Top Banner
Capacitive Micro machined Ultrasonic Transducers arrays (CMUTs) for Structural Health Monitoring (SHM). Journée nationale contrôle sante et monitoring des structures March 12, 2020, Paris, France Presented by : Redha BOUBENIA In collaboration with: Gilles BOURBON Patrice LE MOAL Vincent PLACET Éric JOSEPH Emmanuel RAMASSO
27

Capacitive Micro machined Ultrasonic Transducers arrays (CMUTs… · 2020. 3. 20. · nitride layer ground electrode feed electrode anchor post silicon substrate gap Capacitive Micro

Jan 27, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Capacitive Micro machined Ultrasonic

    Transducers arrays (CMUTs) for

    Structural Health Monitoring (SHM).

    Journée nationale contrôle sante et monitoring des structures

    March 12, 2020, Paris, France

    Presented by : Redha BOUBENIA

    In collaboration with: Gilles BOURBON

    Patrice LE MOAL

    Vincent PLACET

    Éric JOSEPH

    Emmanuel RAMASSO

  • NuclearOiler…Aerospace Medical

    The real interest of the industrial sector for ultrasonic non-destructive testing

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    2

  • ❖ Maintenance is performed on immobilized devices

    ❖ Currently more than 25% of lifecycle costs are spent on inspection and reparation

    ❖ We develop acoustic instrumentation and technique for Structural Health Monitoring (SHM)

    • Detection of damage on real-time

    • Help for simulation validation

    • Collection of data

    • Predictive analysis

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    3

    Frequency range0.1 – 1 MHz

    Acoustic Emission Source

  • ❖ Size: little intrusive into the material

    ❖ High bandwidth

    Electrical connector Electrical conductor

    BackingActive element (piezoelectric)

    Front face (adaptation face)

    Piezoelectric sensor

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    4

  • ❖ Size: little intrusive into the material

    ❖ High bandwidth

    Electrical connector Electrical conductor

    BackingActive element (piezoelectric)

    Front face (adaptation face)

    Piezoelectric sensor Capacitive sensor

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    5

  • ❖ Frequency : 𝑓𝑟 = Τ𝑣2𝑒

    ❖ Size: 10 mm diameter X 12 mm height

    Electrical connector Electrical conductor

    BackingActive element (piezoelectric)

    Front face (adaptation face)

    Piezoelectric sensor Capacitive sensor

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ❖ Frequency :𝑓𝑟 =λ2

    2𝜋𝑅2ℎ

    𝐸

    12𝜌(1−ν2)

    ❖ Size: 16 mm diameter X 1.6 mm height

    6

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A❖ Capacitive Micro machined Ultrasonic Transducer (CMUT):

    ▪ 2.5 mm X 2.5 mm chip

    ▪ 40 elementary cells

    ▪ PCB 12 mm diameter for electrical contact

    ▪ Wire bonded

    ▪ Encapsulated on 16 mm diameter

    7

  • polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ❖ Validation of ability of CMUT to detect Acoustic Emission (AE)

    ❖ Validation of the ability to have an electrical measurement

    ❖ Improvement and development of the electrical measuring system

    ❖ Identification of the best configuration in the choice of electrical parameters

    ❖ Improvement of the signal noise ratio (S/N) : hard and soft

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    8

  • ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    9

  • ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ❖ Bias voltage is adjusted between 0V to collapse voltage

    ❖ We applied VAC=0.5V peak-to peak with a synthesizer function generator (Helwett Packard 3325 B

    ❖ We measured the maximum amplitude of CMUT-R100 with laser Polytec vibrometer

    ❖ Collapse voltage at 85 V

    ❖ We applied 80% of collapse voltage

    ❖ Bandwidth frequency between 300 KHz to 500 KHz

    10

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    11

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    Aluminium

    CMUTTransducteur µ80/E

    µ80/R

    12

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    13

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    14

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    15

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Micro-80/E

    CMUT-R100

    Micro-80/R

    Flax / epoxy

    specimen

    Instron Electropuls E10000 machine

    ❖ MTS Criterion machine equipped with 100 kN

    ❖ Load sensor control 0,1 mm/s axial

    ❖ 3 sensors are placed on flax /epoxy plate

    ❖ Streaming data of AE signal was recorded during 50 seconds

    16

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ CMUT-R100 depicts an important AE activity compared with Micro-80/R

    ❖ At the end of tensile test, three transducers have the same amplitude of AE activity (80 dB)

    17

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ CMUT-R100 shows an important AE frequency activity

    ❖ The shape response of the three transducers is similar

    ❖ At the end of tensile test, the frequency response of CMUT-R100 is comparable to µ80 E and R

    18

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ Improvement of the detected signal

    ▪ Amplitude CMUT-V1: 7 mV

    ▪ Amplitude CMUT-R100: 30 mV

    ❖ Miniaturisation of the capacitive transducer

    ▪ Volume CMUT-V1: 2304 mm3

    ▪ Volume CMUT-R100: 322 mm3

    19

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ Improvement of signal noise ratio

    ❖ Increase number of elementary cell

    ❖ Acoustical mismatching

    ❖ Line impedance mismatching

    ❖ Study influence of diameter of electrode

    ❖ The goal is to reach S/N of CMUT-R100 to S/N of µ80/R

    20

  • Thank you for your attention

    Journée nationale contrôle sante et monitoring des structures

    March 12, 2020, Paris, France

    Presented by : Redha BOUBENIA

    In collaboration with: Gilles BOURBON

    Patrice LE MOAL

    Vincent PLACET

    Éric JOSEPH

    Emmanuel RAMASSO

  • 22Travaux 2019-2020 : Etude de la réponse acoustique d’une

    membrane en fonction du couplage

    Le signal reçu peut être divisé par deux dans certain cas

    VDC=65V

  • 23Travaux 2019-2020 : Etude de la réponse acoustique d’une

    membrane en fonction du couplage

    Le signal reçu peut être divisé par deux dans certain cas

    VDC=65V

  • 24Travaux 2018-2019 : Premier essai sur éprouvette

    (Aluminium) 1V

  • 25Travaux 2018-2019 : Premier essai sur éprouvette

    (Aluminium) 1V

  • 26Travaux 2019-2020 : Premier essai sur éprouvette

    (Aluminium) 200mV

  • 27Travaux 2019-2020 : Premier essai sur éprouvette

    (Aluminium) 200mV (après filtre Matlab)

    Filtrage sur bande passante du capteur