Top Banner
Modelling the spread, control and detection of Ramorum Disease Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan Rothamsted Stephen Parnell Research Frank van den Bosch May 2012
32

Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Jan 03, 2016

Download

Documents

Winfred Parrish
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Modelling the spread, control and detection of Ramorum Disease

Cambridge Richard StuttUniversity Nik Cunniffe

Erik DeSimoneMatt CastleChris Gilligan

Rothamsted Stephen ParnellResearchFrank van den Bosch

May 2012

Page 2: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Introduction – Prediction 2010-20

Page 3: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Model must integrate◦ Location of hosts◦ Environmental drivers◦ Pathogen dispersal

Compartmental model

Model – Spatial Stochastic Model

Page 4: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

250m x 250m resolution

Combine data on Larch Rhododendron Vaccinium NIWT (other tree hosts)

Weight host types by sporulation/susceptibility

Model – Host Landscape

Page 5: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Pathogen responds totemperature/moisture

Model underlying suitability for each location

Statistical climate model then used to predict future fluctuations about this

Model – Environment

Page 6: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Dispersal kernel describes pathogen spread

Implicitly incorporates many mechanisms

Model – Dispersal

Positive Negative

Page 7: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Spread in the absence of control

Effect of extent of control◦ Felling infected stands◦ Felling infected stands + proactive control

Surveying for P. Ramorum on heathland

Results – Typical Applications

Page 8: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Results – Prediction 2010-20

Page 9: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Results – Need for Control

Page 10: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Results – Effect of Control Radius

Page 11: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Results – Sampling on HeathlandHazard map + known infections = sampling pattern

Page 12: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Continuous model improvement (data driven)

Region specific control

Effect of non compliance

Transition strategies

User friendly models

Current and Future Work

Page 13: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Forestry Commission◦ Bruce Rothnie◦ Joan Webber

FERA◦ Keith Walters◦ Phil Jennings◦ Judith Turner◦ Kate Somerwill

Funding from DEFRA, BBSRC and USDA

Acknowledgements

Page 14: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Extra material for questions

Page 15: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Susceptible hosts in the landscape are divided into a metapopulation at a chosen resolution (250m)

UK Sudden Oak death landscape assembled from:◦ National Inventory of Woodland Trees (NIWT)◦ Forestry Commission commercial Larch data◦ Maximum Entropy suitability models for Rhododendron and

Vaccinium (FERA/JNCC)

Different hosts have different weightings for sporulation and susceptibility

Model - Host

Page 16: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Broadleaved

Young Trees Felled

Coniferous

Construction of Host Landscape

Page 17: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Identify favourable conditions for P. ramorum◦ moisture ◦ temperature

Parameterise using experimental results

Model - Environment

Rela

tive S

poru

lati

on

Temperature

Page 18: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Fit model using historic spread data

Used Maximum Likelihood to assess goodness of fit

Predicted probability of infection by 2010 given starting conditions in 2004

Model - Validation

Survey Positive for P. ramorum

Survey Negative for P. ramorum

Page 19: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Probability of Infection

Page 20: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Risk – Reactive Control

Page 21: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Risk – Proactive Control (250m)

Page 22: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Risk Update – 20 year horizon

Page 23: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Disease Progress – No Control

Page 24: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Disease Progress – Stand Control

Total Infection

Symptomatic

Symptomatic at time of Survey

Page 25: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Disease Progress – 100m Radius

Total Infection

Symptomatic

Symptomatic at time of Survey

Page 26: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Disease Progress – 250m Radius

Total Infection

Symptomatic

Symptomatic at time of Survey

Page 27: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Disease Progress – 500m Radius

Total Infection

Symptomatic

Symptomatic at time of Survey

Page 28: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Disease Progress – Comparisons

Page 29: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Effects of Delay Before Culling

Examine region of South Wales

Page 30: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Cull: no delay after survey 6 month delay

Effect of Delay Before Culling

Page 31: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Key Questions When Surveying for Disease:◦ Where is the disease likely to be?◦ Where is it likely to be most severe and spread

most rapidly?◦ How to optimise the sampling?

Sampling Strategies

Page 32: Cambridge Richard Stutt University Nik Cunniffe Erik DeSimone Matt Castle Chris Gilligan RothamstedStephen Parnell ResearchFrank van den Bosch May 2012.

Sampling Strategies Uses:

• Currently known outbreaks • Predicted severity of

outbreaks• => Sampling weighting

Survey pattern formed• => sampling from

weightings Map shows a weighting and

a set of survey points (green)