Top Banner
電容去離子技術 (Capacitive Deionization Technology) 侯嘉洪 副教授 國立臺灣大學 環境工程學研究所 2017.8.3 The Sustainable Water, Energy and Environmental Technologies Lab 桃園市大學院校 產業環保技術服務團 創新水處理程序 講習會
62

(Capacitive Deionization Technology)

Apr 11, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: (Capacitive Deionization Technology)

電容去離子技術

(Capacitive Deionization Technology)

侯嘉洪 副教授

國立臺灣大學

環境工程學研究所

2017.8.3The Sustainable Water, Energy and Environmental Technologies Lab

桃園市大學院校產業環保技術服務團

創新水處理程序 講習會

Page 2: (Capacitive Deionization Technology)

Outline: 電容脫鹽技術

1

2

3

水資源與能源之交互關係

電容去離子技術之發展

電容去離子技術之原理

4 電容去離子技術之應用潛力

5 電容去離子技術之商業化發展

Page 3: (Capacitive Deionization Technology)

水資源與能源之交互關係

飢渴的能源

聯合國:全球對能源的飢渴威脅水資源

Page 4: (Capacitive Deionization Technology)

水資源與能源之綜合考量

因應氣候變遷,應建立符合現代思維之水資源系統,包含利用新興水資源與新穎低耗能產水/水處理技術,以提升現有水供應系統之效率,從而減少能源使用及溫室氣體排放。

氣候變遷

水資源短缺

水資源替代方案

溫室氣體排放

能源密集度

Page 5: (Capacitive Deionization Technology)

水資源之能源需求 (Energy for Water)

滿足水資源循環供應鏈之能源需求,包含水資源收集、淨化處理、配送、廢水處理與再利用等階段。

在用水系統中(以電換水),著重於供水系統及廢水系統之各階段的能源使用與使用強度。

水資源使用端

淨水廠

污水處理廠/水資源回收中心

廢汙水放流水

配給收集

再生水

Page 6: (Capacitive Deionization Technology)

水資源開發/處理與能源使用強度

Data sources: a typical reported values for major regions of the USA, Australia, and Sweden [Olsson, 2015]; b based on

authors’ calculations for California and Germany [Meda et al., 2012]; c based on a study conducted in California [Klein, 2005];

d based on a study conducted in the USA [Goldstein et al., 2002].

Source water

-surface water

-groundwater

-sea water

-brackish groundwater

Page 7: (Capacitive Deionization Technology)

水資源缺乏風險與能源使用強度之相關性

Water

supply

Wastewater

treatment

3. Determine

correlations

1. Quantifications

of the nexus

2. Identification of

water risks

4. Elucidation

of implications

Lee et al.,revised to Applied Energy

Energy and Environmental Implications in Relation to Global Water Risks

水資源缺乏風險與能源使用強度具正相關性。

Page 8: (Capacitive Deionization Technology)

新興水資源之開發與推動 (水利署)

傳統水源

新興水源

地面水(包含河川、湖泊、水庫蓄水範圍、排水設施、運河、滯洪池)

地下水

貯留雨水

海水

生活污水

事業廢水

提供生活次級利用

海水淡化

工業與民生用水(台灣本島以供應高科技產業保險用水之用,離島則為主要的供水來源之一)

海淡水

水再生利用技術

再生水

依水質提供不同使用用途,包含工業用水生活次級用水、環境景觀用水、地下水補注、河川涵容維持利用等

水資源多元化

*不得供人飲用、不得與人體直接接觸為原則

Page 9: (Capacitive Deionization Technology)

脫鹽程序

Desalination Fresh waterSaline water

Energy

Brine

Desalination and Water Reuse have been introduced as the

strategic solutions to secure water supply. However, large

quantities of energy may be required to separate salt ions from

water.

Seawater

Brackish water

Domestic

wastewater

effluent

Page 10: (Capacitive Deionization Technology)

脫鹽技術的發展與演變

Fundamental

• Reverse Osmosis (RO)

• Electrodialysis (ED)

• Forward Osmosis (FO)

• Membrane Distillation (MD)

• Capacitive Deionization (CDI)

• Hybrid Process

• Multiple-Effect Distillation (MED)

• Multi-Stage Flash Distillation (MSF)

Membrane

process

2-8 kWh/m3

Energy-efficient

process

< 2 kWh/m3

Thermal

process

>10 kWh/m3

Desalination

1960 1970 2000 2006 2008 2010 2014 2016

1st technological

innovation

Next technological

innovation

國立臺灣大學CDI研究團隊

•EDL Theory

•Electrosorption

of ions

Carbon Material Module Design

and Scale-up•Systemic

integrated design

•Pilot test

•High capacitive

charge storage

•High desalination

performance

Page 11: (Capacitive Deionization Technology)

電容去離子技術之發展

飢渴的能源

Page 12: (Capacitive Deionization Technology)

S. Porada et al. (2013)

電容去離子技術的發展

Year

1995 2000 2005 2010 2015

Nu

mb

er o

f p

aper

s

0

20

40

60

80

100

120

140

160

Numbers of paper based

on Web of Science

Page 13: (Capacitive Deionization Technology)

電容去離子技術 (Capacitive Deionization, CDI)

技術原理• 以電荷分離(超級電容器)工作原理,從水體中移除離子。

• 使用具奈米孔洞的碳電極,施加低電壓(~ 1.2 V)產生電場,使得水體中的陽離子、陰離子被庫倫作用力影響,電吸附於具相反電性的電極中,進而在貯存在孔洞中。

研究動機–電容去離子技術被

OCED評估為未來最具發展潛力的脫鹽技術。

–低耗能、綠色分離的電化學技術,可有效的去除水中的無機性離子,降低水體的導電度及總溶解固體濃度。

++

+++

++

++

++

++

++

++

++

++

–––––––––––––––– –– –

Porous carbon Cations

Anions

V

+ —

Page 14: (Capacitive Deionization Technology)

薄膜電容去離子技術(Membrane Capacitive Deionization, MCDI)

Ca

rbon

ele

ctr

od

e (+

)

+

+

+

+

+

+

+

+

+

Cations

AnionsSalty

water

Purified

water

Ca

rbo

n e

lectr

od

e

(-)

EDL

Cation-exchange

membrane

Bulk

solution

(-)

++

+ +

Cha

rged

surf

ace

Without interference of Coions

Removal efficiency

Energy efficiency

Cation-exchange

membraneAnion-exchange

membrane

Page 15: (Capacitive Deionization Technology)

電容脫鹽技術的能源使用強度

ppm (NaCl)

100x100 1x103 10x103

kW

h/m

3

0.01

0.10

1.00

10.00

1.2 V

0.6 V

( Adapted from Oren et al., 2008)

Brackish Seawater

Brackish water RO

Seawater RO

*Energy consumption (2000 mg/L salty water):

RO: 2.25 kWh/m3

EDR: 2.03 kWh/m3

CDI : 0.59 kWh/m3

(Welgemoed and Schutte, 2005)

Energy advantages:

*CDI could be competitive

technology at NaCl

concentrations below 5000 mg/L.

(Anderson et al., 2010)

Page 16: (Capacitive Deionization Technology)

CDI生命週期評估: 環境友善性

Extraction Manufacture Use DisposalTransport

Material &

Energy

The Concept of LCA

Titanium

Activated carbon

PVDF etc.

Material use Electricity use

Assembly Operation Disposal

Brackish water fresh water

Material disposal Activated carbon

PVDF etc.

Scope of CDI

AcidificationEnergy Demand

Human toxicity Global warming

Environment

impacts

assessments

Assessment methods:

– CML 2

–Cumulative Energy Demand

(Yu et al., Desalination, 2016)

Page 17: (Capacitive Deionization Technology)

電容去離子技術之原理

飢渴的能源

Diffuse layer Inner layerInner layer

Ch

arg

ed

su

rfa

ce

0

50

100

150

200

250

300

-100-50

050

100

-100-50

050

100

z [魔

x [魔

y [魔

Electrical Double Layer theory Monte Carlo simulation

Page 18: (Capacitive Deionization Technology)

電容器:電荷分離與貯存

A capacitor has the capacity to store energy by charge separation, which produces a potential difference across its plates.

Eric Schrader from San Francisco,

CA, United States

Schulhistorische SammlungBremerhaven

Capacitance (F) is the electrical property

for determining the ability to store an

electrical charge.

Page 19: (Capacitive Deionization Technology)

電雙層電容器/超級電容器

Charge collector

Charge collector

Carbon active layer

Carbon active layer

V

Negative

electrode

Positive

electrode

Separator

V

Aqueous

Electrolyte

Pores in carbon electrode

Porous electrode with double

layer formed on the

solid/electrolyte interface.

Energy storage by formation of double layer when a voltage is applied to an carbon electrode immersed in an electrolyte

Page 20: (Capacitive Deionization Technology)

電容去離子技術之工作原理

Electrosorption process

• Electric-field-driven separation:

Transportation of ions from bulk solution to the electrode

• Charge separation:

Ion storage through EDL capacitive and/or

Pseudocapacitance

Highly porous electrode materials

• High electrochemical stability

• Good electrical conductivity

• Good wetting behavior

• Large specific surface area

• Good pore accessibility for

electrosorption of ions

Mesopore

(2~50 nm)

Macropore

(> 50 nm)

Micropore

(< 2nm)

Page 21: (Capacitive Deionization Technology)

奈米孔洞碳材在CDI的應用

Highly porous carbons as electrode materials:• Carbon aerogel

• Activated carbons

• Carbon nanofiber

• Activated carbon cloth

• Carbon nanotubes

• Graphene

• Ordered mesoporous carbon

• Hierarchical ordered carbon

• Other composite electrodes

Application to capacitive charge storage

Carbon aerogel Activated carbon

Carbon nanotube

Mesoporous carbon

Graphene

Carbon fiber

Page 22: (Capacitive Deionization Technology)

活性碳 (Activated Carbons)

The most widely used and the most cost efficient

materials for large-scale applications

– Mixing activated carbon powder and polymer binder (PVDF) to

fabricate a thin-sheet formulation sheet electrode (Hou et al., J. Taiwan Instit. Chem. Eng., 2012)

– Highly porous materials synthesized by carbonization

and activation (physical or chemical) process

of carbon rich materials (e.g., resource-recovered

Leucaena leucocephala wood)(Hou et al., Chemosphere, 2015)

Page 23: (Capacitive Deionization Technology)

活性碳電極製備

Activated carbon with 10% PVDF Activated carbon with 40% PVDF

Page 24: (Capacitive Deionization Technology)

Activated carbon electrode 1 M NaCl solution.

活性碳之電容特性分析

0

50

100

150

200

250

0 50 100 150 200 250

-Z"/

oh

m

Z'/ohm

0

20

40

60

80

100

5 50 500

Sp

ecif

ic c

apac

itan

ce (

F/g

)

Scan rate (mV/s)

-70

-50

-30

-10

10

30

50

70

90

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Sp

ecif

ic c

apac

itan

ce (

F/g

)

Potential (V)

1000mV/s 50mV/s30mV/s 10mV/s5mV/s

EIS presented

as Nyquist plot

-0.4

-0.2

0

0.2

0.4

0.6

0 200 400 600 800 1000 1200

Po

ten

tial

(V

)

Time (s)

GC curve

CV curves Scan-rate dependence

iR drop

Page 25: (Capacitive Deionization Technology)

電吸附-脫附之循環

Batch-mode CDIexperiment• Fast charge transfer of

salt ions based on pure electrostatic interactions

• Electrosorption-desorption cycle

Co

nd

ucti

vit

y (

S/c

m)

0

50

100

150

200

250

300

Cu

rren

t (m

A)

-10

0

10

20

Time (min)

0 180 360 540 720 900

Vo

ltag

e (V

)

0.0

0.6

1.2

The solution was 50 mL, 0.002 M NaClsolution with a flow rate of 10 mL/min. The applied voltage was 1.2 V

Page 26: (Capacitive Deionization Technology)

Conductivity variation of 2000 ppm NaCl for multiple electrosorption-

desorption cycles in CDI.

Time (hr)

0 1 2 3 4 5 6

Co

nd

uct

ivit

y (

S/c

m)

3400

3600

3800

4000

4200

4400

4600

4800

0.0 V1.2 V

Purified

Concentrated

連續式電吸附

Page 27: (Capacitive Deionization Technology)

Time (min)

0 60 120 180 240

Conduct

ivit

y (

s/cm

)

0

500

1000

1500

2000

Coconut shell

Wood

孔洞的影響

Carbon electrodes with a higher specific surface area have better salt adsorption capacity.

F-400

CarbonSBET

(m2/g)

Smicro

(m2/g)

Smeso

(m2/g)

Vtot

(cm3/g)

Vmicro

(cm3/g)

Vmeso

(cm3/g)

Vmeso/Vtot

(%)

F-400 964 513 451 0.50 0.23 0.27 54

Wood 662 457 205 0.43 0.21 0.22 51

CDI Cell was operated in 500 mg/L NaCl solution at 1.2 V.

*Generally, activated

carbons operated in flow-

through CDI have relatively

low ion-accessible surface

areas ( < 10% of BET

surface area).

(Liu et al., in preparation)

Page 28: (Capacitive Deionization Technology)

奈米碳管 (Carbon Nanotubes)

Carbon nanotubes have superiorconductivity, excellent chemical

inertness, and large sorption capacity.

CNTs-based composite electrodes:• Poly(vinyl) alcohol (PVA)

• Chitosan (CS)

CNTs-CSCNTs-PVA

(Hou et al., Sep. Purif. Tech., 2014) (Ma et al., Chemosphere, 2016)

Page 29: (Capacitive Deionization Technology)

奈米碳管之特性分析

Characterization of porosity

Z'(ohm)

0 50 100 150 200 250

Z"

(oh

m)

0

100

200

300

400

Potential vs. Ag/AgCl (V)

-0.4 -0.2 0.0 0.2 0.4 0.6

Sp

ecif

ic c

ap

aci

tan

ce (

F g

1)

-150

-100

-50

0

50

100

150

Time (s)

0 200 400 600 800

Volt

ag

e (V

)

0.0

0.2

0.4

0.6

0.8

CarbonSBET

(m2/g)

Smicro

(m2/g)

Smeso

(m2/g)

Vtot

(cm3/g)

Vmicro

(cm3/g)

Vmeso

(cm3/g)

Vmeso/Vtot

(%)

CNTs-PVA 208 23 185 0.71 0.01 0.70 98.6

CNTs-CS 106 11 95 0.57 0.01 0.56 98.2

Characterization of electrochemical properties

CNTs-CS composite electrode in 1 M H2SO4 electrolyte solution (Ma et al., Chemosphere, 2016).

Page 30: (Capacitive Deionization Technology)

Carbon CNTs-PVA AC

BET surface area

(m2 g-1)208 964

Vmeso/Vtot (%) 11 53

Electrosorption

capacity (mg g-1)13.1 6.0

Surface utilization (%) 26.0 2.6

Rate constant (min-1) 0.073 0.045

Energy consumption

(kWh m-3)0.04 0.16

脫鹽能力之比較

Comparison of AC and CNTs-PVA composite electrodes

(Hou et al., Sep. Purif. Tech., 2014)

*The presence of mesopores can

facilitate ion transport, which is beneficial

to electrosorption of ions in CDI.

Batch-mode CDI for 1 mMNaCl at 1.2 V.

Time (min)

0 10 20 30 40 50 60

Ele

ctro

sorp

tio

n c

apac

ity

(m

g g

1)

0

2

4

6

8

10

12

14

Pseudo-first-order

MWCNT/PVA composite

Activated carbon

CNTs-PVA

AC

Page 31: (Capacitive Deionization Technology)

孔洞控制技術的建立

Two stage activated method• KOH chemical activation

• Activated with potassium hydroxide (KOH) under inert gas to form micropores accompanied with high surface area.

• CO2 physical activation

• Gasified by carbon dioxide (CO2) to increase (ion-accessible) pore volume.

Activated carbon with

controlled porosity

Page 32: (Capacitive Deionization Technology)

高比表面積、中孔洞之活性碳

Scan rate (mV s1)

10 100

Sp

ecif

ic c

ap

aci

tan

ce (

F g

1)

0.1

1

10

100

1000

AC-1-2.0

AC-4-0.0

W1240

Time (min)

0 10 20 30 40 50 60

Ele

ctro

sorp

tio

n c

ap

aci

ty (

mg

g1)

0

2

4

6

8

10

12AC-1-2.0

AC-4-0.0

W1240

Specific capacitance derived from

CV curves in 1 M NaCl

CDI experiments in 0.5 mM NaCl at 1.0 V

(Yeh et al., Desalination, 2015)

Relative pressure (P/P0)

0.0 0.2 0.4 0.6 0.8 1.0Volu

me a

dso

rbed

(cm

3 g

, S

TP

)

200

400

600

800

1000

1200AC-1-2.0

AC-4-0.0

W1240

CarbonSBET

(m2/g)

Smicro

(m2/g)

Vtot

(cm3/g)

Vmicro

(cm3/g)

Vmeso

(cm3/g)

Electrosorption

capacity ( mg/g)

W1240 903 764 0.44 0.36 0.08 0.95

AC-1-2.0 2105 850 1.50 0.44 1.06 4.86

AC-4-0.0 2162 1860 1.05 0.85 0.20 2.04

AC-1-2.0 has less scan-

rate dependence,

suggesting better pore

accessibility in

electrosorption.

Page 33: (Capacitive Deionization Technology)

擬電容機制 (二氧化錳/MnO2)

Metal-oxide coated carbon composite materials• Porous activated carbon:

Electrical double layer capacitance (non-Faradaic process)

• Metal-oxide materials:

Pseudocapacitance (Faradaic process)

Manganese Dioxide (MnO2)• Environmental friendly, low cost.

• High theoretical specific capacitance (~1370 F/g).

• Fast and reversible Faradaic reaction with Na+ with applied voltage.

Na+ ion intercalation of MnO2

MnOONaeNa MnO2

Page 34: (Capacitive Deionization Technology)

電雙層電容-擬電容之複合材料

MnO2-AC Composite as high-CDI electrode via the combination of double-layer charging and (reversible) Faradaic reactions.

350

400

450

500

550

Con

du

cti

vit

y (

S c

m1)

-0.05

0.00

0.05

0.10

Cu

rren

t (A

)

0 60 120 180 240 300 360 420 480 540 600

0.0

0.5

1.0

Vo

ltag

e (

V)

Time (min)

(Liu et al., ACS Sustainable Chem. Eng, 2016)

SampleSBET

(m2/g)

Specific

capacitance (F/g)

Electrosorption

capacity (mg/g)

AC 724 45 5.8

MnO2-AC 625 76 9.3

CDI experiments were carried

out for 0.01 M NaCl at 1.0 V.

Page 35: (Capacitive Deionization Technology)

電容去離子技術之應用潛力

飢渴的能源

操作便利、穩定性

低產水能耗

水處理效能

高水回收率

綠色能源

Page 36: (Capacitive Deionization Technology)

半鹽水淡化:低能耗、電能回收

Energy-efficient desalination process• Low-energy consumption

in charge step

• Energy recovery in discharge step

Charging

(Electrosorption)

Discharging

(Desorption)

e Energy

recovery

Page 37: (Capacitive Deionization Technology)

Test 1 Test 2 Test 3 Test 4

Ele

ctro

sorp

tion c

apac

ity

(

mol/

g)

0

20

40

60

80

100

120

140K

+

Na+

Ca2+

Mg2+

電吸附選擇性:硬水軟化

Study the ion selectivity in CDI• Hydrated size

• Ionic charge

• Feed solution

(Hou and Huang, Desalination, 2013)

IonTest 1

(mM)

Test 2

(mM)

Test 3

(mM)

Test 4

(mM)

K+ 2 2 2 0.26

Na+ 2 4 6 10.57

Ca2+ 2 2 2 1.45

Mg2+ 0 0 0 2.41

Electrosorption selectivity:

Ca2+ > Mg2+ > K+ > Na+

Page 38: (Capacitive Deionization Technology)

Potential (V)

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

Curr

ent

(mA

)

-15

-10

-5

0

5

10

15

重金屬之移除Electro-enhanced removal of copper

ions by CDI−Electrodeposition

−Electrosorption

Removal of 50 ppm CuNO3 solution at different applied voltages using activated carbon electrodes

0..4

V

Binding Energy (eV)

2004006008001000

Inte

nsi

ty

Binding Energy (eV)

926 928 930 932 934 936

Inte

nsi

ty

0.0 V

1.2 VCu/Cu2O

Cu

O C

F

Time (min)

0 50 100 150 200

Con

du

cti

vit

y (

S/c

m)

0

50

100

150

2000.0V0.2V0.4V 0.6V0.8V 1.2V

(Huang et al., J. Hazardous Materials, 2014)

1.2 V0.8 V

Page 39: (Capacitive Deionization Technology)

地下水脫鹽與整治

Groundwater remediation (Framer et al., 1997)

Desalination in a remote location (Mossad et al., 2013)

Arsenic Removal from Groundwater (Fan et al., 2016)

Electrosorption of Cr(VI) on carbon aerogel electrodes as a means of remediating ground water

Using CDI for inland brackish groundwater desalination in a remote location

Page 40: (Capacitive Deionization Technology)

Water quality standard for

drinking water source (0.05 mg L–1)

Electrosorption Desorption

降低地下水之含砷濃度Arsenic removal from

groundwater

Distribution of world problems with Arsenic

in groundwater(Ahmed, 2004; Lan et al.,

2011; Smedley et al., 2002; Lin, 1999).

Fan et al., Chemosphere, 2017

Page 41: (Capacitive Deionization Technology)

砷的移除機制

Electrosorption of As(V) is ascribed to electrical double-layer charging.

Removal of As(III) may involve its oxidation to As(V) on the anode electrode.

As(III)

- Step 1: Oxidation (III→V)

- Step 2: Electrosorption

As(V)

- Electrosorption

-

+

As(V): H2AsO4- or HAsO4

2-

Cations

As(III): H3AsO30

-

+ + + + + + + + + + + + + +

- - - - - - - - - - - - - -

+

+

-+++

+ + ++++

-- - -

- - - -+

+ +

-Electrosorption

Anode

Cathode

As(V)As(III)

++++++

(Fan et al., J. Hazard. Mater., 2016)

(Fan et al., Chemosphere, 2017)

Page 42: (Capacitive Deionization Technology)

超純水的製造

Membrane capacitive deionization (Lee and Choi, 2012)

Combined RO and CDI (Jande et al., 2013)

Page 43: (Capacitive Deionization Technology)

高導電度廢水之去離子處理

CDI shows a great

potential to remove salt

ions from water with low

energy requirement

Time (min)

0 20 40 60 80

Con

du

citi

vit

y (

S/c

m)

0

1000

2000

3000

4000

5000

6000Step 1 Step 2 Step 3 Step 4

CDI模組的串聯操作(Step-operation)

Step 4Step 3Step 2Step 1

操作電壓:1.2 V 流速:25 mL/min

脫鹽效率:88 % 能耗:0.05 kWh/m3

Page 44: (Capacitive Deionization Technology)

綠色能源技術媒合潛力

Time (min)

0 20 40 60 80

Co

nd

uct

ivit

y (

S/c

m)

0

200

400

600

800

1000

1200

NaC

l C

on

cen

trat

ion

(m

M)

0

2

4

6

8

10

Cunductivity

NaCl

Capacitive deionization incorporates with renewable energy such as solar, wind, small-scale energy

Page 45: (Capacitive Deionization Technology)

系統性整合RO與CDI技術

Combined RO for seawater desalination (Jande et al., 2013; Minhas et al., 2014)

Integrated pretreatment with CDI for RO reject recovery from water reclamation plant (Lee et al., 2009)

Ultrapure water from seawater using integrated RO-CDI system

Pretreatments using biological activated carbon (BAC) and BAC–ultrafiltration (UF)

Page 46: (Capacitive Deionization Technology)

結合生物電化學系統:產電-脫鹽技術

Microbial fuel cell

• Electricity generation

• Wastewater treatment

Capacitive deionization

• Energy saving

• Desalination

H+

Peristaltic

pump

Inlet

Outlet

NH4+

Anode

chamber

Cathode

chamber

Settling

chamber

H+

H2O

NH4+

O2

CO2

Organic

matter

H+

H+

NH4+

H+

Peristaltic pump

Carbon electrode (+)

Carbon electrode (-)

-+

+ + +

--

- -

Conductivity meter

+ Cations

Capacitive deionization cell

- Anions

Microbial fuel cell

e-

e-

Sustainable

wastewater

treatment process

Feng et al., Chemosphere, 2013

Page 47: (Capacitive Deionization Technology)

創新整合:微生物燃料電池-電容去離子

Advanced domestic wastewater treatment by integrating cost-effective MFCs and energy-efficient CDI

(Feng et al., Chem. Eng. J., 2017)

External resistance: 15 Ω

e−

e−

Anode

chamber

Cathode

chamber

Settling

chamber

Porous carbon

electrode

+

---

- -

+ ++ +

Domestic

Wastewater

Purified

Effluent

MFC Bioreactor CDI cell(Bioelectrochemical process) (Electric field-driven separation)

Page 48: (Capacitive Deionization Technology)

水再生利用之脫鹽程序

(Secondary)

Effluent

Filtration

SF/UF

Wastewater

treatment plant

CDI

Suspended

Solids

Ion

Water

Ion

Water

Water

Mircobial

Cl2/UVWater

Reuse

Turbidity, COD removal

Desalination Disinfection

Page 49: (Capacitive Deionization Technology)

高品質之再生水

Desalination of Bio-treated effluent with CDI using activated carbon electrodes

− Applied voltage: 1.2 V

− pH: 5~7

− TDS Reduction > 90%

− Energy Consumption:

0.5 ~ 0.15 kWh/m3

Effluent Filtration CDI

Cu

rren

t (A

) Vo

lta

ge

(V)

(Fan et al., in preparation)

Page 50: (Capacitive Deionization Technology)

電容去離子技術之商業化發展

飢渴的能源

Page 51: (Capacitive Deionization Technology)

Puree (Korea)

Needed less energy for the desalination process because high pressure pumps are not required.

Possible to make use of solar/wind power to power desalination units.

More efficient for applications (withstand much higher temperatures than membranes)

Far more efficient for the energy recovery than the membrane tech as the CDI modules act as EDLCs.

Model TYPEFLOW

RATE(LPM)SIZE(mm)

TDS

REMOVAL

TEST

CONDITION

Ecomite-U Unit 0.03 160x160x40 > 85% TDS 200ppm

Ecomite-M Module 0.2~2 190x160x95 > 80% TDS 1,000ppm

Ecomite-S Unit/Module 0.03~2 565x650x8150 > 80% TDS 2,000ppm

Page 52: (Capacitive Deionization Technology)

Large scale CDI desalination modules• Municipal wastewater reuse (60,000 m3/day)

• Coal mine Municipal wastewater reuse (5000 m3/day)

• Low energy consumption ~ 1.0 kWh/m3

EST Water & Technologies (China)

Low energy consumption

No chemicals added

Convenient operation

Long lasting service

Page 53: (Capacitive Deionization Technology)

EST (爱思特)

電吸附水處理技術特點:運行成本低、耐受性強、適應性強、水利用率高、無二次污染

• 内蒙某电力集团循环排污水回用项目

• 河北某化肥园区循环排污水回用工程

• 山东某矿业集团矿井水利用工程

• 山西某化工集团废水回用提质工程

• 上海某钢铁集团冷轧废水零排放工程

• 浙江宁波某再生水厂水质提升工程

• 宁波明耀火电厂深度除盐工程

• 中石化山东某炼油废水回用工程

Page 54: (Capacitive Deionization Technology)

爱思特:電吸附脫鹽的實例

水的除鹽方法與工程應用,化學工業出版社2009

電吸附模組的串聯

MBR出流水再經過電吸附系統除鹽:除鹽率:50 % 產水率: 75 % 3000 µs/cm

1500 µs/cm

Page 55: (Capacitive Deionization Technology)

爱思特:電吸附脫鹽的實例

汙水處理站出流水的脫鹽處理 造紙廢水的脫鹽處理

Page 56: (Capacitive Deionization Technology)

Voltea (The Netherlands)

Voltea CapDI system (MCDI)• Cooling tower

• Wastewater reuse

• Domestic water softening

• Desalination of brackish water

Energy efficient

Chemical Free

High water recovery

(80-90%)

Scalable

Sustainable

Page 57: (Capacitive Deionization Technology)

Electronic Water Purifier• Commercial systems: US$ 2500 ~ 12000

• One module: 1000~3000 ppm, 1~3.6 CMD

• Feed salinity to 35,000 ppm,95% purification, 75% recovery

• Energy storage

• Pollutants Removed

Aqua EWP (USA)

US $2500 US $5000 US $7500 US $12500

Page 58: (Capacitive Deionization Technology)

Zero Liquid Discharge Process

97% Recovery? How?

Page 59: (Capacitive Deionization Technology)

結論與建議

電容去離子技術為新穎的脫鹽技術,具有低能耗、操作簡易、高產水率、較無積垢問題、與環境友善性等優點。

多孔電極材料的比表面積、孔洞分佈、電容特性在電吸附脫鹽過程中,扮演重要的角色。

電容去離子技術具有廣泛的適應性與良好的實用性,可以應用在水淡化、硬水軟化、地下水處理、水再生利用(脫鹽)、重金屬去除以及有價物質的選擇性回收等。

技術發展尚缺乏模組驗證,朝向模組系統開發,與商業化階段發展。

Page 60: (Capacitive Deionization Technology)

未來之發展?

Time

Matu

rity

CDI

IEXEDRO

Page 61: (Capacitive Deionization Technology)

Acknowledgement

Ministry of Science and Technology

Ministry of Economic Affairs (Water Resources Agency)

Environmental Protection Administration, R.O.C.(Taiwan)

National Taiwan University

The Sustainable Water, Energy and Environmental Technologies Lab

Page 62: (Capacitive Deionization Technology)

侯嘉洪副教授

國立臺灣大學環境工程學研究所

Tel: +886-2-33664400

E-mail: [email protected]

Thank you for your listening.

The Sustainable Water, Energy and Environmental Technologies Lab