Top Banner
Emily Riehl Johns Hopkins University Categorifying cardinal arithmetic University of Chicago REU
104

Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Jul 07, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Emily Riehl

Johns Hopkins University

Categorifying cardinal arithmetic

University of Chicago REU

Page 2: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Plan

Goal: prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) for any natural numbers

𝑎, 𝑏, and 𝑐 .

by taking a tour of some deep ideas from category theory.

• Step 1: categorification

• Step 2: the Yoneda lemma

• Step 3: representability

• Step 4: the proof

• Epilogue: what was the point of that?

Page 3: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Plan

Goal: prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) for any natural numbers

𝑎, 𝑏, and 𝑐 by taking a tour of some deep ideas from category theory.

• Step 1: categorification

• Step 2: the Yoneda lemma

• Step 3: representability

• Step 4: the proof

• Epilogue: what was the point of that?

Page 4: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Plan

Goal: prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) for any natural numbers

𝑎, 𝑏, and 𝑐 by taking a tour of some deep ideas from category theory.

• Step 1: categorification

• Step 2: the Yoneda lemma

• Step 3: representability

• Step 4: the proof

• Epilogue: what was the point of that?

Page 5: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Plan

Goal: prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) for any natural numbers

𝑎, 𝑏, and 𝑐 by taking a tour of some deep ideas from category theory.

• Step 1: categorification

• Step 2: the Yoneda lemma

• Step 3: representability

• Step 4: the proof

• Epilogue: what was the point of that?

Page 6: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

1

Step 1: categorification

Page 7: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The idea of categorification

The first step is to understand the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

Q: What is the role of the natural numbers 𝑎, 𝑏, and 𝑐 ?

Page 8: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The idea of categorification

The first step is to understand the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

Q: What is the role of the natural numbers 𝑎, 𝑏, and 𝑐 ?

Page 9: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The idea of categorification

The first step is to understand the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

Q: What is the role of the natural numbers 𝑎, 𝑏, and 𝑐 ?

Page 10: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying natural numbers

Q: What is the role of the natural numbers 𝑎, 𝑏, and 𝑐 ?

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Page 11: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying natural numbers

Q: What is the role of the natural numbers 𝑎, 𝑏, and 𝑐 ?

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Page 12: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying natural numbers

Q: What is the role of the natural numbers 𝑎, 𝑏, and 𝑐 ?

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Page 13: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying equality

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Q: What is true of 𝐴 and 𝐵 if 𝑎 = 𝑏 ?A: 𝑎 = 𝑏 if and only if 𝐴 and 𝐵 are isomorphic, which means there exist

functions 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 that are inverses in the sense that

𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. In this case, we write 𝐴 ≅ 𝐵.

For 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵|,the equation 𝑎 = 𝑏 asserts the existence of an isomorphism 𝐴 ≅ 𝐵.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind 𝑎 = 𝑏 is 𝐴 ≅ 𝐵.

Page 14: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying equality

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Q: What is true of 𝐴 and 𝐵 if 𝑎 = 𝑏 ?

A: 𝑎 = 𝑏 if and only if 𝐴 and 𝐵 are isomorphic, which means there exist

functions 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 that are inverses in the sense that

𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. In this case, we write 𝐴 ≅ 𝐵.

For 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵|,the equation 𝑎 = 𝑏 asserts the existence of an isomorphism 𝐴 ≅ 𝐵.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind 𝑎 = 𝑏 is 𝐴 ≅ 𝐵.

Page 15: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying equality

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Q: What is true of 𝐴 and 𝐵 if 𝑎 = 𝑏 ?A: 𝑎 = 𝑏 if and only if 𝐴 and 𝐵 are isomorphic, which means there exist

functions 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 that are inverses in the sense that

𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. In this case, we write 𝐴 ≅ 𝐵.

For 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵|,the equation 𝑎 = 𝑏 asserts the existence of an isomorphism 𝐴 ≅ 𝐵.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind 𝑎 = 𝑏 is 𝐴 ≅ 𝐵.

Page 16: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying equality

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Q: What is true of 𝐴 and 𝐵 if 𝑎 = 𝑏 ?A: 𝑎 = 𝑏 if and only if 𝐴 and 𝐵 are isomorphic, which means there exist

functions 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 that are inverses in the sense that

𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. In this case, we write 𝐴 ≅ 𝐵.

For 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵|,the equation 𝑎 = 𝑏 asserts the existence of an isomorphism 𝐴 ≅ 𝐵.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind 𝑎 = 𝑏 is 𝐴 ≅ 𝐵.

Page 17: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying equality

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Q: What is true of 𝐴 and 𝐵 if 𝑎 = 𝑏 ?A: 𝑎 = 𝑏 if and only if 𝐴 and 𝐵 are isomorphic, which means there exist

functions 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 that are inverses in the sense that

𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. In this case, we write 𝐴 ≅ 𝐵.

For 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵|,the equation 𝑎 = 𝑏 asserts the existence of an isomorphism 𝐴 ≅ 𝐵.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind 𝑎 = 𝑏 is 𝐴 ≅ 𝐵.

Page 18: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying equality

Natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵, and 𝐶.

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

Q: What is true of 𝐴 and 𝐵 if 𝑎 = 𝑏 ?A: 𝑎 = 𝑏 if and only if 𝐴 and 𝐵 are isomorphic, which means there exist

functions 𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐴 that are inverses in the sense that

𝑔 ∘ 𝑓 = id and 𝑓 ∘ 𝑔 = id. In this case, we write 𝐴 ≅ 𝐵.

For 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵|,the equation 𝑎 = 𝑏 asserts the existence of an isomorphism 𝐴 ≅ 𝐵.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind 𝑎 = 𝑏 is 𝐴 ≅ 𝐵.

Page 19: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorification progress report

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

The story so far:

• The natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵,

and 𝐶:

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

• The equation “=” asserts the existence of an isomorphism “≅”.

Q: What is the deeper meaning of the symbols “+” and “×”?

Page 20: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorification progress report

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

The story so far:

• The natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵,

and 𝐶:

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

• The equation “=” asserts the existence of an isomorphism “≅”.

Q: What is the deeper meaning of the symbols “+” and “×”?

Page 21: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorification progress report

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

The story so far:

• The natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵,

and 𝐶:

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

• The equation “=” asserts the existence of an isomorphism “≅”.

Q: What is the deeper meaning of the symbols “+” and “×”?

Page 22: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorification progress report

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

The story so far:

• The natural numbers 𝑎, 𝑏, and 𝑐 encode the sizes of finite sets 𝐴, 𝐵,

and 𝐶:

𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, 𝑐 ≔ |𝐶|.

• The equation “=” asserts the existence of an isomorphism “≅”.

Q: What is the deeper meaning of the symbols “+” and “×”?

Page 23: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying +

Q: If 𝑏 ≔ |𝐵| and 𝑐 ≔ |𝐶| what set has 𝑏 + 𝑐 elements?

A: The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

𝐵 =⎧{⎨{⎩

♯♭♮

⎫}⎬}⎭

, 𝐶 = { ♠ ♡♢ ♣ } , 𝐵 + 𝐶 = { ♯ ♭ ♠ ♡

♮ ♢ ♣ }

𝑏 + 𝑐 ≔ |𝐵 + 𝐶|

Page 24: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying +

Q: If 𝑏 ≔ |𝐵| and 𝑐 ≔ |𝐶| what set has 𝑏 + 𝑐 elements?

A: The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

𝐵 =⎧{⎨{⎩

♯♭♮

⎫}⎬}⎭

, 𝐶 = { ♠ ♡♢ ♣ } , 𝐵 + 𝐶 = { ♯ ♭ ♠ ♡

♮ ♢ ♣ }

𝑏 + 𝑐 ≔ |𝐵 + 𝐶|

Page 25: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying +

Q: If 𝑏 ≔ |𝐵| and 𝑐 ≔ |𝐶| what set has 𝑏 + 𝑐 elements?

A: The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

𝐵 =⎧{⎨{⎩

♯♭♮

⎫}⎬}⎭

, 𝐶 = { ♠ ♡♢ ♣ } , 𝐵 + 𝐶 = { ♯ ♭ ♠ ♡

♮ ♢ ♣ }

𝑏 + 𝑐 ≔ |𝐵 + 𝐶|

Emily Riehl
Page 26: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying ×

Q: If 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵| what set has 𝑎 × 𝑏 elements?

A: The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

𝐴 = { ∗ ⋆ } , 𝐵 =⎧{⎨{⎩

♯♭♮

⎫}⎬}⎭

, 𝐴 ×𝐵 =⎧{⎨{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)

⎫}⎬}⎭

𝑎× 𝑏 ≔ |𝐴 × 𝐵|

Page 27: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying ×

Q: If 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵| what set has 𝑎 × 𝑏 elements?

A: The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

𝐴 = { ∗ ⋆ } , 𝐵 =⎧{⎨{⎩

♯♭♮

⎫}⎬}⎭

, 𝐴 ×𝐵 =⎧{⎨{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)

⎫}⎬}⎭

𝑎× 𝑏 ≔ |𝐴 × 𝐵|

Page 28: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying ×

Q: If 𝑎 ≔ |𝐴| and 𝑏 ≔ |𝐵| what set has 𝑎 × 𝑏 elements?

A: The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

𝐴 = { ∗ ⋆ } , 𝐵 =⎧{⎨{⎩

♯♭♮

⎫}⎬}⎭

, 𝐴 ×𝐵 =⎧{⎨{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)

⎫}⎬}⎭

𝑎× 𝑏 ≔ |𝐴 × 𝐵|

Emily Riehl
Page 29: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 30: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.

• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 31: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 32: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 33: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 34: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 35: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets 𝐴, 𝐵, and 𝐶 so

that 𝑎 ≔ |𝐴|, 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|.• The equation 𝑎 = 𝑏 encodes an isomorphism 𝐴 ≅ 𝐵.

• The disjoint union 𝐵 +𝐶 is a set with 𝑏 + 𝑐 elements.

• The cartesian product 𝐴×𝐵 is a set with 𝑎 × 𝑏 elements.

Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: It means that the sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) areisomorphic!

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

Page 36: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Step 1Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: The sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) are isomorphic!

⎧{{{{⎨{{{{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)(∗,♠) (⋆,♠)(∗,♡) (⋆,♡)(∗,♢) (⋆,♢)(∗,♣) (⋆,♣)

⎫}}}}⎬}}}}⎭

⎧{{⎨{{⎩

(∗, ♯) (∗, ♭) (∗,♠) (∗,♡)(∗, ♮) (∗,♢) (∗,♣)

(⋆, ♯) (⋆, ♭) (⋆,♠) (⋆,♡)(⋆, ♮) (⋆,♢) (⋆,♣)

⎫}}⎬}}⎭

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

Page 37: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Step 1Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: The sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) are isomorphic!

⎧{{{{⎨{{{{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)(∗,♠) (⋆,♠)(∗,♡) (⋆,♡)(∗,♢) (⋆,♢)(∗,♣) (⋆,♣)

⎫}}}}⎬}}}}⎭

⎧{{⎨{{⎩

(∗, ♯) (∗, ♭) (∗,♠) (∗,♡)(∗, ♮) (∗,♢) (∗,♣)

(⋆, ♯) (⋆, ♭) (⋆,♠) (⋆,♡)(⋆, ♮) (⋆,♢) (⋆,♣)

⎫}}⎬}}⎭

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

Page 38: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Step 1Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: The sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) are isomorphic!

⎧{{{{⎨{{{{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)(∗,♠) (⋆,♠)(∗,♡) (⋆,♡)(∗,♢) (⋆,♢)(∗,♣) (⋆,♣)

⎫}}}}⎬}}}}⎭

⎧{{⎨{{⎩

(∗, ♯) (∗, ♭) (∗,♠) (∗,♡)(∗, ♮) (∗,♢) (∗,♣)

(⋆, ♯) (⋆, ♭) (⋆,♠) (⋆,♡)(⋆, ♮) (⋆,♢) (⋆,♣)

⎫}}⎬}}⎭

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

Page 39: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Step 1Q: What is the deeper meaning of the equation

𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐) ?

A: The sets 𝐴× (𝐵 + 𝐶) and (𝐴 × 𝐵) + (𝐴 × 𝐶) are isomorphic!

⎧{{{{⎨{{{{⎩

(∗, ♯) (⋆, ♯)(∗, ♭) (⋆, ♭)(∗, ♮) (⋆, ♮)(∗,♠) (⋆,♠)(∗,♡) (⋆,♡)(∗,♢) (⋆,♢)(∗,♣) (⋆,♣)

⎫}}}}⎬}}}}⎭

⎧{{⎨{{⎩

(∗, ♯) (∗, ♭) (∗,♠) (∗,♡)(∗, ♮) (∗,♢) (∗,♣)

(⋆, ♯) (⋆, ♭) (⋆,♠) (⋆,♡)(⋆, ♮) (⋆,♢) (⋆,♣)

⎫}}⎬}}⎭

𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

Page 40: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

2

Step 2: the Yoneda lemma

Page 41: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The Yoneda lemma

The Yoneda lemma. Two sets 𝐴 and 𝐵 are isomorphic if and only if

• for all sets 𝑋, the sets of functions

Fun(𝐴,𝑋) ≔ {ℎ∶ 𝐴 → 𝑋} and Fun(𝐵,𝑋) ≔ {𝑘∶ 𝐵 → 𝑋}

are isomorphic and moreover

• the isomorphisms Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) are “natural” in the

sense of commuting with composition with any function ℓ ∶ 𝑋 → 𝑌.

? ? ?

Page 42: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The Yoneda lemma

The Yoneda lemma. Two sets 𝐴 and 𝐵 are isomorphic if and only if

• for all sets 𝑋, the sets of functions

Fun(𝐴,𝑋) ≔ {ℎ∶ 𝐴 → 𝑋} and Fun(𝐵,𝑋) ≔ {𝑘∶ 𝐵 → 𝑋}

are isomorphic

and moreover

• the isomorphisms Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) are “natural” in the

sense of commuting with composition with any function ℓ ∶ 𝑋 → 𝑌.

? ? ?

Page 43: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The Yoneda lemma

The Yoneda lemma. Two sets 𝐴 and 𝐵 are isomorphic if and only if

• for all sets 𝑋, the sets of functions

Fun(𝐴,𝑋) ≔ {ℎ∶ 𝐴 → 𝑋} and Fun(𝐵,𝑋) ≔ {𝑘∶ 𝐵 → 𝑋}

are isomorphic and moreover

• the isomorphisms Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) are “natural” in the

sense of commuting with composition with any function ℓ ∶ 𝑋 → 𝑌.

? ? ?

Page 44: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The Yoneda lemma

The Yoneda lemma. Two sets 𝐴 and 𝐵 are isomorphic if and only if

• for all sets 𝑋, the sets of functions

Fun(𝐴,𝑋) ≔ {ℎ∶ 𝐴 → 𝑋} and Fun(𝐵,𝑋) ≔ {𝑘∶ 𝐵 → 𝑋}

are isomorphic and moreover

• the isomorphisms Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) are “natural” in the

sense of commuting with composition with any function ℓ ∶ 𝑋 → 𝑌.

? ? ?

Page 45: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝐴

≅ ≅

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 46: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐):

Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝐴

≅ ≅

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 47: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋.

Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝐴

≅ ≅

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 48: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝐴

≅ ≅

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 49: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

id𝐴 id𝐵

≅ ≅

∈ ∈

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 50: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

id𝐴 𝑔 𝑓 id𝐵

≅ ≅

∈ ∈ ∈ ∈

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵.

By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 51: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

id𝐴 𝑔 𝑓 id𝐵

≅ ≅

∈ ∈ ∈ ∈

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 52: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Proof of the Yoneda lemma

The Yoneda lemma. 𝐴 and 𝐵 are isomorphic if and only if for any 𝑋 the

sets of functions Fun(𝐴,𝑋) and Fun(𝐵,𝑋) are “naturally” isomorphic.

Proof (⇐): Suppose Fun(𝐴,𝑋) ≅ Fun(𝐵,𝑋) for all 𝑋. Taking 𝑋 = 𝐴and 𝑋 = 𝐵, we use the bijections:

Fun(𝐴,𝐴) Fun(𝐵,𝐴) Fun(𝐴,𝐵) Fun(𝐵,𝐵)

id𝐴 𝑔 𝑓 id𝐵

≅ ≅

∈ ∈ ∈ ∈

to define functions 𝑔∶ 𝐵 → 𝐴 and 𝑓∶ 𝐴 → 𝐵. By naturality:

id𝐴 𝑔

Fun(𝐴,𝐴) Fun(𝐵,𝐴)

Fun(𝐴,𝐵) Fun(𝐵,𝐵)

𝑓 id𝐵 = 𝑓 ∘ 𝑔

∈ ∈

≅𝑓∘− 𝑓∘−

≅∈ ∈

and similarly

𝑔 ∘ 𝑓 = id𝐴.

Page 53: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

Page 54: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

Page 55: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

Page 56: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

Page 57: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

3

Step 3: representability

Page 58: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The universal property of the disjoint union

Q: For sets 𝐵, 𝐶, and 𝑋, what is Fun(𝐵 + 𝐶,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐵 + 𝐶 → 𝑋?

A: For each 𝑏 ∈ 𝐵, we need to specify 𝑓(𝑏) ∈ 𝑋, and for each 𝑐 ∈ 𝐶,

we need to specify 𝑓(𝑐) ∈ 𝑋. So the function 𝑓∶ 𝐵 + 𝐶 → 𝑋 is

determined by two functions 𝑓𝐵 ∶ 𝐵 → 𝑋 and 𝑓𝐶 ∶ 𝐶 → 𝑋.

By “pairing”

Fun(𝐵 + 𝐶,𝑋) Fun(𝐵,𝑋) × Fun(𝐶,𝑋)

𝑓 (𝑓𝐵, 𝑓𝐶)

Page 59: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The universal property of the disjoint union

Q: For sets 𝐵, 𝐶, and 𝑋, what is Fun(𝐵 + 𝐶,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐵 + 𝐶 → 𝑋?

A: For each 𝑏 ∈ 𝐵, we need to specify 𝑓(𝑏) ∈ 𝑋, and for each 𝑐 ∈ 𝐶,

we need to specify 𝑓(𝑐) ∈ 𝑋. So the function 𝑓∶ 𝐵 + 𝐶 → 𝑋 is

determined by two functions 𝑓𝐵 ∶ 𝐵 → 𝑋 and 𝑓𝐶 ∶ 𝐶 → 𝑋.

By “pairing”

Fun(𝐵 + 𝐶,𝑋) Fun(𝐵,𝑋) × Fun(𝐶,𝑋)

𝑓 (𝑓𝐵, 𝑓𝐶)

Page 60: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The universal property of the disjoint union

Q: For sets 𝐵, 𝐶, and 𝑋, what is Fun(𝐵 + 𝐶,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐵 + 𝐶 → 𝑋?

A: For each 𝑏 ∈ 𝐵, we need to specify 𝑓(𝑏) ∈ 𝑋, and for each 𝑐 ∈ 𝐶,

we need to specify 𝑓(𝑐) ∈ 𝑋.

So the function 𝑓∶ 𝐵 + 𝐶 → 𝑋 is

determined by two functions 𝑓𝐵 ∶ 𝐵 → 𝑋 and 𝑓𝐶 ∶ 𝐶 → 𝑋.

By “pairing”

Fun(𝐵 + 𝐶,𝑋) Fun(𝐵,𝑋) × Fun(𝐶,𝑋)

𝑓 (𝑓𝐵, 𝑓𝐶)

Page 61: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The universal property of the disjoint union

Q: For sets 𝐵, 𝐶, and 𝑋, what is Fun(𝐵 + 𝐶,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐵 + 𝐶 → 𝑋?

A: For each 𝑏 ∈ 𝐵, we need to specify 𝑓(𝑏) ∈ 𝑋, and for each 𝑐 ∈ 𝐶,

we need to specify 𝑓(𝑐) ∈ 𝑋. So the function 𝑓∶ 𝐵 + 𝐶 → 𝑋 is

determined by two functions 𝑓𝐵 ∶ 𝐵 → 𝑋 and 𝑓𝐶 ∶ 𝐶 → 𝑋.

By “pairing”

Fun(𝐵 + 𝐶,𝑋) Fun(𝐵,𝑋) × Fun(𝐶,𝑋)

𝑓 (𝑓𝐵, 𝑓𝐶)

Page 62: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The universal property of the disjoint union

Q: For sets 𝐵, 𝐶, and 𝑋, what is Fun(𝐵 + 𝐶,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐵 + 𝐶 → 𝑋?

A: For each 𝑏 ∈ 𝐵, we need to specify 𝑓(𝑏) ∈ 𝑋, and for each 𝑐 ∈ 𝐶,

we need to specify 𝑓(𝑐) ∈ 𝑋. So the function 𝑓∶ 𝐵 + 𝐶 → 𝑋 is

determined by two functions 𝑓𝐵 ∶ 𝐵 → 𝑋 and 𝑓𝐶 ∶ 𝐶 → 𝑋.

By “pairing”

Fun(𝐵 + 𝐶,𝑋) Fun(𝐵,𝑋) × Fun(𝐶,𝑋)

𝑓 (𝑓𝐵, 𝑓𝐶)

↭∈

Page 63: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

A universal property of the cartesian product

Q: For sets 𝐴, 𝐵, and 𝑋, what is Fun(𝐴 × 𝐵,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐴 × 𝐵 → 𝑋?

A: For each 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, we need to specify an element

𝑓(𝑎, 𝑏) ∈ 𝑋. Thus, for each 𝑏 ∈ 𝐵, we need to specify a function

𝑓(−, 𝑏) ∶ 𝐴 → 𝑋 sending 𝑎 to 𝑓(𝑎, 𝑏). So, altogether we need to

define a function 𝑓∶ 𝐵 → Fun(𝐴,𝑋).

By “currying”

Fun(𝐴 × 𝐵,𝑋) Fun(𝐵, Fun(𝐴,𝑋))

𝑓∶ 𝐴 × 𝐵 → 𝑋 𝑓∶ 𝐵 → Fun(𝐴,𝑋)

Page 64: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

A universal property of the cartesian product

Q: For sets 𝐴, 𝐵, and 𝑋, what is Fun(𝐴 × 𝐵,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐴 × 𝐵 → 𝑋?

A: For each 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, we need to specify an element

𝑓(𝑎, 𝑏) ∈ 𝑋. Thus, for each 𝑏 ∈ 𝐵, we need to specify a function

𝑓(−, 𝑏) ∶ 𝐴 → 𝑋 sending 𝑎 to 𝑓(𝑎, 𝑏). So, altogether we need to

define a function 𝑓∶ 𝐵 → Fun(𝐴,𝑋).

By “currying”

Fun(𝐴 × 𝐵,𝑋) Fun(𝐵, Fun(𝐴,𝑋))

𝑓∶ 𝐴 × 𝐵 → 𝑋 𝑓∶ 𝐵 → Fun(𝐴,𝑋)

Page 65: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

A universal property of the cartesian product

Q: For sets 𝐴, 𝐵, and 𝑋, what is Fun(𝐴 × 𝐵,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐴 × 𝐵 → 𝑋?

A: For each 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, we need to specify an element

𝑓(𝑎, 𝑏) ∈ 𝑋.

Thus, for each 𝑏 ∈ 𝐵, we need to specify a function

𝑓(−, 𝑏) ∶ 𝐴 → 𝑋 sending 𝑎 to 𝑓(𝑎, 𝑏). So, altogether we need to

define a function 𝑓∶ 𝐵 → Fun(𝐴,𝑋).

By “currying”

Fun(𝐴 × 𝐵,𝑋) Fun(𝐵, Fun(𝐴,𝑋))

𝑓∶ 𝐴 × 𝐵 → 𝑋 𝑓∶ 𝐵 → Fun(𝐴,𝑋)

Page 66: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

A universal property of the cartesian product

Q: For sets 𝐴, 𝐵, and 𝑋, what is Fun(𝐴 × 𝐵,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐴 × 𝐵 → 𝑋?

A: For each 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, we need to specify an element

𝑓(𝑎, 𝑏) ∈ 𝑋. Thus, for each 𝑏 ∈ 𝐵, we need to specify a function

𝑓(−, 𝑏) ∶ 𝐴 → 𝑋 sending 𝑎 to 𝑓(𝑎, 𝑏).

So, altogether we need to

define a function 𝑓∶ 𝐵 → Fun(𝐴,𝑋).

By “currying”

Fun(𝐴 × 𝐵,𝑋) Fun(𝐵, Fun(𝐴,𝑋))

𝑓∶ 𝐴 × 𝐵 → 𝑋 𝑓∶ 𝐵 → Fun(𝐴,𝑋)

Page 67: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

A universal property of the cartesian product

Q: For sets 𝐴, 𝐵, and 𝑋, what is Fun(𝐴 × 𝐵,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐴 × 𝐵 → 𝑋?

A: For each 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, we need to specify an element

𝑓(𝑎, 𝑏) ∈ 𝑋. Thus, for each 𝑏 ∈ 𝐵, we need to specify a function

𝑓(−, 𝑏) ∶ 𝐴 → 𝑋 sending 𝑎 to 𝑓(𝑎, 𝑏). So, altogether we need to

define a function 𝑓∶ 𝐵 → Fun(𝐴,𝑋).

By “currying”

Fun(𝐴 × 𝐵,𝑋) Fun(𝐵, Fun(𝐴,𝑋))

𝑓∶ 𝐴 × 𝐵 → 𝑋 𝑓∶ 𝐵 → Fun(𝐴,𝑋)

Page 68: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

A universal property of the cartesian product

Q: For sets 𝐴, 𝐵, and 𝑋, what is Fun(𝐴 × 𝐵,𝑋)?

Q: What is needed to define a function 𝑓∶ 𝐴 × 𝐵 → 𝑋?

A: For each 𝑏 ∈ 𝐵 and 𝑎 ∈ 𝐴, we need to specify an element

𝑓(𝑎, 𝑏) ∈ 𝑋. Thus, for each 𝑏 ∈ 𝐵, we need to specify a function

𝑓(−, 𝑏) ∶ 𝐴 → 𝑋 sending 𝑎 to 𝑓(𝑎, 𝑏). So, altogether we need to

define a function 𝑓∶ 𝐵 → Fun(𝐴,𝑋).

By “currying”

Fun(𝐴 × 𝐵,𝑋) Fun(𝐵, Fun(𝐴,𝑋))

𝑓∶ 𝐴 × 𝐵 → 𝑋 𝑓∶ 𝐵 → Fun(𝐴,𝑋)

↭∈

Page 69: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing” and• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 70: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing” and• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 71: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)

⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing” and• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 72: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing” and• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 73: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing” and• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 74: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing”

and

• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 75: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)⇝ we’ll instead show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

By the Yoneda lemma:

Step 2 summary: To prove 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶)⇝ we’ll instead define a “natural” isomorphism

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

By representability:

Step 3 summary:

• Fun(𝐵 + 𝐶,𝑋) ≅ Fun(𝐵,𝑋) × Fun(𝐶,𝑋) by “pairing” and• Fun(𝐴 × 𝐵,𝑋) ≅ Fun(𝐵, Fun(𝐴,𝑋)) by “currying.”

Page 76: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

4

Step 4: the proof

Page 77: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof:

To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅

Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 78: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):

• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅

Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 79: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|

• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅

Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 80: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).

• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅

Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 81: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).

• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅

Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 82: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅

Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 83: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅ Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”

≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 84: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅ Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”

≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 85: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅ Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”

≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 86: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅ Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 87: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The proof

Theorem. For any natural numbers 𝑎, 𝑏, and 𝑐,𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐).

Proof: To prove 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐):• pick sets 𝐴, 𝐵, and 𝐶 so that 𝑎 ≔ |𝐴|, and 𝑏 ≔ |𝐵|, and 𝑐 ≔ |𝐶|• and show that 𝐴× (𝐵 + 𝐶) ≅ (𝐴 × 𝐵) + (𝐴 × 𝐶).• By the Yoneda lemma, this holds if and only if, “naturally,”

Fun(𝐴 × (𝐵 + 𝐶),𝑋) ≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋).• Now

Fun(𝐴 × (𝐵+𝐶),𝑋) ≅ Fun(𝐵 + 𝐶, Fun(𝐴,𝑋)) by “currying”≅ Fun(𝐵, Fun(𝐴,𝑋)) × Fun(𝐶, Fun(𝐴,𝑋)) by “pairing”≅ Fun(𝐴 × 𝐵,𝑋) × Fun(𝐴 × 𝐶,𝑋) by “currying”≅ Fun((𝐴 × 𝐵) + (𝐴 × 𝐶),𝑋) by “pairing.”

Page 88: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

5

Epilogue: what was the point of that?

Page 89: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to infinite cardinals

Note we didn’t actually need the sets 𝐴, 𝐵, and 𝐶 to be finite.

Theorem. For any cardinals 𝛼, 𝛽, 𝛾,𝛼 × (𝛽 + 𝛾) = (𝛼 × 𝛽) + (𝛼 × 𝛾).

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

𝛼𝛽+𝛾 = 𝛼𝛽 × 𝛼𝛾 and (𝛼𝛽)𝛾 = 𝛼𝛽×𝛾 = (𝛼𝛾)𝛽 .

Page 90: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to infinite cardinals

Note we didn’t actually need the sets 𝐴, 𝐵, and 𝐶 to be finite.

Theorem. For any cardinals 𝛼, 𝛽, 𝛾,𝛼 × (𝛽 + 𝛾) = (𝛼 × 𝛽) + (𝛼 × 𝛾).

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

𝛼𝛽+𝛾 = 𝛼𝛽 × 𝛼𝛾 and (𝛼𝛽)𝛾 = 𝛼𝛽×𝛾 = (𝛼𝛾)𝛽 .

Page 91: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to infinite cardinals

Note we didn’t actually need the sets 𝐴, 𝐵, and 𝐶 to be finite.

Theorem. For any cardinals 𝛼, 𝛽, 𝛾,𝛼 × (𝛽 + 𝛾) = (𝛼 × 𝛽) + (𝛼 × 𝛾).

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

𝛼𝛽+𝛾 = 𝛼𝛽 × 𝛼𝛾 and (𝛼𝛽)𝛾 = 𝛼𝛽×𝛾 = (𝛼𝛾)𝛽 .

Page 92: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to infinite cardinals

Note we didn’t actually need the sets 𝐴, 𝐵, and 𝐶 to be finite.

Theorem. For any cardinals 𝛼, 𝛽, 𝛾,𝛼 × (𝛽 + 𝛾) = (𝛼 × 𝛽) + (𝛼 × 𝛾).

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

𝛼𝛽+𝛾 = 𝛼𝛽 × 𝛼𝛾 and (𝛼𝛽)𝛾 = 𝛼𝛽×𝛾 = (𝛼𝛾)𝛽 .

Page 93: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn’t

need 𝐴, 𝐵, and 𝐶 to be sets at all!

Theorem.

• For vector spaces 𝑈, 𝑉, 𝑊,

𝑈 ⊗ (𝑉 ⊕𝑊) ≅ (𝑈 ⊗ 𝑉 ) ⊕ (𝑈 ⊗𝑊).

• For nice topological spaces 𝑋, 𝑌, 𝑍,

𝑋 × (𝑌 ⊔ 𝑍) = (𝑋 × 𝑌 ) ⊔ (𝑋 × 𝑍).

• For abelian groups 𝐴, 𝐵, 𝐶,

𝐴⊗ℤ (𝐵 ⊕ 𝐶) ≅ (𝐴 ⊗ℤ 𝐵) ⊕ (𝐴 ⊗ℤ 𝐶).

Proof: The one we just gave.

Page 94: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn’t

need 𝐴, 𝐵, and 𝐶 to be sets at all!

Theorem.

• For vector spaces 𝑈, 𝑉, 𝑊,

𝑈 ⊗ (𝑉 ⊕𝑊) ≅ (𝑈 ⊗ 𝑉 ) ⊕ (𝑈 ⊗𝑊).

• For nice topological spaces 𝑋, 𝑌, 𝑍,

𝑋 × (𝑌 ⊔ 𝑍) = (𝑋 × 𝑌 ) ⊔ (𝑋 × 𝑍).

• For abelian groups 𝐴, 𝐵, 𝐶,

𝐴⊗ℤ (𝐵 ⊕ 𝐶) ≅ (𝐴 ⊗ℤ 𝐵) ⊕ (𝐴 ⊗ℤ 𝐶).

Proof: The one we just gave.

Page 95: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn’t

need 𝐴, 𝐵, and 𝐶 to be sets at all!

Theorem.

• For vector spaces 𝑈, 𝑉, 𝑊,

𝑈 ⊗ (𝑉 ⊕𝑊) ≅ (𝑈 ⊗ 𝑉 ) ⊕ (𝑈 ⊗𝑊).

• For nice topological spaces 𝑋, 𝑌, 𝑍,

𝑋 × (𝑌 ⊔ 𝑍) = (𝑋 × 𝑌 ) ⊔ (𝑋 × 𝑍).

• For abelian groups 𝐴, 𝐵, 𝐶,

𝐴⊗ℤ (𝐵 ⊕ 𝐶) ≅ (𝐴 ⊗ℤ 𝐵) ⊕ (𝐴 ⊗ℤ 𝐶).

Proof: The one we just gave.

Page 96: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 97: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 98: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 99: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 100: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union),

and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 101: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 102: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics

— so keep a look out!

Thank you!

Page 103: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!

Page 104: Categorifying cardinal arithmetic - MAA MathFest, … › ~eriehl › arithmetic.pdfPlan Goal:prove𝑎×(𝑏+𝑐)=(𝑎×𝑏)+(𝑎×𝑐)foranynaturalnumbers 𝑎,𝑏,and𝑐.

The real point

The ideas of

• categorification (replacing equality by isomorphism),

• the Yoneda lemma (replacing isomorphism by natural

isomorphism),

• representability (characterizing maps to or from an object),

• limits and colimits (like cartesian product and disjoint union), and

• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!