Top Banner
Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of Wisconsin- Madison October 14, 2010
31

Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Dec 24, 2015

Download

Documents

Roy Montgomery
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field

R. David GriggSchomaker GroupOrganic Student SeminarUniversity of Wisconsin-MadisonOctober 14, 2010

Page 2: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

140 oC

6 Cyclization

Background• Electrocyclic reactions

• Stereospecific cyclization

• Several drawbacks limit practical use of these reactions

H3C CH3

CH3 CH3

6 Thermal Disrotatory

cis Product

2

Woodward, R.B. and Hoffmann, R. The Conservation of Orbital Symmetry. Verlag Chemie, Weinheim, 1970.

H H

Electrocyclic Cycloaddition

Sigmatropic ene reactionRearrangement

R4R1

R2 R3

O Protic or Lewis acid

O

R1 R4

R2 R3

Page 3: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

A Powerful Synthetic Tool

• Biomimetic syntheses of endiandric acids

• 8π-6π cascades

• Natural products isolated as racemates

3

Nicolaou, K.C.; Petasis, N.A.; Zipkin, R.E. J. Am. Chem. Soc. 1982, 104, 5560-5562.

CO2Me

Ph

1) H2, Pd/BaSO4, quinoline

2) Toluene, 100 oCCO2Me

Ph

CO2Me

PhPh

CO2Me

H H

Ph

CO2Me

H H

8

con

6

dis

endiandric acid D endiandric acid Emethyl ester methyl ester

[4+2]

CO2Me

H

HH

H

HPh

H

endiandric acid Amethyl ester

Page 4: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

O

OMe

O Microwave, 150 oC

Toluene O

OMe

O O OMe

O

H+

() deoxytridachione () ocellapyrone A 32% 38%

Asymmetric Electrocyclization In Nature• Enzyme provides chiral environment for cyclization

4

Korman, T.P.; Hill, J.A.; Vu, T.N.; Tsai, S. Biochemistry 2004, 43, 14529-14538.Miller, A.K.; Trauner, D. Angew. Chem. Int. Ed. 2005, 44, 4602-4606.Díaz-Marrero, A.R.; Cueto, M.; D’Croz, L.; Darias, J. Org. Lett. 2008, 10, 3057-3060.

O

O

OMe

O

O

H

H

OMe

8

OOMe

O

Presumed Tetraene Precursor

condis

6O

O

H

H

OMe

O

O

elysiapyrone A

Page 5: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Nazarov CyclizationO

R1 R4

R2 R3Lewis acid

O

R1 R4

R2 R3

LA

pentadienyl cation oxyallyl cation

4

con

R2 R3

R1 R4

OLA

R2 R3

R1 R4

OLA

R2 R3

R1 R4

O

H

elimination protonation

R2 R3

R1 R4

OLA

kineticprotonation

thermodynamicprotonation R2 R3

R1 R4

O

R2 R3

R1 R4

O

cis trans

5

Nazarov, I.N.; Zaretskaya, I.I. Bull. Acad. Sci. U.R.S.S., Classe sci. chim. 1942, 200-209. Frontier, A.J.; Collison, C. Tetrahedron 2005, 61, 7577-7606.

• Earliest catalytic asymmetric examples with Nazarov cyclization

• 4π electrocyclization: controtatory

R2 R3

R1 R4

OLA

HH

either proton can eliminate

R2 R3

R1 R4

OLA

R2 R3

R1 R4

OLA

regioselectivity problem in the elimination

OR

Page 6: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Substrate-Controlled Torquoselectivity

• Favoring direction of orbital rotation (torquoselectivity)

• Torquoselectivity can be controlled by a stereocenter

O

R1 R4

R2 R3

LA

Clockwise OR Anti-Clockwise

R2 R3

R1 R4

OLA

R2 R3

R1 R4

OLA

4

con

6

Frontier, A.J.; Collison, C. Tetrahedron 2005, 61, 7577-7606Denmark, S.E.; Wallace, M.A.; Walker, C.B. J. Org. Chem. 1990, 55, 5543-5545

CR1

Me R3

H

R2

O

R1

Me R3

OLA LA

R1

Me R3

OLA

HR2

R2H

Favored

Disfavored

A1,3 Strain

OTMS FeCl3

CH2Cl2 , -50 oC

OFeCl2

OFeCl2

TMSTMS

H H

HO

H H

X

88% ee58% yield

88% ee

TMS

OFeCl2

H

Page 7: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

NN

O

O

H

R

R

H

OO

H

Ph

Ph

R1

CuEt2N

Lewis Acid-Mediated Asymmetric Nazarov

• Chiral ligand (bisoxazoline) on Lewis acid could control torquoselectivity

CuO

OOMe

OMe

NN PhHO

O

H

R

R

H

R = tBu Evans (2000)

7

Evans, D.A.; Rovis, T.; Kozlowski, M.C.; Downey, C.W.; Tedrow, J.S. J. Am. Chem. Soc. 2000, 122, 9134-9142.Aggarwal, V.K.; Belfield, A.J. Org. Lett. 2003, 5, 5075-5078.

R1

Ph Ph

NEt2

O O

1 equiv CuBr2, AgSbF6

DCM, RT

O

Ph

NEt2

O

Ph

R1

NN

O O

tBu tBu

R3 LA equiv

Yield (%)

ee (%)

Ph 1.0 92 86

Ph 0.5 56 87

Me 1.0 72 84

Me 0.5 56 85

Page 8: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Lewis Acid-Mediated Asymmetric Nazarov

R1 R2 LA equiv

Yield (%)

ee (%)

Me Ph 1.0 73 76

Ph Ph 1.0 98 86

Me Me 1.0 35 3

Ph Me 1.0 86 42

8

R1

Ph R2

OEt

O O

CuBr2, AgSbF6

DCM, RT

O

R2

OEt

O

Ph

R1

NN N

O O

iPr iPr

OO

OEt

R2

PhR1

R2

O

Ph

R1EtO

ON

N

NO

O

CuiPr

iPr

• Bulky substituents critical to achieving high enantioselectivity

Aggarwal, V.K.; Belfield, A.J. Org. Lett. 2003, 5, 5075-5078.Evans, D.A.; Burgey, C.S.; Kozlowski, M.C.; Tregay, S.W. J. Am. Chem. Soc. 1999, 121, 686-699.

Page 9: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Cu-tris(oxazoline) Catalyst

• Polarized divinyl ketones cyclize with poor enantioselectivity using Cu(II)-PyBOX Lewis acids

• Desired less planar chiral ligand

• tris-oxazoline Pendant group on box ligand

OOMe

O O

Cu-iPr-PyBOX (100%)O

O

Ph

CO2MePh 94% Yield

27% ee- +

Pendant Group

9

He, W.; Sun, X.; Frontier, A. J. Am. Chem. Soc. 2003, 125, 14278-14279.Hargaden, G.C.; Guiry, P.J. Chem. Rev. 2009, 109, 2505-2550.Cao, P.; Deng, C.; Zhou, Y.; Sun, X.; Zheng, J.; Xie, A.; Tang, Y. Angew. Chem. Int. Ed. 2010, 49, 4463-4466.

X =

O

N

ON ONN

NO

O

H

R

R

H

OO

H

R3OMe

R2

R1

Cu

X

Page 10: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Catalyst Design and Scope

Ligand Yield (%) ee (%)

1 85 78

2 74 88

3 73 85

4 90 92

5 69 86

O

N

ON ON

N N

OO

iPr iPr

N N

OO

1

2-4

1 & 2: X =

3: X = 4: X =

5: X = H

X

X

O

R

OMe

O O

Ligand (7.3 mol%)

CuCl2 (10 mol%)

NaB(ArF)4 (20 mol %)

HFIP (1.0 equiv.)

tBuOMe, RT

O

O

CO2Me

R

12 ExamplesYields: 45-96%

ee: 78-98%

R = Aryl or cyclohexyl

R = Ph for Catalyst Screening

10

Cao, P.; Deng, C.; Zhou, Y.; Sun, X.; Zheng, J.; Xie, Z.; Tang, Y. Angew. Chem. Int. Ed. 2010, 49, 4463-4466.

• Only minor improvement in selectivity with pendant group

• 10 mol% catalyst loading: Ionizing additive improved turnover

Page 11: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

NN

MeO

O

OO

MeO

HCu

O

OO

MeOH

O

OO

MeO

HO

vs.+3.94 kcal/mol 0.00 kcal/mol

DFT Calculations: B3LYPBasis Sets: 6-31G (d), level, sddall (Cu)

NN

MeO

OCu N

N

O

OCu

X X X

Me

Stereochemical Model

• Double-bond isomerization prior to cyclization

• Steric effect identified for disfavored rotation (3.94 kJ mol-1)

• Role of sidearm not defined

?

11

Cao, P.; Deng, C.; Zhou, Y.; Sun, X.; Zheng, J.; Xie, Z.; Tang, Y. Angew. Chem. Int. Ed. 2010, 49, 4463-4466.He, W.; Sun, X.; Frontier, A. J. Am. Chem. Soc. 2008, 130, 1003-1011.

Page 12: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Enantioselective Protonation in the Nazarov

• Cyclization of 2-alkoxy divinyl ketone with Sc-PyBOX catalyst

• Other substrates produced mixtures with low enantioselectivities

• Suspected poor control of torquoselectivity

• Protonation of enolate proposed to occur asymmetrically

O

O

N

N N

O O

Ph Ph

Sc(OTf)3

(20 mol%)

THF, rt

OO

H

H

53 % yield61 % ee

O

O

MeCN, molecular sieves

10 mol % Sc(OTf)3PyBOX OO

OO

Me

MeMe

Me

Yield: 62% 18%ee: 40% 79%

12

Mohr, J.T.; Hong, A.Y.; Stoltz, B.M. Nature Chem. 2009, 359-369.Liang, G.; Gradl, S.N.; Trauner, D. Org. Lett. 2003, 5, 4931-4934.

Page 13: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

O

O

X

R

MeCN, molecular sieves

rt or 0 oC

10 mol % Sc(OTf)3PyBOX OO

R

Chiral scaf fold controls face of

enolate protonation

X = CH2 or OR = Alkyl or Aryl

OO

R

*M

NN N

O O

Sc(OTf)3

10 ExamplesIsolated Yields: 65-94%

ee: 72-97%

NN

O

N OSc

Proposed bindingto Sc through

Chelation

(OTf)3

Enantioselective Protonation in the Nazarov

• Simplified system improved enantioselectivity

• Direction of conrotatory electrocyclization did not affect stereochemical outcome

13

Liang, G. and Trauner, D. J. Am. Chem. Soc. 2004, 126, 9544-9545.Evans, D.A.; Masse, C.E.; Wu, J. Org. Lett. 2002, 4, 3375-3378.

Page 14: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Summary:Lewis Acid-Promoted Nazarov Cyclizations

• Demonstrated viability of the transformation

• Control of torquoselectivity achieved

• Viable alternative: enantioselective protonation

• High catalyst loadings common

Ph

Ph Ph

OEt

O O

CH2Cl2, RT

O

Ph

OEt

O

Ph

Ph

98% yield86% ee

1 equiv Cu-PyBOX

N

N N

O O

iPr iPr

Cu

2+

2 SbF6-

14

Page 15: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Brønsted Acid-Promoted Nazarov Cyclizations

• Precedent: Enantioselective transformations of imines with chiral Brønsted acids

• Carbonyl activation could allow asymmetric Nazarov cyclization

• Control of torquoselectivity or enantioselective protonation

N

R1 R2

R Chiral Brønsted Acid

HB*

N

R1 R2

RH*B

NuH

-*BH

HN

R2R1

R

Nu*

ChiralIon Pair

ArOP

O

ArO OH

R1

R2

R3

R4

OHB*

R1 R3

R4HR2

OH B*

R1 R3

R4R2

O OArP

HO

OArOH

R1 R3

R4R2

O R1

R2 R4

R3O

*

*

15

Terada, M. Synthesis 2010, 1929-1982. Rueping, M.; Ieawsuwan, W.; Antonchick, A.P.; Nachtsheim, B.J. Angew. Chem. Int. Ed. 2007, 46, 2097-2100.

Page 16: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

First Enantioselective Organocatalytic Electrocyclization

• Chiral BINOL phosphates

• N-triflyl phosphoramide improved reactivity

• Low diastereoselectivity

R1 Ar Yield (%)

cis/trans ee (cis), ee

(trans)

methyl phenyl 88 6:1 87, 95

n-pentyl phenyl 78 3.2:1 91, 91

n-propyl 4-methylphenyl

77 2.6:1 91, 90

n-propyl 4-bromophenyl

87 4.6:1 92, 92

O R1O

Ar

2 mol% *BH

CHCl3, 0 oC

OO

Ar

R1O

O

Ar

R1+O

OP

O

N

SO2CF3

H

Ar

Ar

Ar =

OO

R2

R1O

O

R2

R1

BasicAlumina

16

Rueping, M.; Ieawsuwan, W.; Antonchick, A.P.; Nachtsheim, B.J. Angew. Chem. Int. Ed. 2007, 46, 2097-2100.

Page 17: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Organocatalytic Enantioselective Protonation

• Octahydro-BINOL derivative improved selectivity for asymmetric enolate protonation

• No stereochemical model for either system

R1 R3

R2

O OArP

HN

OArOH

Potential forenantioselective protonation

SO2CF3

*

O

OP

O

N

SO2CF3

H

Ar

Ar

Ar =

O R

O5 mol% *BH

CHCl3, -10 oC

OO

R

R = alkyl orbenzyl groups

9 ExamplesYields: 44-93%ee: 67-78%

17

Rueping, M.; Ieawsuwan, W. Adv. Synth. Catal. 2009, 351, 78-84.

Page 18: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Bifunctional Organocatalyst Approach

• Asymmetric Nazarov for α-ketoenones

• Well-designed for interaction with a bifunctional organocatalyst

Ph

Me

O

O +

HN

NH3

OTf

25 mol% H2O

MeCN, rt, 7.5 d

60% Yield94% ee

Previous Report: Tius (2010)

N

NR

RMe

Ph Ph

OH

O

O

OH

Ar

R1

R2

RO2C

Acid

Base

Chiral

18

Bow, W.F.; Basak, A.K.; Jolit, A.; Vicic, D.A.; Tius, M.A. Org. Lett. 2010, 12, 440-443.Basak, A.K.; Shimada, N.; Bow, W.F.; Vicic, D.A.; Tius. M.A. J. Am. Chem. Soc. 2010, 132, 8266-8267.Shimada, N.; Ashburn, B.O.; Basak, A.K.; Bow, W.F.; Vicic, D.A.; Tius, M.A Chem. Commun. 2010, 46, 3774-3775.

Page 19: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

MeN

NH

NH

CF3

CF3

S

O

Lacks Basic Amino GroupNo Reaction

NH

NH

NR1 R2

S

F3C

CF3

Me CO2Et

O

O

Ph

Me

For Screening

Thiourea Catalysts for Asymmetric Nazarov

• Bifunctional nature of catalyst crucial to enantioselectivity

• Product could inhibit turnover

• No well-defined stereochemical model

R1 R2 ee (%)

H H 82

Me Me 12

H Cyclohexyl

48

R4 CO2Et

O

O

Ar

R3 Catalyst (20 mol%)

toluene, rt

13 Examplesyields: 42-95%

ee: 80-97%

OH

O

R4CO2EtAr

O

O

HH

Potential for C3-C4 bondtorsion bycatalyst

Catalyst

19

Basak, A.K.; Shimada, N.; Bow, W.F.; Vicic, D.A.; Tius, M.A. J. Am. Chem. Soc. 2010, 132, 8266-8267.

Page 20: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Summary:Organocatalytic Asymmetric Nazarov

• Organocatalytic methods compare well to techniques utilizing Lewis acidic metals

• Alternative approaches have achieved lower catalyst loadings

• Attempts made to broaden substrate scope

• Mechanisms of stereoinduction not well-understood at present

O

O2 mol% *BH

CHCl3, 0 oC

2 h

OO

O

O

O

O

OO

O

O

83% yield1.5:1 dr

87% ee (cis)92% ee (trans)

20

Page 21: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

6π Electrocyclizations: Beginnings

• Rate of thermal 6π electrocyclizations strongly dependant upon substrate electronics

• Lewis acid interaction with EWG could catalyze the reaction• DFT calculations identified significant activation barrier lowering for

ester at position 2

+24 kcal/mol +26 kcal/mol

+14 kcal/mol

+24 kcal/mol

CO2Me

CO2Me

E = -10 kcal/mol

CO2Me

CO2Me

OMeOLA O

OMe

LA

DFT: B3LYP / 6-31G**

12

3

45

6

21

Guner, V.A.; Houk, K.N.; Davies, I.W. J. Org. Chem. 2004, 69, 8024.Bishop, L.M.; Barbarow, J.E.; Bergman, R.G.; Trauner, D. Angew. Chem. Int. Ed. 2008, 47, 8100-8103

Page 22: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Me2AlCl

50 oC, C6D6

Ph

OEtO

Ph

OEtO

Catalytic Carba – 6π Electrocyclization

• t1/2 = 4 h at 50 °C without Me2AlCl

• t1/2 = 21 min at 50 °C with 1 equiv Me2AlCl

O

Ph

O

Ph

H

1 equiv. Sc(OTf )3-PyBOX2,6-Di-t-butyl-4

-methylpyridine (0.7equiv)

(CDCl2)2, 5 h, RT

57-77% ee

N

N N

O O

Sc(OTf)3Ph Ph

Uncatalyzed

1 equiv LA

0.43 equiv LA

• Cyclization & stereocontrol feasible with Sc(III) & Cu(II) Lewis acids

22

Bishop, L.M.; Barbarow, J.E.; Bergman, R.G.; Trauner, D. Angew. Chem. Int. Ed. 2008, 47, 8100-8103.Bishop, L.M.; Roberson, R.E.; Bergman, R.G.; Trauner, D. Synthesis 2010, 2233-2244.

Page 23: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

N

R RR1

Base

Chiral Phase-Transfer Catalyst

HN

R1 RRPotential for

Cation-DirectedTorquoselectivity

N

R1 R R

6 π Electrocyclization: Indoline Synthesis

• 2-aza-pentadienyl anions found to be excellent substrates for facile electrocyclization

• Asymmetric phase transfer catalysis proposed as a route to asymmetric indoline synthesis

N

N

O

O

Bn

PhNH

N

O

O

Bn

Ph

EtOH/NaOEt

RT

91 % yield

Speckamp: 1981

23

Speckamp, W.N.; Veenstra, S.J.; Dijkink, J.; Fortgens, R. J. Am. Chem. Soc. 1981, 103, 4643-4645.Maciver, E.E.; Thompson, S.; Smith, M.D. Angew. Chem. Int. Ed. 2009, 48, 9979-9982.

Page 24: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

CO2iPr

CO2iPr

NH2R1

1) R2CHO, MgSO4

toluene, rt

2) catalyst (10 mol%)

toluene, -15 oC

K2CO3 (aq)

R1 NH

iPrO2CCO2

iPr

R2N

H

N

OH

H Cl19 Examples

yields: 54-92%ee: 73-98%

Cyclization via Phase-Transfer Catalysis

CO2Me

CO2tBu

NF3C Ph

Catalyst (10 mol%)

Toluene, -15 oC

K2CO3 (aq) F3C NH

tBuO2CCO2Me

Ph

d.r. 3.5:1, ee(major): 83%, ee(minor): 66%

CO2iPr

CO2iPr

O2N Ph

No Reaction

24

Maciver, E.E.; Thompson, S.; Smith, M.D. Angew. Chem. Int. Ed. 2009, 48, 9979-9982.

Page 25: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Electrocyclization or Mannich?

• Possibility for an intramolecular Mannich-type reaction

• No cyclization with a substrate that could control enolate geometry

N

H

HO

N

N

iPrOO

cyclize awayf rom catalyst

NH

iPrO2CCO2

iPr

Ph

N N

R R

5-(enolexo)-endo trig 6π Disrotatory

CO2Me

NF3C Ph

N O

Bn

No Cyclization

R

R

25

Maciver, E.E.; Thompson, S.; Smith, M.D. Angew. Chem. Int. Ed. 2009, 48, 9979-9982. Corey, E.J.; Xu, F.; Noe, M.C. J. Am. Chem. Soc. 1997, 119, 12414-12415.

Page 26: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Chiral Brønsted Acid Catalysis: 6π

• α,β-unsaturated hydrazone rearrangement to give 2-pyrazoline is isoelectronic to a pentadienyl anion 6π electrocyclization

• Acid-promoted: might occur asymmetrically with chiral Brønsted acid

NHN

Me

R

A

NHNR

Me H A

Fischer: 1895

R R

Huisgen: Isoelectronic with 6 π Electrocyclization of Pentadienyl anion

H

R1

NN

HH

R2 OPO

O O*

Possible Controlof Torquoselectivityby Chiral Counterion

N N

F

MeO2S

N N

F

MeO2SCF3

(S)-(-)-E-6244

Patented COX-2 Inhibitors

26

Huisgen, R. Angew. Chem. Int. Ed. 1980, 92, 979.Müller, S.; List, B. Angew. Chem. Int. Ed. 2009, 48, 9975-9978.

Page 27: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

R

O

NH

NH2

N N

R

+

1) molecular sieves 4 h, 50 oC

2) 10 mol% catalyst

70-96 h, 30 oC

2-Pyrazoline Synthesis via Electrocyclization

• Chiral phosphoric acids found to give optically active products with good yield and enantioselectivity

• Could form hydrazone intermediate in situ

R1

N10 mol% catalyst

N N

R1

R2

14 ExamplesYields: 85-99%ee: 76-96%

HN

R2

Chlorobenzene

30 oC, 70-96 h

O

OP

OH

O

Ar

Ar

Ar =

Chiral BINOL-Phosphoric Acid Catalyst

27

Müller, S.; List, B. Angew. Chem. Int. Ed. 2009, 48, 9975-9978.

Page 28: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Mechanistic Questions

• Two mechanistic scenarios

• Intramolecular Michael addition would be a disfavored 5-endo-trig

O

POHO

O

*

Ph NN

Ph

H

H

OP

O

OO

Ph N

NPhH

H

O

POO

O

*N

N

Ph

HH

OP

O

OO

Ph

N N

Ph

PhH H

PO

O

*

Product

6πDisrot.

α,β-unsaturated hydrazone

E-Z Iminium Isomerization

s-cis tos-trans

Isomerization

OO

*

N

N

H

H

NN

HH

Intramolecular Michael Addition5-endo-trig

6Electrocyclization

28

• Stereochemical model not proposed at present

Müller, S.; List, B. Synthesis 2010, 2171-2179.

Page 29: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

6π Electrocyclization Summary

• High activation barrier limits scope to substrates with compatible electronics, though encouraging results have been obtained

• Methods have worked well for heterocycle formation▫ Approaches include phase-transfer catalysis & chiral Brønsted acid

catalysis▫ Mild conditions▫ Exact cyclization mechanisms not well understood

F3C N Ph

CO2iPr

CO2iPr

F3C NH

Ph

iPrO2C CO2iPr10 mol% A

K2CO3 (aq)

toluene, -15 oC

99% Yield97% ee

N

H

Ph

N

OH

ClA

29

Page 30: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Conclusions & Future Directions

• Catalytic asymmetric electrocyclizations have the potential for becoming key synthetic transformations

• Enantioselective reactions can be approached with Lewis acidic metals and organocatalysts

• Selectivity can be accomplished by control of torquoselectivity and through enantioselective protonation

• Future efforts will seek to cyclize more diverse polyene structures in both the Nazarov reaction and 6π systems

• Improving understanding of stereoinduction mechanism will be a key goal in future efforts

30

Page 31: Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of.

Acknowledgements

• Jennifer Schomaker

• Kat Myhre

• Practice Talk attendees• Alex Clemens• James Gerken• Jonathan Hudon• Michael Ischay• Liz Tyson• Dan Wherritt• Kevin Williamson• Gene Wong

31

• Luke Boralsky• Rachel Dao• Ally Esch• John Hershberger• Dagmara Marston

• Alan Meis• Simon Pearce• Jared Rigoli• Vitaliy Timokhin

Schomaker Group Members