Top Banner
Spontaneous Neural Encoding of Social Network Position Carolyn M. Parkinson 1* , Adam M. Kleinbaum 2 , and Thalia Wheatley 3 1 Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, California, USA 90095 2 Tuck School of Business, Dartmouth College, 100 Tuck Hall, Hanover, New Hampshire, USA 03755 3 Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, New Hampshire, USA 03755 * Corresponding author: Carolyn M. Parkinson, Ph.D. Telephone: (310) 206-8177 Department of Psychology Fax: (310) 206-5895 University of California, Los Angeles E-mail: [email protected] 1285 Franz Hall, Box 951563 Los Angeles, CA 90095 Keywords: social network analysis, social perception, functional MRI, multi-voxel pattern analysis . CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under The copyright holder for this preprint (which was not this version posted January 9, 2017. ; https://doi.org/10.1101/098988 doi: bioRxiv preprint
37

Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

Jan 02, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

SpontaneousNeuralEncodingofSocialNetworkPosition

CarolynM.Parkinson1*,AdamM.Kleinbaum2,andThaliaWheatley3

1DepartmentofPsychology,UniversityofCalifornia,LosAngeles,1285FranzHall,Box

951563,LosAngeles,California,USA90095

2TuckSchoolofBusiness,DartmouthCollege,100TuckHall,Hanover,NewHampshire,USA

03755

3DepartmentofPsychologicalandBrainSciences,DartmouthCollege,6207MooreHall,

Hanover,NewHampshire,USA03755

*Correspondingauthor:

CarolynM.Parkinson,Ph.D. Telephone:(310)206-8177

DepartmentofPsychology Fax:(310)206-5895

UniversityofCalifornia,LosAngeles E-mail:[email protected]

1285FranzHall,Box951563

LosAngeles,CA90095

Keywords:socialnetworkanalysis,socialperception,functionalMRI,multi-voxelpattern

analysis

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 2: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

1

SpontaneousNeuralEncodingofSocialNetworkPosition

Humansformcomplexsocialnetworksthatincludenumerousnon‐reproductivebondswithnon‐kin.Navigatingthesenetworkspresentsaconsiderablecognitivechallengethoughttohavecomprisedadrivingforceinhumanbrainevolution.Yet,littleisknownabouthowandtowhatextentthehumanbrainencodesthestructureofthesocialnetworksinwhichitisembedded. By combining social network analysis and multi‐voxel pattern analysis offunctional magnetic resonance imaging (fMRI) data, we show that social networkinformation about direct relationships, bonds between third parties, and aspects of thebroadernetworktopologyisaccuratelyperceivedandautomaticallyactivateduponseeingafamiliarother.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 3: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

2

Unlikemanyotherspeciesthatenactsocialbehaviorinlooseaggregations(e.g.,

swarms,herds),humansformgroupscomprisedofmanylong-term,intense,non-

reproductivebondswithnon-kin1.Thecognitivedemandsofnavigatingsuchgroupsare

thoughttohavecomprisedadrivingforceinhumanbrainevolution2.Yet,littleisknown

abouthowandtowhatextentthehumanbrainencodesthestructureofthesocial

networksinwhichitisembedded.Here,wecharacterizedthesocialnetworkofan

academiccohort(N=277),asubsetofwhom(N=21)completedafunctionalmagnetic

resonanceimaging(fMRI)studyinvolvingviewingvideosofindividualswhovariedin

termsof“degreesofseparation”fromthemselves(socialdistance),theextenttowhich

theyarewell-connectedtowell-connectedothers(eigenvectorcentrality–EC),andthe

extenttowhichtheyconnectotherwiseunconnectedindividuals(brokerage).

Understandingtheseaspectsofothers’socialnetworkpositionsrequirestrackingnotonly

directrelationships,butalsobondsbetweenthirdpartiesandthebroadernetwork

topology.Pairingnetworkdatawithmulti-voxelpatternanalysis,weshowthatsocial

networkpositioninformationisbothaccuratelyperceivedandspontaneouslyactivated

uponencounteringfamiliarindividuals.Thesefindingselucidatehowthehumanbrain

encodesthestructureofitssocialworld,andunderscoretheimportanceofintegratingan

understandingofsocialnetworksintothestudyofsocialperception.

Relationshipsareintrinsictohumanbehavior.Everydayinteractionsareshapednot

onlybyourownrelationships,butalsobyknowledgeofbondsbetweenthirdpartiesand

thebroadersocialnetworksinwhichweareembedded.Well-connectedindividualscan

effectivelythreatenorbolsterone’sreputation3,thosewhobridgeotherwisedisparate

groupscanefficientlyseekandspreadinformation4,andknowledgeofmutualties

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 4: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

3

influencesinformation-sharingandtrust5.Humansocialintelligencerests,inpart,ona

calculusthatinheresinanunderstandingofsocialnetworkstructure.

Isknowledgeaboutothers’socialnetworkpositionsactivatedonlywhenexplicit

goalsrequireit,orspontaneously,wheneverweencounterfamiliarindividuals?Itmaybe

efficienttoprocesssuchinformationonlywhenourgoalsrequireit(e.g.,determininghow

toobtaininformation;forecastingtherepercussionsofasocialmisstep).Alternatively,it

maybebeneficialtoactivatesuchknowledgespontaneouslywhenencounteringothers,

giventheimportanceofsocialnetworkpositiontomanyaspectsofbehaviorandto

impressionsofstatusandcompetence3,6.Humansspontaneouslyregisteragreatdealof

informationwhenperceivingotherpeople(e.g.,intentions,traits,emotions7,8),presumably

tofacilitateappropriate,beneficialsocialinteractions.Thus,thebrainmayrunseveral

social“daemons”–efficient,backgroundprocessesthatspontaneouslyregisterinformation

usefulforpredictingthesocialrepercussionsofpotentialactions,and,morebroadly,to

informcognitionandbehavior.

Totestwhetherthebrainspontaneouslyencodesthesocialnetworkpositionsof

familiarothers,wescanned(fMRI)membersofarealworldsocialnetwork(seeFig.1;

Methods)astheyviewedbriefvideosof12classmates(Fig.2).Theonlytaskwasto

indicatewhenthesamevideowaspresentedtwiceinarow(seeMethods)inorderto

ensureattentionwithoutanyinstructionstoretrievesocialrelationshipknowledge,or

personknowledgemoregenerally.Therefore,weconsideranysocialnetworkposition

informationencodedwhileparticipantsperformthistasktoberetrievedspontaneously

(i.e.,withoutinstruction).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 5: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

4

Eachclassmateineachparticipant’sstimulussetwascharacterizedaccordingto

threemetricsderivedfromthesocialnetworkdata:geodesicsocialdistancefromthe

participant;EC;andconstraint,aninversemeasureofbrokerage.Geodesicsocialdistance

referstotheminimumnumberofintermediarysocialtiesrequiredtoconnecttwo

individuals.ECisaprestige-basedcentralitymetricthatconsidersnotonlyhowmany

connectionsagivenindividualhas,butalsothecentralitiescharacterizingeachcontact9.

HighECimpliesthatanindividualiswell-connectedtowell-connectedothers;lowEC

impliesthatanindividualhasfewfriendswhotendtobeunpopular.Prestige-based

centralitymetricsareparticularlyusefulforcharacterizingsocialstatus,giventhatbeing

namedasafriendbyapopularindividualshouldincreaseone’ssociometricstatus(i.e.,the

extenttowhichsomeoneislikedbyothers)morethanbeingnamedbysomeoneless

popular9.Individualswhoconnectotherswhowouldnototherwisebeconnectedoccupy

networkpositionslowinconstraint,andhavethecapacitytoserveas“brokers”of

resources(e.g.,information)inthenetwork.Becauseofthestructureoftheirlocalsocial

ties,brokerscancoordinatebehaviorandtranslateinformationacrossstructuralholesin

networks4.

Toprobeforthespontaneousencodingofsocialnetworkpositioninformation,we

usedrepresentationalsimilarityanalysis(RSA),whichdistillsfMRIresponsepatternsinto

representationaldissimilaritymatrices(RDMs)thatindicatethedegreetowhichparticular

brainregionsdistinguishbetweensetsofstimuliormentalstates10.BecauseRDMsare

abstractedawayfromthespatiallayoutofneuroimagingdata(i.e.,theyareindexedby

experimentalcondition;Fig.3),RSAaffordstheevaluationofthedegreetowhichsimilarity

structurescontainedinparticularbrainregionsreflectthoseofdataacquiredusingother

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 6: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

5

modalitiesofmeasurementorcomputationalmodels10(here,thesocialnetworkdata).

Specifically,inthecurrentstudy,weusedagenerallinearmodel(GLM)decomposition

searchlightapproach11.NeuralRDMswereiterativelyextractedwithin9-mmradius

spherescenteredateachpointineachparticipant’sbrain.Withineachparticipant,each

localneuralRDMwasmodeledasaweightedcombinationofRDMsbasedonpropertiesof

thesocialnetworkpositionsoftheindividualsinthatparticipant’sstimulusset(Fig.3).

Usingthistechnique,participants’brainsweremappedintermsofthedegreetowhichthe

representationalcontentoflocalneuralresponsestofamiliarotherscouldbeexplainedby

thoseindividuals’positionsintheirsocialnetwork,andintermsofwhereinformation

aboutspecificsocialnetworkpositioncharacteristicwascarriedreliablyacross

participants(Fig.4).

Wehypothesizedthatgeodesicsocialdistancewouldbespontaneouslyencoded,

giventheimportanceofthisinformationfordeterminingself-relevance.One’simmediate

socialtiesareobviouslymostself-relevant.Giventheimportanceofreputation

managementforhumanbehavior12,individualstwo“degreesaway”mayberelatively

importanttoidentifyandmonitor:Negativeinteractionswithsuchindividualscould

damagerelationshipswithone’sdirectconnections.Similarly,sharingmutualfriendsmay

enhancetrust,giventhepotentialreputationcostsofbadbehavior5.Associaldistance

betweenpeopleincreases,theirrelevancetoeachotherdecreases.Wepredictedthatsocial

distance-relatedinformationwouldbecarriedinthelateralsuperiortemporalcortex

(STC)andinferiorparietallobule(IPL),aswellasthemedialprefrontalcortex(MPFC),

givenpastresearchimplicatingtheseregionsinencodingsocialdistance13andself-

relevancemoregenerally14.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 7: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

6

Socialdistancewasreliablysignaledinalargeclustercenteredinthelateral

posteriorSTCandextendinginferiorlythroughoutposteriorlateraltemporalcortex(LTC),

andsuperiorlytotheanterioraspectoftheIPL(seeFig.4;TableS1).Pastresearch

demonstratedthatmulti-voxelresponsepatternsinthisregionencodeegocentricspatial

andabstract(e.g.,social)distanceswhenexplicitlyjudging14ormentallynavigating15such

distances14;thecurrentfindingssuggestthatthisregionalsoencodesegocentricdistances

spontaneously(i.e.,intheabsenceofanyexplicitdistancetask).Thus,whenencounteringa

familiarindividual,knowledgeofagent-to-agentrelationshipsappeartobespontaneously

retrieved,suchthatrepresentationsofotherpeopleinthisregionareorganizedintermsof

whethersomeoneisafriend,afriend-of-a-friend,orfartherremovedfromoneselfinsocial

ties.Ithasbeensuggestedthatsomeregionswithinposteriorparietalcortex,suchasthe

anteriorIPL,whichhavewell-establishedrolesinrepresentingandnavigatingphysical

space,analogouslyrepresentmoreabstractrelationships(e.g.,socialtiesbetween

agents)16,17.Thecurrentresultssuggestthatwhenencounteringfamiliarindividuals,

humansmayspontaneouslyretrieveknowledgeofwheretheyarelocated,relativeto

oneself,inamentalmapof“socialspace”.

AlthoughtheLTCandIPLregionsthatcarriedinformationaboutsocialdistance

herehavepreviouslyimplicatedinencodingsocialdistance13,14,someregionspreviously

implicatedinsignalingsocialdistancewerenotimplicatedinthecurrentstudy.For

instance,previousresearchhasimplicatedMPFCindistinguishingfriendsfromstrangers13,

andarecentstudyimplicatedthehippocampusandposteriorcingulatecortex(PCC)in

trackingsocialdistancesbetweenparticipantsandcharactersinaninteractivegame18.

Differencesbetweenthecurrentresultsandthoseobservedinpreviousinvestigations

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 8: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

7

likelyreflectdifferencesindataanalyticapproachesandinhowsocialdistancehasbeen

operationalized.Inthecurrentstudy,participantsonlysawpersonallyfamiliarindividuals,

andsocialdistancewasoperationalizedintermsofgeodesicdistanceintheirreal-world

socialnetwork.Inpreviousneuroimagingstudies,theterm“socialdistance”hasbeen

operationalizedinwidelyvaryingways,suchasthepresenceofsocialties13,thestrengthof

socialties14,anddistancefromoneselfinatwo-dimensional(affiliationxstatus)

representationalspace18.Giventhatthesevariableslikelyhavedifferentialconsequences

forsocialcognitionandbehavior,itisnotsurprisingthattheyareencodedbyatleast

partiallydistinctneuralsubstrates.

Whereassocialdistanceisinherentlyrelativetotheperceiver,otheraspectsof

familiarothers’socialnetworkpositions,suchasthedegreetowhichone“bridges”

differentareasofthenetworkandthenumberoffriendssomeonehas,areincreasingly

thoughttobelargelystable,possiblyheritable,dispositionaltendenciesthatshapesocial

behavior19,20.Therefore,wehypothesizedthatECandconstraintwouldbeencodedin

brainregionsinvolvedinencodingothers’traitsandbehavioraltendenciesmoregenerally,

suchastheMPFC,whichiswidelyimplicatedininferringandencodingperson

knowledge21andinintegratingknowledgeofpersonalitytraitsinordertosignalindividual

identity22.

InformationaboutECwasreliablycarriedinbrainregionsthatencodeindividual

identitywhenimaginingothers’actions22(i.e.,MPFC)andviewingfaces23,24(e.g.,temporal

pole;fusiformgyrus;seeFig.4andTableS2),suggestingthatsociometricstatusmay

compriseadimensionofmeaningfororganizingmentalrepresentationsofothers.ECwas

alsoencodedinmedialparietalcortex(precuneus,PCC),aregionpreviouslybeenshownto

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 9: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

8

encodeextraversion22,whichismodestlycorrelatedwithEC25,suggestingthatthisregion

mayencodedispositionaltendenciescommontobothextraversionandEC.Inaddition,

recentworkhasalsoshownthatthemedialparietalcortex,aswellasotherregions

involvedininferringothers’mentalstates,intentions,andtraits(e.g.,MPFC;

temporoparietaljunction),respondspreferentiallytowell-likedindividuals,whichis

thoughttoreflectperceiversbeingpreferentiallymotivatedtounderstandtheinternal

statesofpopularothers26.Thecurrentfindingsareconsistentwiththenotionthatbrain

regionsthatrepresentothers’internalstatesandbehavioraltendencies(e.g.,PCC,MPFC)

tracksociometricstatus,andsuggestthatlikeotherfacetsofsocialstatus(e.g.,

dominance27,prestige28),ECmaymodulateattentiontotheinternalstatesofothers.Future

behavioralstudiesshoulddirectlytesttheimpactofEConsocialattention.

InformationaboutECwasalsoreliablycarriedinunexpectedregions,suchas

extrastriatevisualcortex(EVC).Thisresultisunlikelytobeduetolow-levelvisual

characteristicsofstimuli,aseachparticipanthadauniquestimulusset,andbecausevideos

correspondingtoeachindividualineachstimulussetwerehorizontallymirroredonhalfof

trials(seeMethods).However,thisfindingmaynonethelessreflecttheeffectsofsocial

statusintermsofsocialtiesonvisualattention.Peopletendtopreferentiallyorienttoward

high-statusindividualsandtothelocioftheirattention,presumablytoobtainbehaviorally

relevantinformationaboutoursurroundings28–30.GiventhatECisreliablysignaledinEVC

responsepatterns,futureresearchshouldtestifvisualattentionisalsopreferentially

allocatedtocentralactorsinone’ssocialnetwork.

EC-basedRDMswerealsosignificantlyrelatedtoneuralRDMsinbrainareas

previouslyimplicatedinevaluatingsocialstatusintermsofdominance,prestige,and

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 10: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

9

morality,suchastheventralMPFCandventrolateralprefrontalcortex(VLPFC)31–33.The

involvementoftheventralMPFCinsocialstatusencodinghasbeensuggestedtoreflecta

moregeneralroleinassessingthevalueofstimuli32,whereastheVLPFChasbeen

suggestedtoencodesocialstatusinordertoappropriatelymodulatebehavioral

responding,whichisthoughttobeaprimaryfunctionofstatuscues31.Wesuggestthat

theseregionslikelyencodeECforsimilarreasons,ashighECindividualshavehigh

behavioralrelevanceandvalueassocialpartners.Forexample,individualsconnectedto

well-connectedothersmaybeprotectedfrommistreatmentbecausetheyaremorelikely

tobedefendedbyothers,whothemselvesaremorelikelytobedefended.Lessriskis

associatedwithwrongingalowECindividual,giventhatlowECindividualshavelittle

influenceonthespreadofinformationandotherresources3.

Thecurrentresultssuggestthatwhenencounteringafamiliarindividual,the

degreetowhichthatindividualiswell-connectedtowell-connectedothersshapes

processesrelatedtovaluation,behavioralmodulation,attention,andencodingothers’

internalstates,dispositionalcharacteristics,andidentities.Manyofthesefindingsechothe

knowneffectsofotherdimensionsofsocialstatus(e.g.,statusconferredbydominance).

Althoughagreatdealofpastpsychologicalandneuroimagingresearchonsocialstatushas

focusedonphysicaldominance,wenotethatovertphysicalviolenceisrelativelyrarein

contemporaryhumangroups34andthatsocialsupportandreputationmanagementare

centraltoeverydayhumanlife12.Socialpowerinsuchgroupsmayberelativelyless

contingentonindividualstrengthandphysicalaggression,andmoredependentongroup

dynamicsandaffiliativerelationshipmaintenance.Thus,sociometricstatusislikely

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 11: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

10

especiallyrelevanttomodernhumans,andmeritsfurtherattentioninsocialperception

andneuroscienceresearch.

InadditiontosocialdistanceandEC,diverseaspectsofsocialcognitionand

behavior(e.g.,decidinghowtoeffectivelyseekorspreadinformation;trustdecisions)

wouldbenefitfromencodingnetworkconstraint.Lowconstraintindividualscanbroker

theflowofinformationbetweengroups,andthus,exertadisproportionateinfluenceonthe

flowofideasandresources4.Additionally,individualsinrelatively“closed”localnetworks,

characterizedbyhighconstraint,suffergreaterreputationcostsforbadbehavior;

correspondingly,constraintcanfostertrustandcooperation4.Giventhedearthofprevious

researchinvestigatingtheperceptionofconstraint,wemadenospecificpredictionsabout

whichbrainregionswouldbeinvolvedinencodingthisfacetofsocialnetworkposition.

LargeclustersspanningbothrightandleftlateralSTCcarriedinformationabout

constraint(TableS3),asdidasmallerclusterinthesupplementarymotorarea(SMA).

AlthoughthelateralSTCandSMAareimplicatedinbiologicalmotionprocessing35and

actionunderstanding36,respectively,thisfindingwasnotattributabletotheamountof

movementinvideos(seeSI).Aperceiver’sknowledgeofthenetworkconstraintofan

individual,orofassociateddispositions,mayimpacthowthatperceiverattendstothat

individual’smovements.Forexample,becausebrokersmaybeperceivedasexceptionally

charismaticorinteresting(e.g.,becausetheyoftenserveassourcesofnovelinformationor

opportunities4),theymaycommanddifferentialamountsofattentiontotheirexpressions

andgestures.Brokersmayalsodifferintheamountofsocialmeaningcarriedintheirfacial

andbodilymovements(e.g.,fidgetingaimlesslyvs.usingmovementtoexpressoneself

coherently).ThelatterexplanationwouldbeconsistentwithevidencethattheSTS

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 12: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

11

respondstothesocialmeaning,ratherthanamount,ofmovementindynamicdisplays37.

Futurestudiescouldarbitratebetweenthesehypothesesbytestingifstrangersareableto

differentiatebetweenindividualshighandlowinconstraintbasedontheirobserved

movements.Ifso,thiswouldsuggestthatnetworkconstraintisencodedinlateralSTC

becausethisaspectofsocialnetworkpositionisapparentinhowindividualscarry

themselves.Ifnot,thiswouldbeconsistentwiththeinterpretationthatperceivers’

knowledgeofanindividual’snetworkconstraint,orofqualitiesrelatedtothisaspectof

socialnetworkposition,influenceshowperceiversattendtothatindividual’sexpressions,

gestures,andbodilymovements.

Afterscanning,participantswereaskedabouttheirperceptionsofeachSNA-

derivedmetricofinterestforeachindividualintheirstimulusset(seeSI).Thisallowedus

totesttheaccuracyofparticipants’perceptionsofothers’socialnetworkpositions,andto

evaluatehowwellparticipants’perceptionsmatchedthedatausedtoconstructtheir

stimulussets.Post-scanratingsindicatedthatparticipants’explicitperceptionsofthe

socialnetworkpositionsoftheindividualsintheirstimulussetscloselymatchedreality.

Veridicalconstrainthadasignificanteffectonperceivedconstraint(ß=19.44SE=2.01,p<

.0001),andveridicalEChadasignificanteffectonperceivedEC(ß=14.95,SE=0.93,p<

.0001).Further,subjectiveratingsofsocialcloseness(ß=-31.00,SE=1.62,p<.0001),

proportionofsocialtimespenttogether(ß=-22.74,SE=1.84,p<.0001),andfrequencyof

discussions(ß=-33.77,SE=1.89,p<.0001)variedasafunctionofgeodesicnetwork

distance(seeMethodsandFig.5).

Althoughparticipantshadconsciouslyaccessibleknowledgeofthesocialnetwork

positioncharacteristicsstudiedhere(Fig.5),thetaskusedinthefMRIstudy(aone-back

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 13: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

12

memorytask)didnotrequireparticipantstoretrievesocialrelationshipknowledge,and

fromparticipants’perspectives,thesocialnetworkquestionnaireandfMRIstudywere

ostensiblyunrelated.Nevertheless,upto40%ofthevarianceinsimilaritystructuresof

localfMRIresponsestopersonallyfamiliarotherscouldbeexplainedmerelyby

characteristicsofthoseindividuals’positionsintheperceiver’ssocialnetwork(Fig.4b).

Thesefindingsareconsistentwithbehavioralevidencethathumansspontaneously

activateknowledgeaboutotherpeopleuponencounteringtheminordertoinform

cognitionandbehavior7,8,andsuggestthathumansspontaneouslyactivatecomplex

knowledgeaboutotherpeople’spositionsintheirsocialnetworkswhenviewingthem.

Thesefindingsareconsistentwithpsychologists’mountingappreciationforthe

importanceofbothdirectandindirectrelationshipknowledgetoeverydaycognitionand

behavior.Everydayinteractionsareinfluencednotonlybyinformationthatwouldbe

availabletoanyobserver,butalsobypatternsofpersonalandthird-partyrelationships.By

adoptinganinterdisciplinaryapproachcombiningtheoryandmethodsfromneuroscience,

psychology,andSNA,wecanbegintouncoveradeeperunderstandingofhowthehuman

brainnegotiatestheintricaciesofeverydaysociallife.

Methods

Part1:Socialnetworkcharacterization

Participants.ParticipantsinPart1ofthestudywere275first-yearMastersof

BusinessAdministration(MBA)studentsataprivateuniversityintheUnitedStateswho

participatedaspartoftheircourseworkonleadership(91females;184males).Thetotal

classsizewas277students;twostudentsfailedtocompletethequestionnaire(i.e.,

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 14: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

13

responserate=99.3%).Allprocedureswerecompletedinaccordancewiththestandardsof

theDartmouthCommitteefortheProtectionofHumanSubjects.

Socialnetworkcharacterization.Tocharacterizethesocialnetworkofallfirst-year

students,anonlinesocialnetworksurveywasadministered.Participantsfollowedane-

mailedlinktothestudywebsitewheretheyrespondedtoasurveydesignedtoassesstheir

positioninthesocialnetworkoffirst-yearstudentsintheiracademicprogram(seeSI).The

surveyquestionwasadaptedfromBurt38andhasbeenpreviouslyusedinthemodified

formusedhere25,39.Itread,“Considerthepeoplewithwhomyouliketospendyourfree

time.Sinceyouarrivedat[institutionname],whoaretheclassmatesyouhavebeenwith

mostoftenforinformalsocialactivities,suchasgoingouttolunch,dinner,drinks,films,

visitingoneanother’shomes,andsoon?”

Aroster-basednamegeneratorwasusedtoavoidinadequateorbiasedrecall.

Classmates’nameswerelistedinfourcolumns,withonecolumncorrespondingtoeach

sectionofstudentsintheMBAprogram.Nameswerelistedalphabeticallywithinsection.

Participantsindicatedthepresenceofasocialtiewithanindividualbyplacingacheckmark

nexttohisorhername.Participantscouldindicateanynumberofsocialties,andhadno

timelimitforresponding.

SocialnetworkanalysiswasperformedusingtheRpackageigraph40,41.Threesocial

network-derivedmetricswereextractedforeachnode:constraint,ECandgeodesic

distancefromeachclassmate,asdescribedingreaterdetailbelow.

Constraint.Theconstraintofactoriisgivenbythefollowingequation,wherePij

correspondstotheproportionofi'sdirectsocialtiesaccountedforbyhis/hertietoactorj.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 15: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

14

Theinnersummationapproximatestheindirectconstraintimposedonibyotheractors,q,

whoaresociallyconnectedtobothiandj(i.e.mutualfriendsofiandj):

𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒊 = (𝑷𝒊𝒋 + 𝑷𝒊𝒒𝒏

𝒒~𝟏𝑷𝒒𝒋)𝟐

𝒏

𝒋~𝟏

Anunweighted,undirectedgraphwasusedtoestimateconstraint;i.e.,thepresence

ofanysocialtie,irrespectiveofitsdirection,wasusedtocomputetheconstraintofeach

node.Constraintisaninversemeasureofnetworkbrokerage.

EC.Agraphconsistingofnodesconnectedbyedgescanbecharacterizedbyan

adjacencymatrixA,populatedbyelementssuchthataij=1ifnodesiandjaredirectly

connected,andaij=0ifthesenodesarenotconnected.TheECofeachnodeisgivenbythe

eigenvectorofAinwhichallelementsarepositive.Therequirementthatallelementsof

theeigenvectormustbepositiveyieldsauniqueeigenvectorsolution(i.e.,that

correspondingtothegreatesteigenvalue).Here,whencomputingEC,thedirectionalityof

thegraphwaspreserved;intheeventofasymmetricrelationships,onlyincoming,rather

thanoutgoing,tieswereusedtocomputeEC.

Socialdistance.Geodesicsocialdistancereferstothesmallestnumberof

intermediarysocialtiesrequiredtoconnecttwoindividualsinanetwork.Individualswho

aparticipantnamedasfriendshaveadistanceofonefromhim/her.Individualswhoma

participant’sfriendsnamedasfriends(butwhowerenotnamedasfriendsbythe

participant)haveadistanceoftwofromtheparticipant.Individualswhowerenamedas

friendsbyclassmatesatadistanceoftwofromtheparticipant(butnotbytheparticipant

orhis/herfriends)haveadistanceofthree,andsoon.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 16: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

15

Part2:Neuroimagingstudy

Participants.AsubsetofindividualswhohadcompletedPart1participatedina

subsequentneuroimagingexperiment.Participantswereinformedduringclassaboutthe

opportunitytoparticipateinanfMRIstudythatwasostensiblyunrelatedtotheonline

questionnaireinPart1,andthattheywouldreceive$20/hourascompensationandimages

oftheirbrains.Allparticipantswereright-handed,fluentinEnglish,andhadnormalor

corrected-to-normalvision.Participantsprovidedinformedconsentinaccordancewiththe

policiesoftheDartmouthCollegeCommitteefortheProtectionofHumanSubjects.

Twenty-fourparticipants(12females)completedthefMRIstudy.Thesamplesizewas

chosenbasedonpreviousfMRIstudiesusingsimilarparadigmsandRSAmethods11,42.One

participantwasexcludedduetoimageartifact,andtwowereexcludedbecausetheyscored

lessthan65%correctontheone-backmemorytaskusedinthescanner(thisthreshold

wasbasedonwhathasbeenusedpreviouslyinsimilarstudies43).Consequently,we

analyzeddatafrom21participants(10females,aged25-33,M=27.95,SD=2.16).Asa

within-subjectsdesigninvolvingnogroupallocationwasused,blindinginvestigatorsto

between-subjectsconditionsandrandomassignmentofparticipantstoconditionswere

notapplicable.

Imageacquisition.ParticipantswerescannedattheDartmouthBrainImaging

Centerusinga3TPhilipsAchievaInterascannerwitha32-channelheadcoil.Anecho-

planarsequence(35msTE;2000msTR;3.0mmx3.0x3.0mmresolution;80x80matrix

size;240x240mmFOV;35interleavedtransversesliceswithnogap;3.0mmslice

thickness)wasusedtoacquirefunctionalimages.Functionalrunsconsistedof180

dynamicscans,foratotalacquisitiontimeof360sperrun.Ahigh-resolutionT1-weighted

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 17: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

16

anatomicalscanwasacquiredforeachparticipant(8.2sTR;3.7msTE;240x187FOV;

0.938mmx0.938mmx1.0mmresolution)attheendofthescanningsession.Foam

paddingwasplacedaroundsubjects’headstominimizemotion.

Stimuli.Eachparticipant’scustomizedstimulussetconsistedofshortvideosoffour

individualsateachofthreegeodesicdistances(i.e.,one,two,andthree)fromthe

participantinthesocialnetworkoffirst-yearMBAstudents.ThetwohighestandlowestEC

individualsateachsocialdistancewereincludedinthestimulusset(Fig.2).

Thevideosusedasstimuliconsistedofindividualsintroducingthemselves(e.g.,“Hi

mynameis[firstname],andyoucancallme[firstname/nickname]”).Avideoofthiskind

wasmadeinvolvingeachstudentatthebeginningoftheacademicyearasaresourcefor

otherstudentsandfaculty.Videosweretruncatedto2s,beginningwhenthesubjectbegan

tosaytheword,“Hi,”andwerepresentedwithoutsound.PriortoenteringthefMRI

scanner,participantswereshowneachvideowithsoundtofamiliarizethemselveswiththe

stimuli.

fMRIparadigm.ThefMRIstudyconsistedof10runsandfollowedarapidevent-

relateddesignwithaninter-trialintervalconsistingof4soffixation(Fig.2c).Fournull

events,eachconsistingofanadditional2soffixation,wererandomlyinsertedintoeach

run.Ineachrun,fourrepetitionsof14eventcategories(12identities;1nullevent;1catch

trial)werepseudo-randomizedsuchthattherewerenoconsecutiverepeatsofthesame

category.Horizontalmirroringwasrandomlyappliedtohalfthepresentationsofeach

stimuluswithineachruntoreducesimilaritieswithinidentitiesduetolocallow-level

visualfeatures.Catchtrialsinvolvedseeingthesamestimulusatthesamemirroringlevel

astheimmediatelypreviousstimulus(ortwotrialsbackifacatchtrialfollowedanull

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 18: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

17

event).Participantswereinstructedtopressabuttonwhenanidenticalvideowas

presentedtwiceinarow(i.e.,forcatchtrials).

Post-scanquestionnaire.Afterscanning,participantswereaskedabouttheir

subjectiveperceptionsofeachsocialnetworkmetricofinterestforeachindividualintheir

stimulusset,aswellasquestionsassessingtiestrength(seeSI).Becausetheconstraint

questionaskedaboutbrokerage(i.e.,whichindividualswerelowinnetworkconstraint),

responsestothisitemweremultipliedby-1.Toalleviateskewinthenetworkdata,

eigenvectorcentralitiesandnetworkconstraintvalueswerelog-transformedpriorto

analysis.

Thecorrespondencebetweenparticipants’post-scanratingsandthesocial

networkpositioncharacteristicsoftheindividualsintheirstimulussetswasassessed

usinglinearmixedmodelsusingtheR40packagelme444.Foreachofthefivequestions(see

SI),amodelwasconstructedwithparticipants’ratingsasthedependentmeasureandthe

relevantsocialnetworkpositioncharacteristicasafixedeffect,aswellasrandom

interceptsandslopesforeachparticipant.Totestthesignificanceoftherelationship

betweenparticipants’ratingsandsocialnetworkdata,p-valueswerecomputedusing

Satterthwaite’sapproximationfordegreesoffreedom45asimplementedinlmerTest46.

fMRIdatapreprocessing.ForfMRIdataanalysis,datawerepreprocessedand

averagevoxel-wisehemodynamicresponsestoeachidentitywereestimatedusingAFNI47.

Pre-processingstepsincludedapplyingAFNI’s3dDespikefunctiontoremovetransient,

extremevaluesinthesignalnotattributabletobiologicalphenomena,slice-timing

correctiontocorrectforinterleavedsliceacquisitionorder,alignmentofthelastvolumeof

thefinalruntothehigh-resolutionanatomicalscan,registrationofallfunctionalvolumes

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 19: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

18

totheanatomical-alignedfinalfunctionalvolumeusinga6-parameter3-Dmotion

correctionalgorithm,spatialsmoothingusinga4-mmfull-widthathalf-maximumGaussian

kernel,andscalingeachvoxeltimeseriestohaveameanamplitudeof100.Priorto

regression,consecutivevolumeswheretheEuclideannormofthederivativesofthemotion

parametersexceeded0.3mmwereexcludedfromfurtheranalysis,aswerevolumesin

whichmorethan10%ofbrainvoxelswereidentifiedasoutliersbytheAFNIprogram

3dToutcount.

ParameterestimateswereextractedforeachvoxelusingaGLMthatconsistedof

gamma-variateconvolvedregressorsforeachof13predictors(oneforeachofthe12

identitiesintheparticipant’sstimulusset;oneforcatchtrials),aswellas12regressorsfor

eachofthesixdemeanedmotionparametersextractedduringvolumeregistrationand

theirderivatives,andthreeregressorsforlinear,quadratic,andcubicsignaldriftswithin

eachrun.Thisprocedureremovedvariancecausedbyregressorsofnointerest,and

resultedinanestimateoftheresponseofeachvoxeltoeachtrialtype.

GLMdecompositionsearchlight.UsingPyMVPA48andSciPy49,aGLMdecomposition

searchlight11wasperformedwithineachparticipant’sdata.Asphere(radius=3voxels)

wasmovedthroughouteachparticipant’sbrain.Ateachpointinthebrain,thelocal

distributedpatternsofneuralresponsestoeachpersoninthestimulussetwereextracted

withinaspherecenteredonthatpoint,andthepairwisecorrelationdistancesbetween

themwerecalculatedtoconstructalocalneuralRDM(Fig.3a-c),whichwasdecomposed

intoaweightedcombinationofpredictorRDMsusingordinaryleastsquares(OLS)

regression(Fig.3d).TherewerethreepredictorRDMs,onecorrespondingtoeachsocial

networkpositionmetricofinterest.PredictorRDMswereconstructedbytakingthe

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 20: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

19

Euclideandistance(i.e.,theabsolutevalueofthenumericaldifference)betweenthe

relevantsocialnetworkpositionmetricsforeachpossiblepairofidentitieswithineach

participant’sstimulusset.EachpredictorRDMforeachparticipantwasthenz-scored.Next,

foreachRDM(e.g.,theEC-basedRDMforagivenparticipant),thevarianceaccountedfor

bytheremainingtwopredictorRDMs(e.g.,thesocialdistanceandconstraint-basedRDMs

forthatparticipant)wasremovedusingOLSregression.Thus,theresultantpredictor

RDMsweremadeorthogonaltooneanotherpriortoperformingtheGLMdecomposition

searchlight.

Ateachsearchlightcenter(i.e.,ateachvoxel),theGLMdecompositionprocedure

yieldedaβvaluecorrespondingtoeachsocialnetworkderivedmetricofinterest,aswell

asanR2valuecorrespondingtohowmuchthevarianceinthesimilaritystructureoflocal

neuralresponsepatternscouldbeexplainedbythesocialnetworkpositionsofthe

individualscomprisingagivenparticipant’sstimulusset.

Groupanalysis.Eachsubject’smapsofregressioncoefficientsandR2valueswere

transformedtostandard(Talairach50)spaceusingAFNI:Anatomicalscanswerelinearly

alignedtotheTalairach50templateusingthe@auto_tlrcalgorithminAFNI,andthesame

transformwasusedtoaligneachparticipant’ssearchlightresultstostandardspaceprior

togroupanalysis.Toidentifyareasthatreliablycontainedinformationabouteachspecific

aspectofsocialnetworkpositionacrossparticipants,theregressioncoefficientsforeach

socialnetworkposition-derivedRDMweretestedagainst0acrossparticipantsusingone-

tailedone-samplet-tests.Morespecifically,FSL’srandomise51,52programwasusedto

performpermutationtestsandtogenerateanulldistributionofclustermassesformultiple

comparisonscorrection(cluster-formingthreshold:p<.01,two-tailed;5,000

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 21: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

20

permutations;10-mmvariancesmoothing).Allreportedresultshavebeenthresholdedata

family-wiseerrorrateof5%.

Dataandcodeavailability:Thedatathatsupportthefindingsofthisstudyareavailable

fromthecorrespondingauthoruponrequest.Thecodeusedfortheanalysesalsois

availableuponrequest.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 22: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

21

Acknowledgements

ThisworkwassupportedbyagraduatefellowshipfromtheNeukomInstitutefor

ComputationalScienceandaDartmouthGraduateAlumniResearchAward.Theauthors

wishtothankWillHaslettforassistancewiththeopticalflowanalysis.

AuthorContributions

CP,AMKandTWconceivedofanddesignedthestudy.CPandAMKcollectedthedata.CP

analyzedthedata.CP,AMK,andTWwrotethepaper.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 23: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

22

References

1. Shultz,S.&Dunbar,R.I.M.Bondednessandsociality.Behaviour147,775–803(2010).

2. Dunbar,R.I.M.&Shultz,S.Evolutioninthesocialbrain.Science(80-.).317,1344–7(2007).

3. Ellwardt,L.,Labianca,G.&Wittek,R.Whoaretheobjectsofpositiveandnegativegossipatwork?Soc.Networks34,193–205(2012).

4. Burt,R.S.,Kilduff,M.&Tasselli,S.Socialnetworkanalysis:Foundationsandfrontiersonadvantage.Annu.Rev.Psychol.64,527–47(2013).

5. Burt,R.S.&Knez,M.Kindsofthird-partyeffectsontrust.Ration.Soc.7,255–292(1995).

6. Brent,L.J.N.Friendsoffriends:Areindirectconnectionsinsocialnetworksimportanttoanimalbehaviour?Anim.Behav.103,211–222(2015).

7. Uleman,J.S.,Newman,L.S.&Moskowitz,G.B.inAdvancesinExperimentalSocialPsychology(ed.Zanna,P.)28,211–279(AcademicPress,1996).

8. Todorov,A.,Gobbini,M.I.,Evans,K.K.&Haxby,J.V.Spontaneousretrievalofaffectivepersonknowledgeinfaceperception.Neuropsychologia45,163–73(2007).

9. Bonacich,P.Powerandcentrality:Afamilyofmeasures.Am.J.Sociol.92,1170(1987).

10. Kriegeskorte,N.,Mur,M.&Bandettini,P.Representationalsimilarityanalysis:Connectingthebranchesofsystemsneuroscience.Front.Syst.Neurosci.2,4(2008).

11. Chikazoe,J.,Lee,D.H.,Kriegeskorte,N.&Anderson,A.K.Populationcodingofaffectacrossstimuli,modalitiesandindividuals.Nat.Neurosci.17,1114–1122(2014).

12. Tennie,C.,Frith,U.&Frith,C.D.Reputationmanagementintheageoftheworld-wideweb.TrendsCogn.Sci.14,482–8(2010).

13. Krienen,F.M.,Tu,P.-C.&Buckner,R.L.Clanmentality:Evidencethatthemedialprefrontalcortexrespondstocloseothers.J.Neurosci.30,(2010).

14. Parkinson,C.,Liu,S.&Wheatley,T.Acommoncorticalmetricforspatial,temporal,andsocialdistance.J.Neurosci.34,1979–87(2014).

15. Gauthier,B.&vanWassenhove,V.Timeisnotspace:Corecomputationsanddomain-specificnetworksformentaltravels.J.Neurosci.36,(2016).

16. Yamazaki,Y.,Hashimoto,T.&Iriki,A.Theposteriorparietalcortexandnon-spatialcognition.F1000Biol.Rep.1,74(2009).

17. Parkinson,C.&Wheatley,T.Oldcortex,newcontexts:Re-purposingspatialperceptionforsocialcognition.Front.Hum.Neurosci.7,645(2013).

18. Tavares,R.M.etal.Amapforsocialnavigationinthehumanbrain.Neuron87,231–243(2015).

19. Fowler,J.H.,Dawes,C.T.&Christakis,N.A.Modelofgeneticvariationinhumansocialnetworks.Proc.Natl.Acad.Sci.U.S.A.106,1720–4(2009).

20. Burt,R.S.Network-relatedpersonalityandtheagencyquestion:Multiroleevidencefromavirtualworld.Am.J.Sociol.118,543–591(2012).

21. Wagner,D.D.,Haxby,J.V.&Heatherton,T.F.Therepresentationofselfandpersonknowledgeinthemedialprefrontalcortex.WileyInterdiscip.Rev.Cogn.Sci.3,451–470(2012).

22. Hassabis,D.etal.Imagineallthepeople:Howthebraincreatesandusespersonality

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 24: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

23

modelstopredictbehavior.Cereb.Cortex24,1979–1987(2014).23. Kriegeskorte,N.,Formisano,E.,Sorger,B.&Goebel,R.Individualfaceselicitdistinct

responsepatternsinhumananteriortemporalcortex.Proc.Natl.Acad.Sci.U.S.A.104,20600–20605(2007).

24. Nestor,A.,Plaut,D.C.&Behrmann,M.Unravelingthedistributedneuralcodeoffacialidentitythroughspatiotemporalpatternanalysis.Proc.Natl.Acad.Sci.U.S.A.108,9998–10003(2011).

25. Feiler,D.C.&Kleinbaum,A.M.Popularity,similarity,andthenetworkextraversionbias.Psychol.Sci.26,593–603(2015).

26. Zerubavel,N.,Bearman,P.S.,Weber,J.&Ochsner,K.N.Neuralmechanismstrackingpopularityinreal-worldsocialnetworks.Proc.Natl.Acad.Sci.112,201511477(2015).

27. Jones,B.C.etal.Facialcuesofdominancemodulatetheshort-termgaze-cuingeffectinhumanobservers.Proc.R.Soc.bBiol.Sci.277,617–24(2010).

28. Dalmaso,M.,Pavan,G.,Castelli,L.&Galfano,G.Socialstatusgatessocialattentioninhumans.Biol.Lett.8,450–2(2012).

29. Klein,J.T.,Shepherd,S.V&Platt,M.L.Socialattentionandthebrain.Curr.Biol.19,R958-62(2009).

30. Shepherd,S.V,Deaner,R.O.&Platt,M.L.Socialstatusgatessocialattentioninmonkeys.Curr.Biol.16,R119-20(2006).

31. Marsh,A.A.,Blair,K.S.,Jones,M.M.,Soliman,N.&Blair,R.J.R.Dominanceandsubmission:Theventrolateralprefrontalcortexandresponsestostatuscues.J.Cogn.Neurosci.21,713–724(2009).

32. Cloutier,J.&Gyurovski,I.Ventralmedialprefrontalcortexandpersonevaluation:Formingimpressionsofothersvaryinginfinancialandmoralstatus.Neuroimage100,535–543(2014).

33. Karafin,M.S.,Tranel,D.&Adolphs,R.Dominanceattributionsfollowingdamagetotheventromedialprefrontalcortex.J.Cogn.Neurosci.16,1796–1804(2004).

34. Pinker,S.Declineofviolence:Tamingthedevilwithinus.Nature478,309–311(2011).

35. Grossman,E.D.,Battelli,L.&Pascual-Leone,A.RepetitiveTMSoverposteriorSTSdisruptsperceptionofbiologicalmotion.VisionRes.45,2847–2853(2005).

36. Mukamel,R.,Ekstrom,A.D.,Kaplan,J.,Iacoboni,M.&Fried,I.Single-neuronresponsesinhumansduringexecutionandobservationofactions.Curr.Biol.20,750–6(2010).

37. Wheatley,T.,Milleville,S.C.&Martin,A.Understandinganimateagents:Distinctrolesforthesocialnetworkandmirrorsystem.Psychol.Sci.18,469–474(2007).

38. Burt,R.S.StructuralHoles:TheSocialStructureofCompetition.(HarvardUniversityPress,1992).

39. Kleinbaum,A.M.,Jordan,A.H.&Audia,P.G.Analtercentricperspectiveontheoriginsofbrokerageinsocialnetworks:Howperceivedempathymoderatestheself-monitoringeffect.Organ.Sci.26,1226–1242(2015).

40. RCoreDevelopmentTeam.R:ALanguageandEnvironmentforStatisticalComputing.RFoundationforStatisticalComputing.(2012).

41. Csardi,G.&Nepusz,T.Theigraphsoftwarepackageforcomplexnetworkresearch.InterJournalComplexSyst.1695(2006).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 25: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

24

42. Connolly,A.C.etal.Therepresentationofbiologicalclassesinthehumanbrain.J.Neurosci.32,2608–2618(2012).

43. Said,C.P.,Moore,C.D.,Engell,A.D.&Haxby,J.V.Distributedrepresentationsofdynamicfacialexpressionsinthesuperiortemporalsulcus.J.Vis.10,1–12(2010).

44. Bates,D.,Mächler,M.,Bolker,B.&Walker,S.Fittinglinearmixed-effectsmodelsusinglme4.J.Stat.Softw.67,1–48(2015).

45. Satterthhwaite,F.E.Anapproximatedistributionofestimatesofvariancecomponents.Biometrics2,110–4(1946).

46. Kuznetsova,A.,Brockhoff,P.B.&Christensen,R.H.B.lmerTest:Testsinlinearmixedeffectsmodels.Rpackageversion2.0-33(2016).

47. Cox,R.W.AFNI:Softwareforanalysisandvisualizationoffunctionalmagneticresonanceneuroimages.Comput.Biomed.Res.29,162–73(1996).

48. Hanke,M.etal.PyMVPA:Aunifyingapproachtotheanalysisofneuroscientificdata.Front.Neuroinform.3,3(2009).

49. Oliphant,T.E.SciPy:OpensourcescientifictoolsforPython.Comput.Sci.Eng.9,10–20(2007).

50. Talairach,J.&Tournoux,P.Co-PlanarStereotaxisAtlasoftheHumanBrain.(ThiemeMedicalPublishers,1988).

51. Winkler,A.M.,Ridgway,G.R.,Webster,M.A.,Smith,S.M.&Nichols,T.E.Permutationinferenceforthegenerallinearmodel.Neuroimage92,381–397(2014).

52. Jenkinson,M.,Beckmann,C.F.,Behrens,T.E.J.,Woolrich,M.W.&Smith,S.M.FSL.NeuroImage62,782–790(2012).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 26: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

25

Figure1.Socialnetworkcharacterization.Thesocialnetworkofafirst-yearcohortofMBA

studentswasreconstructedbasedonresponsestoonlinequestionnairesadministeredto

allmembersof the class (N=275;99.3%response rate).Nodes indicate students; lines

indicate reported social ties between them. For ease of visualization, only mutually

reportedsocialtiesareillustrated.AsubsetofthesestudentsparticipatedinanfMRIstudy.

Orangenodes indicate fMRI studyparticipants; graynodesdenoteothermembersof the

graduateprogram.Nodesizeisproportionaltoeigenvectorcentrality.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 27: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

26

Figure2.Stimulussetconstructionandparadigmforneuroimagingstudy.(A)Thegeodesic

distancebetweeneachfMRIstudyparticipantandeveryotherstudentinthenetworkwas

characterized. An alternative visualization of the network is shown in which nodes are

organized intohorizontal layersaccording todistance fromaparticularparticipant.Each

participant’sstimulussetwascomprisedof12ofhisorherclassmates:thetwolowestand

twohighesteigenvectorcentralityindividualsatdistancesofone,two,andthreefromthe

participant in the network (e.g., the classmates signified by the two smallest and two

largest nodeswithin each layer in (A)). (B) During the fMRI study, participants viewed

brief(2s)videosofthe12individualsintheirstimulussetsseparatedby4-6soffixation.

Inordertomaintainattention,aone-backtaskwasused(i.e.,participantswereinstructed

touseabuttonpress to indicatewhenan identicalvideowaspresented twice inarow).

Frames from this participant’s video clip are reproduced with permission from the

individual.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 28: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

27

Figure 3. GLM decomposition searchlight. (A) A spherical searchlight was moved

throughouteachparticipant’sbrain.(B)Ateachpointinthebrain,distributedpatternsof

neuralresponsestoeachindividualintheparticipant’sstimuluswereextractedwithina9-

mmradiusspherecenteredonthatpoint.(C)Ateachsearchlightcenter,aneuralRDMwas

generatedbasedonpairwisecorrelationdistancesbetweenlocalneuralresponsepatterns

toeachclassmateintheparticipant’sstimulusset.(D)EachlocalneuralRDMwasmodeled

asaweightedcombinationofRDMsconstructedbasedonthepairwiseEuclideandistances

(i.e.,theabsolutevalueofnumericaldifferences)betweenindividualsineachparticipant’s

stimulussetintermsofsocialdistance,eigenvectorcentrality,andnetworkconstraint.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 29: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

28

Figure4.Neuralencodingofsocialnetworkposition.(A)Distinctbrainregionsencodedifferentpropertiesofpeers’socialnetworkpositions(socialdistance=purple;eigenvectorcentrality=orange;constraint=green).Betavaluesindicatetheextenttowhichtheinformationcontainedinlocalmulti-voxelresponsepatternstoparticipants’classmatescouldbepredictedbasedonpropertiesofthoseindividuals’socialnetworkpositions;p<.05,FWE-corrected.(B)TheR2valuecorrespondingtotheGLMdecompositionperformedateachsearchlightcenterindicatestheextenttowhichtheinformationcontainedinlocalmulti-voxelresponsepatternscanbeexplainedbythesocialnetworkpositionsoftheclassmatesbeingviewed.Voxel-wiseR2valuesaveragedacrosssubjectsaredepicted;redcontoursindicateclustersofvoxelsthatreliablysignaledoneormoreofthetestedaspectsofsocialnetworkpositionacrossparticipants.ResultsareprojectedontoacorticalsurfacemodeloftheTalairach50N27brainusingPySurfer(https://github.com/nipy/PySurfer).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 30: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

29

Figure5.Associationsbetweenperceivedandactualsocialnetworkcharacteristics.Blackdashedlinesdepicttherelationshipsbetweenperceivedandactualsocialnetworkcharacteristicsacrossallparticipants(fitusinganordinaryleastsquareslinearmodel).Solidpurple,orangeandgreenlinesdepicttheserelationshipsforeachsubjectforsocialdistance,eigenvectorcentrality,andconstraint,respectively.(A)Neuroimagingstudyparticipants’subjectiveratingsofsocialcloseness,proportionofsocialtimespenttogether,andfrequencyofdiscussionswiththeindividualsintheirstimulussetsvariedaccordingtogeodesicnetworkdistancefromtheminthenetwork(allp’s<.0001,seemaintext).(B)Participants’estimatesoftheeigenvectorcentralityoftheindividualsintheirstimulussetswerecloselyrelatedtothoseindividuals’actualeigenvectorcentralities(p<.0001,seemaintext).(C)Participants’estimatesofthenetworkconstraintofindividualsintheirstimulussetswerealsoassociatedwiththeactualconstraintofthoseindividuals’positionsinthesocialnetwork(p<.0001,seemaintext).Asdescribedinthemaintext,self-reportdatawasobtainedafterscanning;networkconstraintandeigenvectorcentralitywerelog-transformedpriortoplottingandanalysistoalleviateskew.Perceivednetworkconstraintratingsweremultipliedby-1priortoplottingbecausetherelevantquestionaskedparticipantstorateperceivedbrokerage(whichisinverselyrelatedtonetworkconstraint).Analysesofbehavioralratingswereconductedusinglinearmixedmodelsthatincludedby-subjectrandomslopesandintercepts.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 31: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S1

SupplementaryInformation

I.Opticalflowanalysis

Toquantifytheamountofmovementwithineachvideoclipusedasastimulusin

theneuroimagingexperiment,theaverageopticalflow(i.e.,thepatternofapparentmotion

betweenconsecutivevideoframes)wascomputedforeachvideothatwasshowninthe

fMRIstudy.Giventhatthevideosusedasstimuliwererecordedbyastablecameraagainst

aplain,staticbackground,opticalflowestimatesforthesevideoscaptureoftheamount

thateachindividualmovedhisorherfacialfeaturesandheadinthevideoclip.Farneback’s

algorithmformotionestimation1asimplementedinOpenCV2wasusedtoestimatethe

averagemagnitudeofopticalflowineachvideo.Thismethodextractsapixel-wisemotion

vectorforeachpairofsequentialframesinwhicheachpixelischaracterizedbya

magnitudeandadirection.Toestimatethemagnitudeofmotionwithineachframepair,

themagnitudevalues(withoutrespecttodirection)weresummedacrosspixels.To

computethemeanmagnitudeofopticalflowforagivenvideo,themotionmagnitude

estimateswereaveragedacrossframeswithinthatvideo.

Inordertotestwhetherornotindividualdifferencesinnetworkconstraintare

relatedtomovementinthevideosusedasstimuli,thecorrelationbetweennetwork

constraintandaveragemotionmagnitudewasassessedamongthe88individualswhose

videoswereusedasstimuliinthefMRIstudy.Giventhatdistributionsofbothvariables

werehighlyskewed,datawerelog-transformedpriortoanalysis.Theresultsofthis

proceduresuggestthatinthestimuliusedinthecurrentstudy,networkconstraintand

amountofmovementwerenotsignificantlycorrelated,r=-0.12,p=0.28(seeFig.S1).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 32: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S2

II.Post-scanquestionnaire

Participantsperformedthepost-scanquestionnaireona13”MacBooklaptopusing

Psychopy3.Participantsfirstviewedaninstructionscreenthatread,“Nowyouwillseethe

samepeoplewhoyousawinthescanner.Youwillbeaskedquestionsabouteachperson.

Thesequestionsrelateonlytothisperson’sinteractionswithinthe[institutionname]MBA

cohort.Weunderstandthatpeoplehavemanysocialcirclesthattheyparticipatein(perhaps

includingfamily,friendsoutsideof[theinstitution],othercontacts,etc.).Forthesequestions,

pleasejustconsiderinteractionswithintheMBAcohort.Youwillbepresentedwitha

continuousratingscaleforeachquestion.Youcanchooseanypointalongthecontinuumto

respond.Pressanykeytocontinue.”Duringthesurvey,videosofthe12individualsfromthe

participant’sstimulussetwerepresentedinarandomorder.Participantsrespondedtoall

questionsaboutagivenindividualsequentially,andthesamevideothathadplayedinthe

scannerrepeatedonaloop(withoutsound)abovethequestiontextandresponsescale

(seeFig.S2).

Participantswerepresentedwithquestionsconcerninglaydefinitionsof

eigenvectorcentrality(“Insocialnetworkanalysis,scientistsassessaconstructthat

measureshowmanyfriendsapersonhas,andhowmanyfriendsaperson’sfriendshave.How

wouldyouratethispersononthisconstruct?”Responsesrangedfrom“Low(fewfriendswho

havefewfriends)”to“High(manyfriendswhohavemanyfriends)”)andconstraint(“Social

networkanalystsalsoassessaconstructcalled‘brokerage’thatmeasureshowmuchaperson

connectsgroupsofpeoplewhowouldn’totherwisebeconnected.Usingthisdefinition,how

highisthisindividualin‘brokerage’?”Responsesrangedfrom“Low(thispersonnever

connectsdistinctgroupsofpeople”to“High(Thispersonoftenconnectsdistinctgroupsof

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 33: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S3

people)”).Responsestotheitemassessingbrokeragewerereversescoredinorderto

estimateperceivednetworkconstraint.

Participantswerealsopresentedwiththenamegeneratorthathadoriginallybeen

usedtoconstructthenetwork(“Considerthepeoplewithwhomyouliketospendyourfree

time.Duringthelastmonth,isthisoneoftheclassmateswhoyouhavebeenwithmostoften

forinformalfriendshipactivities,suchasgoingouttolunch,dinner,drinks,films,visitingone

another’shomes,andsoon?”Responsesrangedonacontinuumfrom“Noneofmysocial

activitiesinthepastmonthhaveincludedthisperson”to“Allofmysocialactivitiesinthepast

monthhaveincludedthisperson”),aswellasquestionsdesignedtoassesstiestrength

(“Howcloseareyouwiththisperson?”Responsesrangedfrom“Distant”to“Lessthanclose”

to“Close”to“EspeciallyClose”)andfrequencyofinteractions(“Onaverage,howoftendoyou

talktothisperson(anysocialorbusinessdiscussion)?”Responsesrangedfrom“Lessoften”

to“Monthly”to“Weekly”to“Daily”).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 34: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S4

References1. Farnebäck,G.inImageAnalysis:LectureNotesinComputerScience(eds.Bigun,J.&

Gustavsson,T.)2749,363–370(SpringerBerlinHeidelberg,2003).2. Bradski,G.TheOpenCVLibrary.DrDobbsJ.Softw.Tools25,120–125(2000).3. Peirce,J.W.PsychoPy-PsychophysicssoftwareinPython.J.Neurosci.Methods162,

8–13(2007).

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 35: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S5

Figure S1.Relationshipbetweennetwork constraint andmovementduring videos.

Theamountofmovementofthe88individualswhosevideoswereusedasstimuliwasnot

significantly related to the constraint characterizing those individuals’ positions in the

socialnetworkoffirst-yearMBAstudents,r=-0.12,p=0.28.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 36: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S6

Figure S2. Post-scan questionnaire. Following scanning, participants responded to

questions about their subjective perception of each aspect of social network position of

interest for each individual in their stimulus set. A screenshot of the question

correspondingtonetworkconstraint(reverse-scored)isshown.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint

Page 37: Carolyn M. Parkinson1* 2 3 - bioRxiv · Carolyn M. Parkinson1*, Adam M. Kleinbaum2, and Thalia Wheatley3 1Department of Psychology, University of California, Los Angeles, 1285 Franz

S7

Table S1: Brain regions where local neural information content is associated with the social distance of the individuals being viewed. Hemi Size

(mm3) COG x

COG y

COG z

Location

R 4,397 49.6 -46.6 7.6 IPL (SMG), STG, STS, MTG Hemi = hemisphere; COG = center of gravity; L = left; R = right; IPL = inferior parietal lobule; SMG = supramarginal gyrus; STG= superior temporal gyrus; STS = superior temporal sulcus; MTG = middle temporal gyrus. All reported results are significant at a statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space.

Table S2: Brain regions where local neural information content is associated with the eigenvector centrality of the individuals being viewed. Hemi Size

(mm3) COG x

COG y

COG z

Location

L 24,483 -42.4 -18.5 33.6 IPL, IFG, Ins., pre-central gyrus R 8,768 21.7 26.8 -4.9 MPFC, IFG, aIns., ant. PHG, TP L 7,716 -32.7 12.9 -6.1 aIns., IFG L, R 7,552 -9.4 -41.8 40.4 PCC, precuneus R 6,802 20.4 -48.0 -2.8 PHG, LG, FG R 6,065 48.0 -29.4 38.4 IPL, precuneus, post-central gyrus L, R 5,233 -0.8 -44.4 65.4 Precuneus, post-central gyrus L, R 4,961 -0.6 -83.3 28.5 EVC

Hemi = hemisphere; COG = center of gravity; L = left; R = right; a = anterior; IPL = inferior parietal lobule; IFG = inferior frontal gyrus; Ins. = insula; MPFC = medial prefrontal cortex; PHG = parahippocampal gyrus; TP = temporal pole; PCC = posterior cingulate cortex; LG = lingual gyrus; FG = fusiform gyrus; EVC = extrastriate visual cortex. All reported results are significant at a statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space.

Table S3: Brain regions where local neural information content is associated with the constraint of the individuals being viewed. Hemi Size

(mm3) COG x

COG y

COG z

Location

R 11,872 51.5 -16.0 -3.0 STS, STG, MTG, ITS, pIns. L 7,739 -51.6 -38.5 7.1 STS, STG, MTG, pIns. R 4,363 11.5 -5.7 58.4 SMA, dorsal premotor cortex Hemi = hemisphere; COG=center of gravity; L = left; R = right; STS = superior temporal sulcus; STG = superior temporal gyrus; MTG = middle temporal gyrus; ITS = inferior temporal sulcus; pIns. = posterior insula; SMA = supplementary motor area. All reported results are significant at a statistical threshold of p < .05, FWE-corrected. All coordinates are in Talairach space.

.CC-BY-NC-ND 4.0 International licenseacertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 9, 2017. ; https://doi.org/10.1101/098988doi: bioRxiv preprint