Top Banner
INSTITUTO TECONOLÓGICO DE MAZATLÁN ELECTROMAGNETISMO ING. EDGAR MIZARD NOLAZCO PADILLA CAPACITORES IM3A ANGULO GARCIA MARGARITA
23

Capacitor Es

Jul 09, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Capacitor Es

INSTITUTO TECONOLÓGICO DE

MAZATLÁN

ELECTROMAGNETISMO

ING. EDGAR MIZARD NOLAZCO PADILLA

CAPACITORES

IM3A

ANGULO GARCIA MARGARITA

Mazatlán, Sinaloa a 8de Octubre del 2015.

Page 2: Capacitor Es

CAPACITORESUn condensador electrolítico es un tipo de condensador que usa un líquido iónico conductor como una de sus placas. Típicamente con más capacidad por unidad de volumen que otros tipos de condensadores, son valiosos en circuitos eléctricos con relativa alta corriente y baja frecuencia. Este es especialmente el caso en los filtros de alimentadores de corriente, donde se usan para almacenar la carga, y moderar el voltaje de salida y las fluctuaciones de corriente en la salida rectificada. También son muy usados en los circuitos que deben conducir corriente continua pero no corriente alterna.

Los condensadores electrolíticos pueden tener mucha capacitancia, permitiendo la construcción de filtros de muy baja frecuencia

Son dispositivos constituidos por dos placas conductoras paralelas, separadas por un material aislante, de tal modo que puedan estar cargados con el mismo valor, pero con signos contrarios cuya principal función es el almacenamiento de carga. Cuanto mayor sea el área de las placas, mayor será su capacidad, expresado en el millonésima de Faradios [µF], y cuanto mayor sea la distancia entre las placas, mayor será el aislamiento o la tensión de trabajo del capacitor, expresada en unidades de Volts, aunque el valor de capacidad disminuye proporcionalmente cuanto más las placas se separan.

Page 3: Capacitor Es

Los capacitores pueden conducir corriente continua durante sólo un instante (por lo cual podemos decir que los capacitores, para las señales continuas, es como un cortocircuito), aunque funcionan bien como conductores en circuitos de corriente alterna.

Es por esta propiedad lo convierte en dispositivos muy útiles cuando se debe impedir que la corriente continua entre a determinada parte de un circuito eléctrico, pero si queremos que pase la alterna.

Los capacitores se utilizan junto con las bobinas, formando circuitos en resonancia, en las radios y otros equipos electrónicos. Además, en los tendidos eléctricos se utilizan grandes capacitores para producir resonancia eléctrica en el cable y permitir la transmisión de más potencia, así como en :

Ventiladores

Motores de aire acondicionado

Iluminación

Refrigeración,

Compresores

Bombas de agua

Motores de corriente alterna

HISTORIA

No existe un inventor claro del condensador electrolítico. Es uno de los muchos casos de tecnología que se pueden considerar una curiosidad de laboratorio, la clásica "búsqueda de solución para un problema".

Page 4: Capacitor Es

El principio del condensador electrolítico fue descubierto en 1886 por Charles Pollak, como parte de su investigación en la anodización del aluminio y otros metales. Pollack descubrió que debido a la delgadez de la capa de óxido de aluminio producida, había mucha capacitancia entre el aluminio y la solución de electrolito. Un problema importante era que la mayoría de los electrolitos tendían a disolver esta capa de óxido de nuevo cuando la tensión se eliminaba, pero finalmente él encontró que el perborato de sodio bórax permitía la creación de la capa sin atacarla después. Le fue concedida una patente para el condensador electrolítico de aluminio con disolución de bórax en 1897.

La primera aplicación práctica de esta tecnología fue en los condensadores de arranques de motores de corriente alterna. La mayoría de los condensadores electrolíticos son polarizados, esto es, sólo pueden operar con corriente continua, pero usando varias placas de aluminio anodizado e intercalando entre ellas el electrolito de bórax, es posible hacer un condensador que puede ser usado en sistemas de corriente alterna.

Los condensadores del siglo XIX y principios del XX tienen pocas similitudes con los actuales, y eran construidos de forma más parecida a una batería de coche. El electrolito de disolución de bórax tenía que ser periódicamente re-disuelto con agua destilada, algo que recuerda a las baterías de plomo ácido.

La primera aplicación masiva de las versiones de corriente continua de este tipo de condensador fue en las centralitas telefónicas para suavizar los cambios de estado de los relés de las líneas de 48 voltios.

Page 5: Capacitor Es

El desarrollo de los receptores de radio domésticos de corriente alterna, a finales de los 1920 requirieron de la producción de condensadores de alta capacidad (para la época) y alto voltaje, como mínimo de 4 microfaradios y hasta 500 voltios. Los de papel enrollado y plata con aceite estaban disponibles entonces pero los dispositivos con ese orden de capacidad y voltaje eran pesados y prohibitivamente caros. El primer prototipo de un condensador electrolítico moderno fue patentado por Julius Lilienfield en 1926. Su diseño seguía las líneas del condensador de mica y plata, pero con papel empapado en electrolito en lugar de la mica. Se probó que era difícil refrigerar el dispositivo y en las condiciones calientes típicas de los los receptores de radio se agujereaban y fallaban.

El ingeniero retirado del ejército de Estados Unidos Ralph D. Mershon desarrolló el primer condensador electrolítico para radio comercialmente disponible en cualquier cantidad, aunque algunos otros investigadores produjeron dispositivos similares. El "condensador Mershon" como se le conoció, estaba construido como un condensador de papel convencional, con dos largas tiras de película de aluminio enrolladas con tiras de papel empapado en solución electrolítica, en lugar de cera. En lugar de intentar cerrarlo herméticamente, la solución de Mershon fue simplemente meter el condensador en una lata de aluminio o cobre, llena hasta la mitad de electrolito extra. (Estos son llamados "electrolíticos húmedos" por los radioaficionados, y los que se encuentran aún con algo de líquido dentro son piezas de coleccionista).

A pesar del éxito inmediato de Mershon (y el nombre "Condensador de Mershon" fue durante un corto tiempo sinónimo de receptores de radio de calidad en los años 20), debido a varias dificultades de

Page 6: Capacitor Es

fabricación su tiempo de vida en funcionamiento era corto y la compañía de Mershon quebró a comienzos de la década de 1930.

No fue hasta la segunda guerra mundial cuando se dedicaron suficientes recursos para encontrar las causas de los problemas, que los condensadores electrolíticos se convirtieron en los componentes útiles que son hoy en día.

CONSTRUCCIÓN

Los condensadores electrolíticos de aluminio se construyen a partir de dos tiras de aluminio, una de las cuales está cubierta de una capa aislante de óxido, y un papel empapado en electrolito entre ellas. La tira aislada por el óxido es el ánodo, mientras el líquido electrolito y la segunda tira actúan como cátodo. Esta pila se enrolla sobre sí misma, ajustada con dos conectores pin y se encaja en un cilindro de aluminio. Las dos geometrías más populares son las axiales y radiales mostradas en la fotografía

Las principales especificaciones de los capacitores son:

Capacitancia

Es una medida de la capacidad de almacenamiento de la carga. Se mide en Faradios o en múltiplos del mismo, como son:

Microfaradios 10-6 µFNanofaradios 10-9 nFPicofaradios 10-12 pF

Voltaje

Indica el voltaje máximo al que puede trabajar el capacitor, el cual nunca debe ser por debajo de los requerimientos de le equipo o circuito donde se va a conectar. En este punto es importante señalar

Page 7: Capacitor Es

que el capacitor puede tener un voltaje mayor al requerido, pero el valor en Faradios si debe ser exacto. Es decir, si necesitamos un capacitor de 100 Volts a 10 µF, podemos instalar uno de 200 Volts , pero siempre de 10 µF.

Tolerancia

Como en todos los componentes físicos (reales), en los capacitores el valor especificado en faradios no es exacto, sino que puede variar hacia arriba o hacia abajo del valor dado, esta variación es conocida como tolerancia y generalmente se maneja como un porcentaje del valor del capacitor. Esta tolerancia puede variar dependiendo del componente que se trate, y es necesario revisar las especificaciones técnicas para conocer el valor manejado.

Coeficiente de Temperatura

Los capacitores están sujetos a variaciones de valor con los cambios de la temperatura es por ello que se fabrican algunos capacitores con coeficientes específicos de temperatura y se usan para la compensación térmica.

El cambio de temperatura, TC, se expresa como el cambio de capacitancia por grado centígrado o Celsius de cambio de temperatura. En general se expresa en partes de millón por grado Celsius (ppm/ °C).

POLARIDADEn los condensadores electrolíticos de aluminio, la capa de óxido aislante en la superficie de la placa de aluminio actúa como dieléctrico, y es la delgadez de esta capa la que permite obtener una gran capacidad en un pequeño volumen. La capa de óxido puede mantenerse inafectada incluso con una intensidad de campo eléctrico del orden de 109 voltios por metro. La combinación de alta capacidad y alto voltaje resultan en una gran densidad energética.

Page 8: Capacitor Es

Al contrario que la mayoría de los condensadores, los electrolíticos tienen polaridad. La polaridad correcta se indica en el envoltorio con una franja indicando el signo negativo y unas flechas indicando el terminal que debe conectarse al potencial menor (terminal negativo). También, el terminal negativo es más corto que el positivo. Esto es importante porque una conexión con voltaje invertido de más de 1,5 Voltios puede destruir la capa central de material dieléctrico por una reacción de reducción electroquímica. Sin este material dieléctrico, el condensador entra en cortocircuito, y si la corriente es excesiva, el electrolito puede hervir y hacer explotar el condensador.Existen disponibles condensadores especiales para uso con corriente alterna, normalmente conocidos como "condensadores no-polares" o "NP". En ellos, las capas de óxido se forman en las dos tiras de aluminio antes del ensamblado. En los ciclos alternos, una u otra de las placas actúan como un diodo, evitando que la corriente inversa dañe el electrolito de la otra. Esencialmente, un condensador de 10 microfaradios de alterna se comporta como dos de 20 microfaradios de continua conectados en serie inversa.Los condensadores modernos tienen una válvula de seguridad, típicamente en una esquina del envoltorio o una terminación especialmente diseñada para ventilar el líquido/gas caliente, pero aun así las rupturas pueden ser dramáticas. Los condensadores electrolíticos pueden soportar una tensión inversa por un tiempo corto, pero durante este tiempo conducirán mucha corriente y no se comportarán como verdaderos condensadores. La mayoría sobrevivirán sin tensión inversa, o con tensión alterna, pero los circuitos deben diseñarse siempre pensando en que no haya tensión inversa durante tiempos significativos. La corriente directa constante (con la polaridad correcta) es lo preferible para aumentar la vida del condensador.

Page 9: Capacitor Es

Condensador CondensadorPolarizado

CondensadorVariable

Símbolos esquemáticos para condensadores electrolíticos. Algunos esquemas no incluyen el signo "+" al lado del símbolo. Los condensadores electrolíticos se marcan para indicar la polaridad de los terminales.

TIPOS DE CAPACITORES

CAPACITORES FIJOS

Estos capacitores tienen una capacidad fija determinada por él fabricante y su valor no se puede modificar. Sus características dependen principalmente del tipo de dieléctrico utilizado, de tal forma que los nombres de los diversos tipos se corresponden con los nombres del dieléctrico. usado.De esta forma podemos distinguir los siguientes tipos

Cerámicos Plástico Mica Electrolíticos De doble capa eléctrica

Page 10: Capacitor Es

Capacitores cerámicos El dieléctrico utilizado por estos capacitores es la cerámica, siendo el material más usado en el dióxido de titanio. Este material confiere al condensador grandes inestabilidades por lo que en base al material se pueden diferenciar en 2 grupos:Grupo I:Caracterizados por una alta estabilidad, con un coeficiente de temperatura bien definido y casi constante.Grupo 2:Su coeficiente de temperatura no ésta prácticamente definido y además de presentar características no lineales, su capacidad varía considerablemente con la temperatura, la tensión y el tiempo de funcionamiento. Se caracterizan por su elevada permisividad.Las altas constantes dieléctricas características de las cerámicas permiten amplias posibilidades de diseño mecánico y eléctrico.

Page 11: Capacitor Es

Capacitores de plástico Estos capacitores se caracterizan por las altas resistencias de aislamiento y elevadas temperaturas de funcionamiento y según el proceso de fabricación podemos diferenciar entre los tipos K y tipo MK, que se distinguen por el material de sus armaduras (metal en el primer caso y metal vaporizado en el segundo).Según el dieléctrico usado se pueden distinguir estos tipos comerciales:KS: Styroflex, constituidos por láminas de metal y poliestireno como dieléctrico.KP: formados por láminas de metal y dieléctrico de polipropileno.MKP: dieléctrico de polipropileno y armaduras de metal vaporizado.MKY: dieléctrico de polipropileno de gran calidad y láminas de metal vaporizado.MKT: láminas de metal vaporizado y dieléctrico de teraftalato de polietileno (poliéster).MKC: Makrofol, metal vaporizado para las armaduras y policarbonato para el dieléctrico.A nivel orientativo estas pueden ser las características típicas de los capacitores de plástico:

Page 12: Capacitor Es

TipoCapacidad

Tolerancia Tensión

Temperatura

KS 2pF-330nF+/-0.5%,+/-5%

25V-630V -55ºC-70ºC

KP 2pF-100nF+/-1%,+/-5%

63V-630V -55ºC-85ºC

MKP1.5nF-4700nF

+/-5%,+/-20%

0.25KV-40KV -40ºC-85ºC

MKY

100nF-1000nF

+/-1%,+/-5%

0.25KV-40KV -55ºC-85ºC

MKT

680pF-0.01mF

+/-5%,+/-20%

25V-630V -55ºC-100ºC

MKC

1Nf-1000nF

+/-5%,+/-20%

25V-630V -55ºC-100ºC

Page 13: Capacitor Es

Capacitores de micaEl dieléctrico utilizado en este tipo de capacitores es la mica o silicato de aluminio y potasio y se caracterizan por bajas pérdidas, ancho rango de frecuencias y alta estabilidad con la temperatura y el tiempo.

Capacitores electrolíticosEn estos capacitores una de las armaduras es de metal mientras que la otra está constituida por un conductor iónico o electrolito. Presentan unos altos valores capacitivos en relación al tamaño y en la mayoría de los casos aparecen polarizados.Podemos distinguir dos tipos:

Electrolíticos de aluminio : la armadura metálica es de aluminio y el electrolito de tetraborato armónico.

Page 14: Capacitor Es

Electrolítico de tántalo: el dieléctrico está constituido por óxido de tántalo y nos encontramos con mayores valores capacitivos que los anteriores para un mismo tamaño. Por otra parte las tensiones nominales que soportan son menores que los de aluminio y su costo es algo más elevado.

Capacitores de doble capa eléctrica.Estos capacitores también se conocen como supercapacitores o CAEV debido a la gran capacidad que tienen por unidad de volumen. Se diferencian de los capacitores convencionales en que no usan dieléctrico por lo que son muy delgados. Las características eléctricas más significativas desde el punto de su aplicación como fuente acumulada de energía son: altos valores capacitivos para reducidos tamaños, corriente de fugas muy baja, alta resistencia serie, y pequeños valores de tensión.

CAPACITORES VARIABLESEstos capacitores presentan una capacidad que podemos variar entre ciertos límites. Igual que pasa con las resistencias podemos distinguir entre capacitores variables, su aplicación conlleva la variación con cierta frecuencia (por ejemplo sintonizadores); y capacitores ajustables o trimmers, que normalmente son ajustados una sola vez (aplicaciones de reparación y puesta a punto).La variación de la capacidad se lleva a cabo mediante el desplazamiento mecánico entre las placas enfrentadas. La relación con que varían su capacidad respecto al ángulo de rotación viene

Page 15: Capacitor Es

determinada por la forma constructiva de las placas enfrentadas, obedeciendo a distintas leyes de variación, entre las que destacan la lineal, logarítmica y cuadrática corregida.

IDENTIFICACIÓN DE VARIABLESVamos a disponer de un código de colores, cuya lectura varía según el tipo de condensador, y un código de marcas, particularizado en los mismos. Primero determinaremos el tipo de condensador (fijo o variable) y el tipo concreto dentro de estos.

Capacitores variables giratorios Capacitores ajustables “trimmer”

Las principales características que nos vamos a encontrar en los capacitores van a ser la capacidad nominal, tolerancia, tensión y coeficiente de temperatura, aunque dependiendo de cada tipo de traerán unas características u otras.En cuanto a las letras para la tolerancia y la correspondencia número - color del código de colores, son lo mismo que para resistencias. Debemos destacar que la fuente más fiable a la hora de la identificación son las características que nos proporciona el fabricante.

Page 16: Capacitor Es

Estos capacitores siempre indican la capacidad en microfaradio y la máxima tensión de trabajo en voltios. Dependiendo del fabricante también puede venir indicados otros parámetros como la temperatura y la máxima frecuencia a la que pueden trabajar. Tenemos que poner especial atención en la identificación de la polaridad. Las formas más usuales de indicación por parte de los fabricantes son las siguientes:

Capacitores de tantalioActualmente estos capacitores no usan el código de colores (los más antiguos, sí); con el código de marcas la capacidad se indica en microfaradios y la máxima tensión de trabajo en voltios. La terminal positiva se indica con el signo +.