts  to  heating  to  450-­‐650°C  in  the  presence  of  catalyst  powder  (such  as  alumina)  with  subsequent  vapor  condensation  in  a  distillation  tower.  The  catalytic  cracking  (or  its  variations  such  as  hydrocracking  or  steam  cracking)   allows   boosting   gasoline   yield   to   50%   with   the   remaining   fractions  corresponding  to  kerosene  (~5%),  light  &  heavy  fuel  oil  (~34%),  and  ~10%  of  the  residuals  such   as   bitumen,   asphalt   and   coke   [2].   In   most   cases   the   catalytic   cracking   allows  recovering   all   but   5-­‐10%   of   useful   hydrocarbons   locked   in   crude   oil.   However,   not   all  

Page 3: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   3  

refineries  are  equipped  with  the  state-­‐of-­‐the  art  catalytic  cracking  systems  as  companies  often   lack   capital   or   incentives   to   upgrade   to   the   latest   technological   process.   For  instance,   in  Russia  only  43%  of   refineries   are  outfitted  with   the   latest   catalytic   cracking  technology   versus   58%   of   the   U.S.   and   76%   of   Japanese   refineries   [3].   Typical   capital  expenditures  associated  with   the  construction  of   state-­‐of-­‐the  art   refinery  outfitted  with  catalytic  cracking  could  be  in  excess  of  $1  billion  USD.  Clearly,   large  capital  expenditures  required  for  catalytic  cracking  equipment  as  well  as  substantial  energy  requirements   for  powering  of   the  catalytic  cracking  process  and  high  maintenance  costs   (e.g.   the  catalyst  and  the  furnaces  are  susceptible  to  coking)  negatively   impact  the  economics  of  the  light  fraction  recovery.  Moreover  the  worldwide  depletion  of  light  sweet  crude  reserves  forces  petroleum   companies   to   extract  more   and  more   of   heavier   crude,  which   in   turn   either  yields   less   light   fractions  during   the  refining  process  or   requires   larger  energy   input  and  more   expensive   technology   to   recover   the   same   amount   of   light   fractions   as   from   the  light  crude.  Clearly,  other  economically  viable  alternatives   for  boosting  the   light   fraction  yield   from   crude   and   other   opportunities   to   maximizing   the   efficiency   of   the   tower  bottom  residue  processing  (such  as  heavy  fuel  oil,  bitumen  and  asphalt)  must  be  explored.  Hydrodynamic  cavitation  cracking  is  one  such  alternative.  

 

Cavitation  and  Sonochemistry  Cavitation-­‐induced  chemical  processing  was  originally  developed  in  Russia  in  the  early  

1960s   [4].   Cavitation   is   a   process   of   bubble   formation   in   liquids   subjected   to   variable  pressure.  Cavitation  occurs  when  pressure  of  the  liquid  falls  below  its  vapor  pressure  and  is  characterized  by  a  high  temperature   (104K  typical,  105K  and  higher  possible)  and  high  pressure  (10-­‐100MPa)  occurring  with  in  the  cavitation-­‐induced  collapsing  bubbles  [5,  6].  

Cavitation   forms   the   basis   of   sonoluminescence   –   the   process   by   which   cavitation  bubbles   give  off   visible   light,   and   sonochemistry,   the  discipline   for   studying   acoustically  induced  chemical  reactions  [7].  

The  physics  and  chemistry  of  ultrasound-­‐induced  inorganic  chemical  reactions  is  well  understood  and  amounts  to  reaction  activation  due  to  locally  increased  temperature  and  pressure  and  molecular  radicalization  due  to  molecular  disassociation  that  occurs  within  the  cores  of  the  collapsing  cavitation  bubbles.  While  sonochemistry  of  inorganic  liquids  is  well   studied,   sonolysis  of  hydrocarbons   is   less  studied  and  the  sonochemistry  of   solutes  dissolved  in  organic  liquids  remains  largely  unexplored  [7].  Ironically,  because  of  the  rising  energy   costs   applications   of   sonochemistry   to   hydrocarbon   resource   processing  corresponds  the  area  of  science  with  the  largest  practical  importance.  

Regardless  of  the  type  of  the  processed   liquid  (or  a  mixture  of   liquids)  these  are  the  most  common  effects  of  cavitation  [4,  7,  8]:  

-­‐ Homogenization  of  liquids  (important  for  emulsion  preparation);  -­‐ Breakage  of  solid  particles  (important  for  suspension  preparation);  -­‐ Radicalization  of  molecules  (important  for  depolymerization,  lysis);  

Page 4: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   4  

-­‐ Chemical   reaction   acceleration   (due   to   the   locally   increased   temperature   in  collapsing  bubbles  and  the  availability  of  radicals).  

All   of   these   effects   have   a   numerous   commercial   application   from   wastewater  treatment   and   sterilization   to   cement   manufacturing   and   food   processing.   For   the  remainder  of  the  discussion  we  will  focus  on  petrochemical  and  hydrocarbon  applications  of  cavitation.  

 

Application  of  Cavitation  to  Hydrocarbons  –  Depolymerization  As  far  as  the  established  petrochemical  and  the  emerging  biofuel  industry  concerned  

depolymerization   and   hydrocarbon   cracking   are   the  most   important   effects   that   follow  directly  from  the  process  of  cavitation.  Naturally  occurring  crude  oil   is  characterized  not  only  by  the  composition  of  the  compounding  hydrocarbons  but  also  by  the  van  der  Waals  interaction   between   the   molecules,   which   gives   oil   elastic   polymer-­‐like   structure   that  negatively  impacts  the  viscosity.  Thick  viscous  oil  requires  more  energy  for  transportation  and  processing  (e.g.  in  terms  of  pump  station  power  and  heating  necessary  to  prevent  oil  from  solidifying  in  winter).  In  the  same  time  heavy  polymerized  fuels  burn  less  efficiently  and  produce  more  pollutants  [9].  

 Therefore   depolymerization   of   crude   or   the   resulting   petroleum   products   (such   as  diesel  and  fuel  oil)  due  to  the  breakage  of  van  der  Waals  forces  between  the  molecules  is  an  important  use  of  cavitation  –  Fig.  1.  

E.g.  according  to  Kavitus  [9]  fuel  oil  deploymerization  used  by  heavy  trucks  results   in  smoother  engine  operation,  increased  fuel  economy  (up  to  18%),  and  reduced  emission  of  ash  and  soot  (reduction  of  up  to  50%).  

The   cavitation-­‐induced   depolymerization   also   impacts   crude   oil   rheology.   E.g.   [10]  reports   5-­‐fold   reduction   of   viscosity   in   crude   oil   at   room   temperature   after   5-­‐hour  cavitation  processing  –  Fig.  2.  

Page 5: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   5  

 

   

 Fig.  1.    Depolymerization  of  fuel  under  the  influence  of  ultrasonic  cavitation.  

 

 )))  

Page 6: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   6  

 Fig.  2.    Reduction  of  the  viscosity  of  crude  oil  after  cavitational  treatment  in  the  ultrasonic  activator  [10].  

 EkoEnergoMash  reports  fuel  20-­‐30%  fuel  oil  viscosity  reduction  and  5-­‐10%  flash  point  temperature  increase  after  cavitational  treatment  [11]  –  Table  1.  Corroborating  the  claims  by  Kavitus  [9],  EkoEnergoMash  [11]  also  reports  3-­‐5%  reduction  in  soot  and  ash  emission  from  burning  of  the  cavitationally  processed  fuel  oil.  

Table  1.  Fuel  oil  viscosity  decrease  and  flash  point  temperature  increase  after  cavitation  treatment.  

 

Application  of  Cavitation  to  Hydrocarbons  –  Cracking  The  possibility  of  hydrocarbon  break  up  by  ultrasonic  cavitation  has  been  well  known  

for  several  decades  [12].  The  only  contentions  point  is  the  efficiency  of  such  process:  since  sonochemical  reactions  are  enacted  by  collapsing  bubbles  the  efficiency  of  the  process  is  directly  proportional  to  the  density  of  bubbles,  which  in  turn  is  proportional  to  the  density  

0 20 40 60 80

100 120 140 160 180 200 220 240 260

70 60 50 40 30 20

Visc

osity

, cSt

Temperature, C

Crude oil viscosity vs. temperature

Processed crude heated to 90C (best result), Tsolid=-10C Processed crude heated to 90C (worst result), Tsolid=+10C Unprocessed crude, Tsolid=+18C

Fuel  Oil  Sample  

Fuel  Oil  Parameters  

Viscosity  flow  equivalent,  St,  T=60°С   Flash  point,  °С   Density,  kg/m3  

Start   Finish   Delta,  %   Start     Finish   Delta,  %   Start   Finish   Delta,  %  

Karabashsky   155   90   42   120   127   5   925   920   0,5  

Shukrovsky   38   23   39   105   115   9   915   915   0  

Nizhnekamsky   165   120   25   145   135   -­‐  7   920   920   0  

Page 7: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   7  

of   the   acoustic   energy.   According   to   [13]   an   energy   approaching   1MW/m2   will   render  further   increase   of   acoustic   power   useless   due   to   vapor   cusion   formation   around   the  acoustic   transducer   in   contact   with   the   liquid   while   at   lower   energy   densities   the  efficiency  of  the  bond  breaking  process  is  minuscule  (due  to  insufficient  energy  of  bubble  collapse)   and   economically   non-­‐viable.   The   objection,   however,   applies   only   to  conventional  ultrasonic  equipment  that  relies  on  piezoelectric  transducers  or  sonotorodes  for  liquid  excitation.  To  achieve  the  requisite  acoustic  energy  densities  on  the  order  of  1-­‐10   MW/m2   hydrodynamic   cavitation   apparata   [4,   8]   should   be   used   where   acoustic  excitation   is   generated   by   means   of   a   rapidly   rotating   perforated   rotor.   Such   designs  produce  high  density  of  acoustic  energy  over  a  wide  surface  area  (i.e.  around  the  rotor)  thus  producing  much  larger  cavitation  volume  and  higher  energy  density  when  compared  to  the  traditional  piezoelectric  transducer  or  sonotrode-­‐based  devices.

Nesterenko  and  Berlizov  [14]  estimate  that  even  if  the  cavitation  bubbles  occupy  10%  of   the   volume   of   the   processed   liquid   then   360   liters   of   petroleum   products   will   be  necessary   to   create   one  mole   of   lighter   hydrocarbons   (µ =   100-­‐300)   equivalent   to   100-­‐300g.   Thus   highly   efficient   multiple-­‐stage   cavitation   processing   is   required   in   order   to  achieve  economically  attractive  cracking.  Fortunately,  according  to  [4,  8]  such  multi-­‐stage  processing   is   possible   with   the   help   of   loop-­‐back   hydrodynamic   cavitation   devices,  especially  those  of  rotary  type.  

Such  devices   are  manufactured  by  EkoEnergoMash,  Russia   (Fig.   3),   Kavitus,  Ukiraine  (Fig.   4),   ITER,   Russia   (Fig.   5),   and   others.   The   performance   of   hydrodynamic   cavitation  cracking  varies  from  3%  to  90%  yield  of  light  fractions  depending  on  the  feedstock  and  the  technology.   E.g.   Kavitus   reports   3-­‐5%   increase   in   kerosene   fraction   after   cavitation  processing  of  high-­‐viscosity  maritime  fuel  oil  with  their  KAP-­‐300  system  (Fig.  6).  

 Fig.  3.  Commercial  hydrodynamic  cavitation  apparatus  manufactured  by  EkoEnergoMash  (Russia).  

Page 8: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   8  

 Fig.   4.   Commercial   hydrodynamic   cavitation   reactor-­‐homogenizer   KAP-­‐1500   manufactured   by   Kavitus  (Ukraine).  

 

 Fig.  5.  Commercial  hydrodynamic  cavitation  and  hydrocracking  pilot  plant   ITER  HYDRO  200  near  Belgorod  (Russia)  powered  by  200kW  electric  motors.  The  plant  was  designed  by  ITER  (Russia)  and  manufactured  by  Belnafta   (Russia).   ITER  HYDRO  200   claims   to   achieve  direct   crude   /  waste  oil   to  diesel   conversion  at   90%  efficiency.  Hydrogen  and/or  water  is  used  as  a  source  of  hydrogen  donors.  

Page 9: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   9  

 

 Fig.  6.  Kerosene  fraction  increase  in  high-­‐viscosity  maritime  fuel  oil  after  cavitation  processing  with  Kavitus  KAP-­‐300  system.  

 

Out   of   all   hydrodynamic   cavitation   equipment  manufacturers   ITER   claims   the  most  impressive   results:   90%   conversion   of   heavy   crude   (or   waste   oil)   directly   to   diesel   (9%  amount  to  bitumen  and  1%  losses)  [28].  During  one  particular  demonstration  bituminous  crude  from  “Russkoye”  well  (Russia)  with  the  following  characteristics:  

• Density  @  20C  =  940  kg/m3;  • Sulfur  =  0.8%  wt;  • Distillation  yield  @  500C  =  40%  

was  converted  into  diesel  (160-­‐360C  fraction)  with  the  following  specs:  

• Density  @  20C  =  825  kg/m3;  • Sulfur  =  0.1%  wt.  

ITER   achieves   direct   crude   to   diesel   conversion   by   first   preheating   the   feedstock   to  high  temperature  (420C  in  the  above  example),  mixing  the  feedstock  with  hydrogen  (0.1%  wt   in   the   above   example)   and   passing   the   feedstock   through   the   proprietary   200kW  vortex   cavitation   reactor   (the   reactor   residency   time   is   5   seconds;   pressure   =   5  atmospheres;   rotor   speed   3900   RPM)   [28].   Belnafta   (Russia),   the   commercial   partner   if  ITER  estimates  the  conversion  power  requirements  of  100  kWh/ton.  

Page 10: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   10  

Another  approach  to  boosting  the  efficiency  of  cavitation  is  to  conduct  the  ultrasonic  excitation   in   the  presence  of  an  electric   field   [15].  Electrostatic  charge  generated  within  the  bubbles  assists  radical  formation  due  to  covalent  bond  breaking,  which  generate  chain  reactions   in   hydrocarbons   with   the   end-­‐result   being   low   molecular-­‐weight   compounds  and  aromatics  [15].  

More   recently   the   use   of   ultrasound   was   proposed   for   the   petroleum   residue  upgrading   [17],   including   asphaltenes   [18].   In   these   studies   study   ~20%   of   asphaltenes  was   converted   into   smaller   molecules   after   60-­‐120  minute   of   processing.   These   heavy  resinous   residues   are   a   byproduct   of   catalytic   cracking,   which   cannot   be   easily  decomposed   due   to   boiling   temperatures   far   in   excess   of   500-­‐600°C   used   in   catalytic  cracking.  While  ultrasonic  cracking  of  these  substances  is  possible  economic  viability  is  yet  to  be  demonstrated.  

Promtov  [16]  draws  the  attention  to  the  efficiency  of  the  rotary  apparata  in  breaking  C-­‐C   bonds   under   vigorous   long-­‐term   cavitation   conditions   and   gives   the   results   of   the  experimental   investigation   of   one   such  machine   at   Tambov   State   University.   The   study  found   that   ultrasonic   processing   of   a  mixture   of   a   heavy   fuel   oil  with   small   addition   of  kerosene   or   light   diesel   results   in   a  modest   decrease   of   the   kinematic   viscosity   by   1-­‐2  mm2/s  and  equally   small  decrease   in   the   flash  point   temperature  by  4-­‐6°C.   In   the  same  time  cavitation  cracking  of  crude  allows  reducing  atmospheric  distillation  temperature  of  crude  by   10°C,  while   reducing   the   50%  distillation   temperature   by   63°C,   a   huge   energy  saving  –  Table  2.  

 Table   2.   The   reduction   of   distillation   temperatures   of   the   cavitationally   treated   crude   with   respect   to  untreated  one.  

Laboratory   findings   of   Promtov   lend   some   credence   to   the   claims   made   by   other  equipment  manufacturers:  e.  g.  Kavitus  (Ukraine)  claims  50-­‐60%  pour  point  temperature  reduction   and   20-­‐25%   of   viscosity   reduction   of   heavy   fuel   oils   processed   through   their  KAP-­‐series  cavitation  reactors  [9];  in  the  end  the  hydrodynamic  cavitation  results  in  8.3%  fuel   economy   and   30%   reduction   in   harmful   emissions   as   reported   by   their   MobiLine  customer   (Italy);   another   customer   –   Zaporozhstal   (Ukraine)   –   reported   10.2%   fuel  economy  after  cavitational  treatment  of  fuel  oil  for  their  diesel  locomotive  train  depot  [9].  

Independently,  another  Russian  company  New  Technologies  2000  [10]  publicizes  the  increased  light  diesel  yield  from  the  hydrodynamically  ‘activated’  heavy  crude  –  Fig.  7.  

Page 11: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   11  

 Fig.   7.     The   increased   yield   of   light   diesel   after   the   installation   of   an   ultrasonic   activator   at   La   Libertad  refinery,  Ecuador  [10].  In  2006-­‐2007  trials  diesel  fraction  output  increases  from  26%  to  40%  or  by  1000-­‐1400  barrels  per  day.  The  increase  was  attained  solely  by  ultrasonic  excitation  of  crude  at  the  expense  of  37  kWh  of  continues  power  required  for  operation  of  the  ultrasonic  activator  pump.  

Nikolay  Selivanov  (the  co-­‐founder  of  New  Technologies  2000)  has  obtained  additional  encouraging   data  when  he  was   processing   heavy   heavy   sour   fuel   oil   through  his   rotary  cavitation  apparatus  (‘the  ultrasonic  activator’).  Fig.  8.  shows  that  after  the  hydrodynamic  cavitation   treatment   the   processed   fuel   oil   thermally   cracks   into   lighter   fractions   at  markedly  reduced  temperatures:  e.g.  18%  yield  occurs  for  the  treated  (‘activated’)  fuel  oil  at  much  lower  temperature  of  350°C  as  opposed  to  650°C  for  the  untreated  oil  [10].  These  intriguing   results   point   to   economic   viability   of   ultrasonically   /   cavitationally   assisted  hydrocarbon   cracking   and   clearly  warrant   further   study   combined  with   an   independent  laboratory  confirmation  of  the  reported  results.  T,°C  

 %  Vol  Fig.  8.  The  results  of  thermal  cracking  of  the  cavitationally  processed  (red  line)  and  the  original  unprocessed  heavy  fuel  oil  (yellow  line).  The  ultrasonically  treated  compound  yields  6%  of  light  fractions  almost  with  no  heating  (100°C)  and  gives  off  19%  of  light  fractions  when  heated  to  440°C  (compare  to  over  700°C  required  by  the  untreated  oil).  Blue  line  is  a  mixture  of  the  original  and  processed  oil.  

Page 12: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   12  

Selivanov   has   conducted   additional   experiments   on   hydrodynamically   processing  heavy  crude  and  fuel  oil  with  his  ultrasonic  activator  and  conducted  ASTM  D86  distillation  testing  of  the  processed  feedstock.  Typical  results  are  shown  on  Fig.  9  [29].  According  to  the  people  involved  in  the  project,  hydrodynamic  processing  of  heavy  crude  and  fuel  oils  with  Selivanov’s  activator  usually  results  in  light  fraction  increase  of  5-­‐20%  depending  on  the  type  of  feedstock  (according  to  ASTM  D86  testing).  

 Fig.  9.  ASTM  D86  distillation  curves  of   the  unprocessed  (blue  curve)  and  hydrodynamically  processed  (red  curve)  fuel  oil.  Note  that  the  unprocessed  fuel  oil  yields  only  22%  at  350C  while  the  processed  fuel  oil  yields  52%  at  the  same  temperature.  

 

The  Equipment  –  Ultrasonic  Activator  Our  interest  in  cavitation-­‐based  devices  stems  from  the  work  by  Russian  inventor  A.  F.  

Kladov   (1939-­‐2003)  on  a  device  he  dubbed   ‘ultrasonic   activator’   [19].   Kladov  graduated  from  Moscow  State  Aviation  Institute  (MAI)  majoring  in  nuclear  rocket  propulsion  systems  and  worked  at   Lavrentiev  Hydrodynamics   Institute  at  Novosibirsk.  The   focus  of  Kladov’s  work   was   ultrasonic   /   cavitational   cracking   of   hydrocarbons   and   his   patent   application  [20]   claims   the   ability   to   make   crude   yield   up   to   90%   of   light   fractions   by   repeated  

0

50

100

150

200

250

300

350

400

BT 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Tem

pera

ture

, C

Yield, %

Processed vs. Raw Fuel Oil Distillation

Unprocessed Fuel Oil Processed Fuel Oil

Page 13: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   13  

pumping   of   crude   through   the   ultrasonic   activator   under   2-­‐5   MPa   pressure   and   with  addition  of  2-­‐3%  by  volume  of  dispersing  gas.  

The  key  feature  of  Kladov’s  apparatus  is  the  ability  to  generate  enormous  sonic  energy  densities   on   the   order   of   1-­‐10MW/m2   by   virtue   of   both   ultrasonically   and  hydrodynamically-­‐induced   cavitation.   Furthermore,   the   multi-­‐stage   design   of   Kladov’s  ultrasonic   activator   allows   repeated   processing   of   the   same   liquid   to   maximize   the  cracking  effect.  Another  clever  feature  of  Kladov’s  design  is  the  addition  of  dispersing  gas  (e.g.   hydrogen,   carbon   dioxide,   air,   or   methane)   that   facilitates   bubble   formation   and  participates  in  chemical  reactions  with  the  cracked  hydrocarbon  radicals  thus  preventing  them   from   recombining   into   their   original   form.   The   infusion   of   H2   or   CH4   effectively  enables   C-­‐H   bond   formation   in   place   of   ruptured   C-­‐C   bonds.   Another   key   feature   of  Kladov’s   design   is   the   claimed   ‘resonant’   mode   of   operation,   which   maximizes   the  conversion  of  the  mechanical  energy  of  rotors  mixing  the  fluid  into  the  ultrasonic  energy  of  cavitating  bubbles,  which  in  turn  results  in  cracking  of  C-­‐C  bonds.  

From   the   design   point   of   view   Kladov’s   activator   is   essentially   a   centrifugal   pump  where  the  processed  liquid  is  accelerated  by  a  rapidly  rotating  perforated  rotor  wheel  (9)  and  then  forced  by  the  impellor  (8)  through  slots  (12)  in  the  perforated  cylindrical  stator  (9)  –  Fig.  10  and  11.  

Fig.  10.  Kladov’s  ultrasonic  activator’s  rotor  and  stator  cross-­‐section  (left)  and  the  rotor’s  slots   (right).  The  impeller  (8)  forces  the  liquid  through  the  slots  (10)  in  the  rotor  (9);  the  accelerated  liquid  flows  through  slots  (12)  in  the  perforated  stator  (12).  

Page 14: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   14  

 Fig.  11.  Kladov’s  four-­‐stage  activator  featuring  a  shaft  with  four  perforated  rotors  mounted  within  each  own  perforated   stator.   En   electric   AC  motor   drives   the   shaft   (not   shown).   Four   impellers   (8)   drive   the   liquid  through  rotors’  slots  and  then  through  stators’  slots.  The  rotor  and  the  stator  slots  are  of  the  same  size;  the  width  of  blanks  between  the  slots  is  the  same  as  the  width  of  the  slots.  Circulation  line  (13)  with  valve  (17)  can  be  used  to  send  a  portion  of  the  pumped  liquid  into  repeated  processing  through  the  activator.  

 

In  addition  to  four-­‐stage  activator  a  single-­‐stage  apparatus  is  also  possible.  In  the  case  of  a  single-­‐stage  design  sufficient  rate  of  cavitation  processing  is  achieved  by  looping  back  portion  of   the  processed   fluid  back   into   the  activator   (e.g.  via   the   loopback   line   (13)  on  Fig.  11).  In  all  cases  30-­‐300  kW  (depending  on  the  number  of  stages)  3-­‐phase  electric  AC  motor  drives  the  shaft  housing  the  rotor(s)  and  the  impeller(s).  

Kladov’s   design   is   representative   of   a   wide   variety   of   rotary   cavitation   machines  employed   in   Russia   and  Ukraine,   and   their   hydrodynamic   and   ultrasonic   characteristics  are  described  in  depth  in  [4]  and  [8].  These  rotary  devices  feature  perforated  rotors  and  cylindrical   or   conical   stators   and   are   capable   of   generating   of   massive   amounts   of  cavitation  far  in  excess  (>100  times)  of  the  amounts  accessible  via  conventional  ultrasonic  excitation   via   a   piezoelectric   transducer   or   sonotrode.   Hence   if   cavitation   hydrocarbon  cracking  is  to  be  economically  viable  a  rotary  cavitation  machine  has  to  be  used.  

 

Technical  Description  The  extremely   interesting   results  of   cavitation-­‐induced  hydrocarbon  cracking  and  oil  

upgrading  listed  in  the  previous  sections  of  this  proposal  merit  an  independent  laboratory  confirmation   of   the   results   reported   by   the   manufacturers.   Positive   confirmation   will  justify  the  adoption  of  the  cavitation-­‐induced  oil  cracking  technology  in  the  U.S.  with  the  economic   advantages   amounting   to   the   reduced   power   requirements   for   catalytic  

Page 15: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   15  

cracking  and  the  increased  yield  of  light  fractions  (e.g.  due  to  heavy  crude  and  heavy  fuel  oil  upgrading).  

 Fig.  12.  Selivanov’s  variant  of  Kladov’s  activator  (far  left),  electric  motor  (right)  and  bearing  unit  (middle)  is  also   shown.   In   Selivanov’s   version   of   the   activator   the   stator   is   not   perforated   and   corresponds   to   an  entirely   smooth   cylinder   enclosing   the   perforated   rotor.   The   replacement   of   perforated   stator   with   a  smooth  one  is  the  only  principle  modification  from  Kladov’s  original  design.  

To  conduct  the  study  we  propose  to  build  an  ultrasonic  activator,  which  corresponds  to  Selivanov’s  modification  of  the  original  Kladov’s  design  [24]  –  Fig.  12.  

The  choice  of  Selivanov’s  design  was  dictated  by  the  following  key  factors:  

-­‐ Availability  of  detailed  construction  plans  with  exact  measurements  [24];  -­‐ Relative   ease   of   construction:   to   recreate   the   design   one   can   simply   retrofit   an  

existing  centripetal  pump;  -­‐ Consultation  and  availability  of  the  inventor  (Selivanov);  -­‐ Familiarity  of  our  company  with  this  particular  design  due  to  our  prior  involvement  

with  Selivanov’s  activator  and  cavitation  technology;  -­‐ Availability   of   proprietary   data   indicative   of   the   successful   activator   applications  

for  oil  cracking  /  upgrading  projects  in  Russia,  Ecuador  and  India  [10];  -­‐ The  industrial  deployment  of  the  Selivanov’s  activator  technology  in  India  backed  

by   Swiss-­‐Indian   financiers   indicates   real   savings   and   clear   economical   viability  of  the   cavitation-­‐induced   upgrading   (economic   effect   from   a   single   refinery   is  estimated  to  exceed  $150,000/day  [27]).  

The  only  principal  difference  between  a  single-­‐stage  Kladov’s  and  Selivanov’s  activator  is  in  the  replacement  of  the  perforated  stator  with  a  smooth  cylindrical  one  in  Selivanov’s  version.  From  our  extensive  operational  experience  this  modification  does  not  affect  the  activator’s   primary   function:   for  many   years   Selivanov  has  been  building   the   activators,  which   differ   only   by   their   resonant   properties   as   defined   by   rotor   and   stator  measurements   and   have   successfully   applied   the   technology   for   crude   oil   cracking   and  petroleum   processing   in   Russia,   Ecuador,   and   India   [10].   Overall   view   of   Selivanov’s  activator   in   industrial   setting   is   shown   on   Fig.   13,   and   a   close   up   of   another   model  

Page 16: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   16  

highlighting  the  perforated  rotor  design  is  shown  on  Fig.  14.   In  a  typical   implementation  the   rotor   is   driven   at   3,600   RPM   by   a   30kW   3-­‐phase   electric   AC   motor.   According   to  Kladov   and   Selivanov’s   own   work   [24]   only   rotor   and   stator   configuration   and   rotor  revolution  speed  is  critical  to  activator’s  operation.  

 Fig.  13.  Slivanov’s  activator  in  industrial  setting  at  a  refinery  in  Ecuador.  

 Fig.  14.  Close-­‐up  of  Selivanov’s  activator  demonstrating  perforated  rotor  (top  left)  and  mysterious  marks  on  internal  stator  surface  (top  tight)  probably  caused  by  the  standing  ultrasonic  waves.  

 

Our   initial   investigation   of   Selivanov’s   activator   revealed   a   surprisingly   large   excess  heat.   The   evidence   of   extreme   heating   was   present   even   on   the   outer   surface   of   the  activator:   the   stator  developed   thermal  discoloration   spots  evenly  distributed  along   the  stator’s   outer   surface   –   Fig.   15.   While   these   marks   can   probably   be   attributed   to   the  

Page 17: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   17  

cavitation-­‐induced  heating  no  such  marks  were  present  on  the  inside  surface  of  the  stator  or  rotor.  On  the  other  hand  the  rotor  was  also  perfectly  intact.  

 Fig.   15.   Thermal  oxidization  marks   evenly  distributed  on   the  outer   surface  of   the  activator’s   stator.   Inner  stator  surface  was  free  of  thermal  oxidization  films,  which  could  have  been  chemically  removed.  Both  the  stator  and  the  rotor  are  made  of  the  same  brand  of  stainless  steal  equivalent  to  U.S.  type  420.  

Other  unusual  phenomena  recorded  in  our  initial  trials  of  the  activator  included:  

-­‐ The   presence   of   substantial   magnetic   field   (10-­‐50   mT)   around   the   operating  activator   –   Fig.   16   –   indicative   of   charged   plasma   (charged   chemical   radicals?)  circulating  within   the   activator.  We   suspect   the   formation   of   the   Ranque-­‐Hilsch  vortex  tube;  

-­‐ Occasional   unexpected  excess  pressure  build  up  within   the   activator   resulting   in  damage  (i.e.  cracking)  of  the  activator’s  rotor  and  stator;  

-­‐ Odd  coloration  marks  on  the   internal  surface  of   the  stator.  The  coloration  marks  correspond  to  images  of  rotor  slots  and  are  somehow  synchronized  to  activator’s  ground   position   and   orientation   and   cannot   be   disturbed   even   by   a   groove  machined   in   the   stator’s   surface   in  attempt   to  disrupt   the  pattern  –  Fig.  17.  The  pattern,  however,  did  shift  when  the  activator  was  moved  to  a  new  location.  Our  conclusion   is   that   the  marks   are   indicative   of   a   standing   acoustic  wave   possibly  locked   onto   a   resonant   Ranque-­‐Hilsch   vortex   tube,   which   is   ‘pinned   down’   by  magnetic  field  of  the  Earth  or  laboratory.  

 Fig.  17.  Magnetic  field  generated  by  the  operational  activator.  

 

Page 18: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   18  

 

Fig.  17.  Mysterious  coloration  marks  on  the  internal  surface  of  the  stator  corresponding  to  rotor  slots.  Note  that   the  marks   are   simply   changes   in   color   and   not   indentations.   The   dark   groove   in   the  middle   of   the  picture  was  machined  in  attempt  to  influence  the  pattern.  However,  the  coloration  pattern  did  not    

 

The  Working  Hypothesis  Kladov’s/Selivanov’s  activator  generates  acoustic  waves  when  the  fluid  exits   through  

the  rotor’s  slots  –  Fig.  18.   In  such  configuration  each  slot  can  be  viewed  as  a  Helmholtz  resonator   forming   a   chain   capable   of   accumulating   large   ultrasonic   energy.   The   so-­‐trapped   ultrasonic   energy   stimulates   powerful   cavitation   that   in   turn   causes   chemical  disassociation   /   radicalization   of   molecules,   which   is   evident   from   the   creation   of   a  stationary   magnetic   field   around   the   operating   activator   –   Fig.   16.   While   ionization   of  vapors  (e.g.  the  creation  of  plasma  [26])  inside  collapsing  bubbles  will  create  a  momentary  magnetic  field  one  can  reasonably  expect  no  net  effect  due  to  random  orientation  of  the  transient   magnetic   fields   caused   by   the   multitude   of   bubbles.   However,   the   actual  distribution  of  bubbles  may  not  be   random  due   to   stable   vortices  pinned   in   the   rotor’s  slots.  Due   to  cavitation   these  vortices  will  be   full  of   streaming  bubbles.   If  we  view  each  individual   bubble   as   a  microscopic   capacitor  where   the   charged   ‘plates’   are   formed   by  ionized   gasses,   the   bubble   vortex   becomes   analogous   to   a  multi-­‐stage  Marx   generator  where   the   breakdown   of   dielectric   in   between   the   bubbles   will   result   in   massive  discharges   with   voltages   easily   reaching   into   MV   range   [27].   Assuming   modest  polarization  energy  of  1  eV  (which  is  consistent  with  our  estimate  of  bubble  charge  based  off   oscilloscopic  measurement  of   cavitation-­‐induced  discharges   in  mineral   oil   –   Fig.   14),  Rodionov   estimates   that   the   bubble   growth   during   the   expansion   phase   will   result   in  voltage   build-­‐up   up   to   10kV   per   bubble   [27].   Consequently   it   takes   only   100   closely  packed  bubbles  forming  a  multi-­‐stage  Marx  generator-­‐like  discharge  to  reach  the  voltages  on   the   order   of   1MV,   which   no   doubt   assists   molecular   ionization/radicalization   and  contributes   to   the   increased  efficiency  of   the  activator  when  compared   to   conventional  sonotrode-­‐based  ultrasonic  activators.  

In  our  own  work  with  cavitation  in  mineral  oil  we  were  able  to  verify  experimentally  that  Rodionov’s  estimate  was  not  far  off-­‐the  mark:  we  have  observed  40kV/cm  discharges  between  the  glowing  stream  of  cavitation-­‐induced  bubbles  and  the  grounded  brass  nozzle  

Page 19: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   19  

by  pumping  mineral  oil  through  the  narrow  opening  in  the  nozzle  at  50  m/s  –  Fig.  14.  The  presence  of   the  bubble  discharge  currents   is   the  most   likely  cause  of   the  magnetic   field  detected  around  the  activator.  

 Fig.   18.   Liquid   flow   through   activator’s   slots.   The   liquid   existing   the   slots   forms   resonant   vortices.   Rotor  motion  direction  is  given  by  V.  

Fig.   19.   40   kV/cm   discharge   (short   and   thin   zigzagging   line)   between   the   charged   luminous   cavitation-­‐induced  bubbles  (long  blue  streak)  and  the  grounded  nozzle  (cone  on  the  right)  emitting  a  50  m/s  flow  of  mineral  oil.  

Conclusion  The   ultrasonic   activator   of   Kladov/Selivanov   is   capable   of   highly   efficient  

transformation  of  mechanical  energy  into  ultrasonic  energy  with  density  on  the  order  of  1-­‐10  MW/m2.  This  colossal  energy  stimulates  profuse  cavitation,  confined  to  slots  of  the  rotor.  The  massive  sonic  energy  forms  plasma  within  the  bubbles,  the  bubbles  form  Marx  generator-­‐like   discharges,   which   further   contribute   to   molecular   radicalization   and  hydrocarbon  cracking.  To  prevent  recombination  of  radicals  and  reduce  the  formation  of  aromatics   the   addition   of   hydrogen   or   methane   is   required   to   the   processed   mixture.  Fortunately,  the  addition  of  gasses  also  stimulates  cavitation  thus  further  intensifying  the  process.   Therefore,   the   combination   of   all   these   factors   makes   efficient   cavitation-­‐

   

Rotor  

Stator  

The  flow  directing  from  the  rotor’s  

center  

Page 20: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   20  

induced   hydrocarbon   cracking   feasible   (at   least   in   principle)   and   thus   potentially  economically  important.  

 

Experimental  Setup  and  Objectives  of  the  Research  We   propose   to   study   a   replica   of   the   ultrasonic   activator   according   to   Kladov   /  

Selivanov  and  study  cavitation-­‐induced  hydrocarbon  cracking  in  lab  conditions.  The  main  objective  of   the  study   is   to  determine   the  amount  of  hydrocarbon  cracking   (e.g.  via  gas  chromatography   and   distillation   testing),   measure   the   viscosity   and   density   changes,  measure  the  energy  requirements  and  estimate  the  economical  viability  of  the  application  of  the  method  at  refineries  for  crude  upgrading  or  as  a  step  for  post-­‐catalytic  upgrading  of  distillation  residue.  

The  experimental  hardware  is  shown  on  Fig.  15.  The  activator  is  powered  by  3-­‐phase  50-­‐HP   electric   motor   connected   to   a   variable   frequency   drive   (not   shown).   The   input-­‐output   pipes   are   equipped  with   ports   for   pressure   gauges,   flow  meters,   redox   and   pH  sensors.   The   activator   stator   is   outfitted   with   a   pressure   transducer   to   detect   high  frequency   acoustic   vibrations   and   ascertain   the   intensity   of   cavitation.   Additional  analytical   equipment   includes   ASTM   D86   automatic   distillation   station,   ModCon  MOD-­‐8000   inline   real-­‐time  NMR  process   analyzer,  magnetic   sensors   (to   probe   the   activator’s  magnetic  field),  and  viscometers.  

 Fig.  20.  Experimental  setup.  

 

Page 21: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   21  

Additionally  we  will  implement  a  line  to  feed  the  dispersing  gases  such  as  H2,  air,  and  CH4  to  be  mixed  into  the  feedstock  pumped  through  the  activator.  

We  will   experiment  with   a   broad   range   of   hydrocarbons,   including   various   types   of  heavy  crude  and  heavy  fuel  oil.  

During  Phase  I  funding  of  the  project  we  plan  to  achieve  the  following:  

1) Build  a  replica  of  the  ultrasonic  activator  according  to  Kladov  and  Selivanov  using  the  construction  plans  in  our  possession  and  the  inventor’s  consultation;  

2) Detect   the   necessary   resonant   modes   of   operation   and   attune   the   activator   to  them  my  varying  rotational  frequency  of  the  motor;  

3) Measure  electromagnetic  fields  generated  by  the  operating  activator;  4) Vary  pressure  within  the  activator;  5) Vary  gas  feed  rate  and  the  dispersing  gas  composition;  6) Determine  viscosity  and  gravity  changes  in  the  processed  liquid  depending  on  the  

processing  time;  7) Determine  hydrocarbon  content  in  the  processed  liquids  (via  gas  chromatography)  

depending  on  the  processing  time;  8) Measure  electric  power  consumption  and  calculate  the  fluid  processing  rate;  9) Repeat  measurements   4-­‐7   for   various   types   of   hydrocarbons   including   common  

grades  of  heavy  crude  and  heavy  fuel  oil.  10) Perform  distillation  analysis  of  the  processed  samples.  

At  the  end  of  Phase  I  of  the  project  we  plan  to  obtain  conclusive  data  with  regard  to  economical  viability  of  the  crude  and  heavy  fuel  oil  upgrading.  

During   Phase   II   of   the   project   we   plan   to   launch   an   expanded   inquiry   into   the  application   of   the   cavitation   processing   to   bio-­‐diesel   production   and   engage   the   U.S.  petroleum  industry  (via  our  university  contacts)   in  field  trials  of  the  activator   in  order  to  demonstrate   economic   viability   of   the   technology   in   industrial   setting.   The   objective   of  the   Phase   II   of   the   project   is   to   develop   commercially   viable   activator   prototypes   for  useful  for  U.S.  petroleum  industry.  

 

Potential  Post-­‐Applications  The   confirmation   of   economical   viability   of   hydrodynamic   cavitation   treatment   of  

hydrocarbons  will   correspond   to  a   significant   step   towards   the   increased   fuel  economy,  the   increased   light   fraction   yield,   and   the   reduced   energy   requirements   of   the   refining  process,   thus   giving   the  U.S.   petroleum   industry   and   the  American   nation   an   economic  advantage   over   the   global   competition   via   more   efficient   utilization   of   hydrocarbon  resources  while  enabling  the  reduced  carbon  footprint.

 

 

 

Page 22: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   22  

 

Work  Schedule:  6  months  As  a  part  of  Phase  I  funding  we  plan  to  do  the  following:  

Phase  I  funding  received,  project  begins  (week  1)    

1) Comprehensive  review  of  project  documentation,  equipment  acquisition  a. 20  hours  of  PI  time  b. 40  hours  of  engineer  time  

2) Materials  and  equipment  ordered,  prototype  construction  begins  a. 40  hours  of  PI  time  b. 80  hours  of  co-­‐investigator  time  c. 320  hours  of  machine  shop  time  

 Milestone  1:  Activator  built,  equipment  received,  trials  begin  (week  6)    

3) Construction,  testing  and  refining  of  the  experimental  setup  a. 40  hours  of  PI  time  b. 80  hours  of  co-­‐investigator  time  

 Milestone  2:  Experimental  setup  complete,  resonance  search  begins  (week  8)    

4) Resonant  mode  of  operation  search  begins.  Motor  speed  is  varied,  power  consumption  is  measured  until  a  spike  in  power  consumption  is  detected  and  liquid  throughout  drops  

a. 40  hours  of  PI  time  b. 80  hours  of  co-­‐investigator  time  

 Milestone  3:  Resonant  mode  of  operation  identified  (week  10)    

5) Various  hydrocarbon  liquids  are  pumped  through  the  activator,  pressure  within  the  activator  and  the  gas  feed  rate  varied,  power  input,  viscosity  and  chromatography  changes  measured,  magnetic  field  monitored;  samples  distilled  

a. 100  hours  of  PI  time  b. 600  hours  of  co-­‐investigator  time  

 Milestone  4:  Experiment  concludes  (week  25)    

6) Final  report  preparation  a. 40  hours  of  PI  time  b. 40  hours  of  co-­‐investigator  time  

 Milestone  5:  Project  concludes,  nuclear  fusion  confirmed  (week  26)  

Page 23: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   23  

 

References  [1]   Ophardt,   C.E.,   Virtual   Chembook,   Distillation   oil   refining,   Elmhurst   College,   2003,  http://www.elmhurst.edu/~chm/vchembook/513refining.html    

[2]   Izatt,   J.,   Asphalt,   in   Encyclopedia   of   Chemical   Processing   and   Design,   McKett,   J.J.,  editor,  New  York,  1986,  vol.  3,  p.421  

[3]  Kovin  et  al.,  Catalytic  Cracking  Development  and  Its  Role  in  Modern  Russian  Refinery,  Ufa  State  Petroleum  Technological  University,  UDK  665.773.5,  2009  

[4]   Promptov,   M.A.,   Pulsation   Apparata   of   Rotor   Type:   Theory   and   Practice,   Moscow,  Mashinostroyeniye,  2001  

[5]  Flannigan,  D.J.,  Suslick,  K.S.,  Plasma  formation  and  temperature  measurement  during  single-­‐bubble  cavitation,  Nature,  434,  7029,  p.  52–55,  2006    

[6]  Chen  et  al.,  Time-­‐resolved  spectra  of  single-­‐bubble  sonoluminescence   in  sulfuric  acid  with  a  streak  camera,  Phys.  Rev.  E  78,  035301(R),  2008  

[7]   Suslick,   K.S.,   Sonoluminescence   and   Sonochemistry,   in   the   Encyclopedia   of   Physical  Science  and  Technology,  3rd  Edition,  Myers,  R.A.  (editor),  Academic  Press,  2001  

[8]   Chervyakov,   V.M.,   Yudayev,   V.F.,   Hydrodynamic   and   cavitation   processes   in   rotor  apparata,  Moscow,  Mashinostroyeniye,  2007  

[9]  Zhuk,  V.,  The  Cavitational  Fuel  Depolymerization,  CT  Kavitus,  2008  

[10]   Selivanov,   N.I.,   Change   of   Viscosity   of   Oil,   New   Technologies   2000,   2002,  http://www.newtech2000.ru/new_tech_eng1.php    

[11]  EkoEnergoMash,  Cavitation  Technologies,  Kazan,  Russia,  2009,  http://www.eemkzn.ru/product/kavitac/    

[12]  Suslick  et  al.,  Alkane  Sonochemistry,  J.  Phys.  Chem.,  87,  p.  2299-­‐2301,  1983  

[13]  Suslick,  private  communication  

[14]  Nesterenko,  A.I.,  Berlizov,  Yu.S.,  The  Possibility  of  Cracking  Hydrocarbons  with  Cavitation,  Chemistry  and  Technology  of  Fuels  and  Oils,  43,  6,  2007  

[15]  Besov  et  al.,  Degradation  of  Hydrocarbons  in  the  Cavitation  Region  Activated  by  Aqueous  Electrolyte  Solutions  in  the  Presence  of  Electric  Field,  Technical  Physics  Letters,  29.  3.  P.  207-­‐209,  2003  

[16]  Promtov,  M.A.,  Cavitation  Technologies  for  Quality  Improvement  of  Hydrocarbon  Fuels,  Chemical  and  Petroleum  Engineering,  44,  1-­‐2,  2008  

[17]  Sawarkar  et  al.,  Use  of  Ultrasound  in  Petroleum  Residue  Upgradation,  The  Canadian  Journal  of  Chemical  Engineering,  87,  3,  pp.  329-­‐342,  2009  

[18]  Lin,  J.R.,  Yen,  T.F.,  An  Upgrading  Process  through  Cavitation  and  Surfactant,  Energy  and  Fuels,  7,  pp.  111-­‐118,  1993  

Page 24: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   24  

[19]  Kladov,  A.F.,  Ultrasonic  Activator,  WO/1994/0009894,  1994  

[20]  Kladov,  A.F.,   Process   For  Cracking  Crude  Oil  And  Petroleum  Products  And  A  Device  For  Carrying  Out  The  Same,  WO/1994/01026,  1994  

[24]   Selivanov,   N.I.,   Method   and   Device   for   Conditioning   Hydrocarbon   Liquid,  WO/2003/093398,  2003  

[25]  Selivanov,  N.I.,  Private  communication,  2010  

[26]   Flannigan,   D.J.,   Suslick,   K.S.,   Internally   confined   plasma   in   an   imploding   bubble,  Nature  Phyrics  Letters,  6,  2010,  DOI:10.1038/NPHYS1701  

[27]  Rodionov,  B.U.,  Acceleration  of  ions  and  nuclear  reactions  in  cavitating  liquids,  in  proceedings  of  the  3rd  All-­‐Russian  Conference  on  Science  and  Technology,  p.  125-­‐127,  2002,  http://library.mephi.ru/data/scientific-­‐sessions/2002/3_Konf/1132.html    

[28]  Schukin,  V.  A.,  The  method  for  hydrocracking  of  oil  feedstock  with  vortex  reactor,  Russian  Federation  Patent  #2448153,  Issued  7/30/2010  

[29]  Selivanov,  K.  N.,  Private  communication,  2011.

Page 25: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   25  

Facilities  Quantum  Potential   Corporation   has   necessary   facilities   to   conduct   the   project  work  

outlined  in  this  proposal  for  purpose  of  this  project.    

 

Equipment  Quantum   Potential   Corporation   has   necessary   tools   and   equipment   to   conduct   the  

project  work  outlined  in  this  proposal,  except  for  the  ModCon  MOD-­‐8000  system,  which  must  be  purchased.  

 

Budget  Justification  1. ModCon  MOD-­‐8000:  $75,000  2. Activator  Construction  costs:  $50,000  3. ASTM  D-­‐86  automatic  distillation  station:  $20,000  

Funds  sought:  $250,000-­‐400,000  

 

Page 26: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   26  

Max  Fomitchev-­‐Zamilov,  Ph.D.  President,  Quantum  Potential  Corporation  

200  Innovation  Blvd,  Suit  254,  State  College,  PA  16803,  814-­‐325-­‐0148,  max@quantum-­‐potential.com    

Assistant  Professor  of  CS&E,  Pennsylvania  State  University  111J  IST,  University  Park,  PA  16802,  814-­‐863-­‐1469,  [email protected]    

Dr.   Fomitchev-­‐Zamilov   is   a   leading   force   behind   Quantum   Potential   Corporation.  Primary  mission  of  the  company  is  design,  development  and  sales  of  cavitation  equipment  and   high-­‐risk/high-­‐payoff   research   in   science   and   technology.   Physicist   and   computer  engineer   by   training,   Dr.   Fomitchev-­‐Zamilov’s   designs   the   equipment   produced   by  Quantum   Potential   Corporation.   Dr.   Fomitchev-­‐Zamilov’s   relevant   experience   includes  theoretical  and  experimental  physics,  molecular  dynamics,  high-­‐performance  computing,  ultrasonic  pulse  shaping  and  piezoelectric  transducer  frequency  control.  

Education  

2001     PhD  in  Computer  Engineering,  Moscow  Institute  of  Electronic  Engineering  

1999     PhD  Candidate  in  Computer  Science,  University  of  Tulsa  

1997     MS  in  Computer  Engineering,  Moscow  Institute  of  Electronic  Engineering  

Employment  

2002-­‐present   President,  Quantum  Potential  Corporation  

2006-­‐present   Assistant  Professor  of  Computer  Science,  Pennsylvania  State  University  

1997-­‐2001   Software  Engineer,  LeapNet,  Inc.  

Selected  Patents  and  Publications  

Fomitchev,  M.  (2001).  Ultrasound  Imaging  Device  that  Uses  Optimal  Lag  Pulse  Shaping  Filters,  US  Patent  #6,167,758,  

Fomitchev,  M.,  Grigorashvily,  Yu.,  &  Volkov  S.  (1999).  Ultrasonic  Pulse  Shaping  with  Optimal  Lag  Filters.  International  Journal  of  Imaging  Systems  and  Technology,  10  (5),  397-­‐403  

Grigorashvily,  Yu.,  &  Fomitchev,  M.  (2000).  Ultrasound  System  with  Pulse-­‐Shape  Control,  Izvestija  vuzov,  2,  70-­‐74  

Fomitchev,  M.  (1998).  Introduction  to  Wavelets,  Matematicheskaja  Morfologija,  3  (1),  1998  

Fomitchev,  M.,  Grigorashvily,  Yu.,  &  Volkov  S.  (1999).  Cost-­‐Effective  Ultrasound  Imaging  Apparatus  that  Uses  Optimal-­‐Lag  Pulse  Shaping  Filters,  1999  IEEE  International  Ultrasonics  Symposium  Proceedings,  1,  691-­‐694  

Grigorashvily,  Yu.,  &  Fomitchev,  M.  (2000).  Ultrasound  System  with  Pulse-­‐Shape  Control,  International  Conference  “Sensor-­‐2000”  Proceedings,  Sudak,  112  

Page 27: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   27  

Sergei  Godin  Chief  Engineer  

200  Innovation  Blvd,  Suit  254,  State  College,  PA  16803,  814-­‐325-­‐0148,  sergei@quantum-­‐potential.com    

Biographical  Sketch  

Mr.  Godin   is  an  experienced  practitioner  and  an  exceptional  experimentalist.  He  will  be   responsible   for   mechanical   design   and   for   designing   electronic   circuits   and   control  systems   for   the   experiment.   Mr.   Godin   is   an   expert   in   electrical   engineering,   digital   /  analog   electronics,   measurement   devices   and   experimentation   in   general.   He   has   vast  experience   working   with   both   hydrodynamic   and   acoustic   cavitation.   Prior   to   joining  Quantum  Potential  Mr.  Godin  has  worked  as  an  engineer  at  the  Central  Research  Institute  for  Communications  (Moscow),  then  as  a  research  associate  at  IMASH  (Moscow)  and  for  the  following  12  years  as  a  research  associate  at  the  Institute  for  High  Temperatures  (IHT)  of   the   Russian   Academy   of   Sciences.   During   his   tenure   at   IHT   Mr.   Godin   was   a   key  investigator   in   a   number  of   research  projects   focused  on   sonoluminescence,   cavitation,  plasma  discharges,  and  nuclear  fusion.  

Mr.  Godin  has  a  valuable  experience  of   research  commercialization  and  has  a  knack  for  discovering  multiple  practical  applications  of  scientific  ideas.  He  leads  a  diverse  group  of   cross-­‐disciplinary   researchers.   Besides   his   duties   at   Quantum   Potential   Mr.   Godin  servers  as  a  consultant  on  a  oil   cracking   research  project   for  a   large  Russian  oil  and  gas  company.  

Mr.  Godin  has  co-­‐authored  a  book  on  fundamental  physics,  numerous  research  papers  and  holds  several  patents.  

Education  

1989   PhD  Candidate  in  Mechanics  and  Mathematics,  Moscow  State  University  

1983   Certificate  in  Signal  Processing,  Moscow  Institute  of  Radio-­‐engineering  Electronics  

1981   MS  in  Electrical  Engineering,  Moscow  Institute  of  Communications  and  Informatics  

Employment  

2010-­‐present   Research  Associate,  Quantum  Potential  Corporation  

1996-­‐2008   Research  Associate,  Institute  for  High  Temperatures  of  Russian  Acad.  of  Sci.  

Selected  Publications  

Karimov,  A.,  &  Godin,  S.  (2009).  Coupled  radial–azimuthal  oscillations  in  twirling  cylindrical  plasmas,  Physica  Scripta,  80  (3),  035503  

Godin,  S.,  &  Botvinsly,  V.  (2009).  Measurements  of  displacement  current  with  fammeter,    Radiotechnology  &  Electronics,  54  (9),  1049-­‐1152  

Godin,  S.,  Rodionov,  B.,  &  Savvatimova,  I.  (2007).  Inspection  method  to  check  quality  of  nuclear  transmutation  media,  13th  International  Conference  on  Condensed  Matter  Nuclear  Science,  Dagomys  

Page 28: Cavitation Hydrocarbon Cracking

 

©  2012  Quantum  Potential  Corporation  |  www.quantum-­‐potential.com  |  CONFIDENTIAL   28  

Roschin,  V.,  &  Godin,  S.  (2004).  Orbiting  Multi-­‐Rotor  Homopolar  System,  US  Patent  #6,822,361  

Klimov   et   al.   (2004).   On   the   possibility   of   electrostatic   relativistic   dynamo,  Radiotechnology  &  Electronics,  49  (11),  1237-­‐1243