Top Banner
237

Calculus 3 Notes Qatar University

Jul 16, 2015

Download

Education

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Calculus 3 Notes Qatar University
Page 2: Calculus 3 Notes Qatar University
Page 3: Calculus 3 Notes Qatar University
Page 4: Calculus 3 Notes Qatar University
Page 5: Calculus 3 Notes Qatar University
Page 6: Calculus 3 Notes Qatar University
Page 7: Calculus 3 Notes Qatar University
Page 8: Calculus 3 Notes Qatar University
Page 9: Calculus 3 Notes Qatar University
Page 10: Calculus 3 Notes Qatar University
Page 11: Calculus 3 Notes Qatar University
Page 12: Calculus 3 Notes Qatar University

TRIGONOMETRY FORMULAS

1)(sin)(cos 22=+ xx )(sec)(tan1 22 xx =+ )(csc1)(cot 22 xx =+

cos( ) cos( )cos( ) sin( )sin( )

sin( ) sin( ) cos( ) cos( )sin( )

x y x y x y

x y x y x y

± =

± = ±

)tan()tan(1

)tan()tan()tan(

yx

yxyx

±=±

)(tan1

)tan(2)2tan(

)(sin21

1)(cos2

)(sin)(cos

)2cos(

)cos()sin(2)2sin(

2

2

2

22

x

xx

x

x

xx

x

xxx

−=

=

=

2 2 2 2 cos( )

sin( ) sin( ) sin( )

c a b ab C

A B C

a b c

= + −

= =

)2cos(1

)2cos(1)(tan

2

)2cos(1)(cos

2

)2cos(1)(sin

2

2

2

x

xx

xx

xx

+

−=

+=

−=

)cos(1

)cos(1

2tan

2

)cos(1

2sin

2

)cos(1

2cos

x

xx

xx

xx

+

−±=

−±=

+±=

( )

( )

( )

( ) )]sin([sin)sin()cos(

)]sin([sin)cos()sin(

)]cos([cos)cos()cos(

)]cos([cos)sin()sin(

21

21

21

21

yxyxyx

yxyxyx

yxyxyx

yxyxyx

−−+=

−++=

++−=

+−−=

+−=−

+=+

+

−=−

+=+

2sin

2sin2)cos()cos(

2cos

2cos2)cos()cos(

2cos

2sin2)sin()sin(

2cos

2sin2)sin()sin(

yxyxyx

yxyxyx

yxyxyx

yxyxyx

For two vectors A and B, A·B = ||A||||B||cos(θ)

Page 13: Calculus 3 Notes Qatar University

F2006 © Department of Mathematics & Statistics – Arizona State University 2

The well known results: soh, cah, toa

soh: s stands for sine, o stands for opposite and h stands for hypotenuse, sino

xh

=

cah: c stands for cosine, a stands for adjacent h stands for hypotenuse, cosa

xh

= h o

toa: t stands for tan, o stands for opposite and a stands for adjacent, tano

xa

= a

Where x is the angle between the hypotenuse and the adjacent.

Other three trigonometric functions have the following relations:

1csc

sin

hx

x o= = ,

1sec

cos

hx

x a= = and

1cot

tan

ax

x o= =

Important values:

0 030

6

π= 045

4

π= 060

3

π= 090

2

π=

sin

0 1

2 2

2

3

2

1

cos

1 3

2

2

2

1

2

0

tan

0 1

3

1

3

undefined

csc

undefined

2

2

2

3

1

sec

1 2

3

2

2

undefined

cot

undefined

3

1 1

3

0

sin( ) [?]sin , cos( ) [?]cos , tan( ) [?] tann x x n x x n x xπ π π± = ± = ± = , the sign ? is for plus or minus

depending on the position of the terminal side. One may remember the four-quadrant rule: (All

Students Take Calculus: A = all, S = sine, T = tan, C = cosine)

sine all

tan cosine

Page 14: Calculus 3 Notes Qatar University

F2006 © Department of Mathematics & Statistics – Arizona State University 3

Example: Find the value of 0sin 300 . We may write 0 0 0 0sin 300 sin(2 180 60 ) [ ]sin 60= ⋅ − = − = -3

2,

in this case the terminal side is in quadrant four where sine is negative.

In the following diagram, each point on the unit circle is labeled first with its coordinates (exact

values), then with the angle in degrees, then with the angle in radians. Points in the lower hemisphere

have both positive and negative angles marked.

Page 15: Calculus 3 Notes Qatar University
Page 16: Calculus 3 Notes Qatar University
Page 17: Calculus 3 Notes Qatar University
Page 18: Calculus 3 Notes Qatar University
Page 19: Calculus 3 Notes Qatar University
Page 20: Calculus 3 Notes Qatar University
Page 21: Calculus 3 Notes Qatar University
Page 22: Calculus 3 Notes Qatar University
Page 23: Calculus 3 Notes Qatar University
Page 24: Calculus 3 Notes Qatar University
Page 25: Calculus 3 Notes Qatar University
Page 26: Calculus 3 Notes Qatar University
Page 27: Calculus 3 Notes Qatar University
Page 28: Calculus 3 Notes Qatar University
Page 29: Calculus 3 Notes Qatar University
Page 30: Calculus 3 Notes Qatar University
Page 31: Calculus 3 Notes Qatar University
Page 32: Calculus 3 Notes Qatar University
Page 33: Calculus 3 Notes Qatar University
Page 34: Calculus 3 Notes Qatar University
Page 35: Calculus 3 Notes Qatar University
Page 36: Calculus 3 Notes Qatar University
Page 37: Calculus 3 Notes Qatar University
Page 38: Calculus 3 Notes Qatar University
Page 39: Calculus 3 Notes Qatar University
Page 40: Calculus 3 Notes Qatar University
Page 41: Calculus 3 Notes Qatar University
Page 42: Calculus 3 Notes Qatar University
Page 43: Calculus 3 Notes Qatar University
Page 44: Calculus 3 Notes Qatar University
Page 45: Calculus 3 Notes Qatar University
Page 46: Calculus 3 Notes Qatar University
Page 47: Calculus 3 Notes Qatar University
Page 48: Calculus 3 Notes Qatar University
Page 49: Calculus 3 Notes Qatar University
Page 50: Calculus 3 Notes Qatar University
Page 51: Calculus 3 Notes Qatar University
Page 52: Calculus 3 Notes Qatar University
Page 53: Calculus 3 Notes Qatar University
Page 54: Calculus 3 Notes Qatar University
Page 55: Calculus 3 Notes Qatar University
Page 56: Calculus 3 Notes Qatar University
Page 57: Calculus 3 Notes Qatar University
Page 58: Calculus 3 Notes Qatar University
Page 59: Calculus 3 Notes Qatar University
Page 60: Calculus 3 Notes Qatar University
Page 61: Calculus 3 Notes Qatar University

Qatar University- CAS- Dept of Math.-Stat- Phy.14/09/14- What I Need to my Calculus I -Dr. A. Hamdi .

1. Sign Rules

(+)× (+) → (+) (+)÷ (+) → (+)

(−)× (−) → (+) (−)÷ (−) → (+)

(+)× (−) → (−) (+)÷ (−) → (−)

(−)× (+) → (−) (−)÷ (+) → (−)

2. Removing Brackets

(a) x+ (y) = x+ y, x− (y) = x− y, x+ (−y) = x− y, x− (−y) = x+ y

(b) x× (−y) = (−x)× y = −xy, (−x)× (−y) = +xy

(c)−x

−y=

x

y,

−x

y=

x

−y= −x

y,

(d) (−1)n = +1 if n is even, (−1)n = −1 if n is odd.

3. Fractions

(a)a

b+

c

b=

a+ c

b,

a

b+

c

d=

ad+ bc

bd

(b)a+ c

b=

a

b+

c

b,

a

b× c

d=

ac

bd

(c) a× 1

c=

a

c,

a

bc

d

=a

b÷ c

d=

a

b× d

c=

ad

bc

(d)

a

bc=

a

b÷ c

1=

a

b× 1

c=

a

bc

(e)ac

d

=a

1÷ c

d=

a

1× d

c=

ad

c

1

Page 62: Calculus 3 Notes Qatar University

1 Properties.

Given a, b, c, d four nonzero real numbers.

1.a

b=

c

d⇔ a× d = b× c.

2.a

b=

c

d⇔ b

a=

d

c.

3.a

b=

c

d⇔ a

c=

b

d.

4.a

b=

c

d=

a+ c

b+ d, (b+ d = 0).

5.a

b=

c

d=

a− c

b− d, (b− d = 0).

2 Powers

Let x, y be non null real numbers and n, m be integer numbers.

1. x0 = 1, xm × xn = xn+m,xm

xn= xm−n, x−n =

1

xn

2. (xm)n = xn×m, (xy)n = xnyn,

(x

y

)n

=xn

yn

3. x1n = n

√x

(a) if n is even, x must be greater than or equal to zero.

(b) if n is odd, x ∈ R.

In all this review we suppose that all the nth roots are well defined.

4. xmn = n

√xm = ( n

√x)m.

5. n√xy = n

√x n√y.

6. n

√x

y=

n√x

n√y.

7. n√

m√x = n×n

√x.

8. n√x× m

√x = mn

√xm+n = x

m+nmn .

Remark 1 : Sometimes simple observations can be very helpful

(a− b)2n = (b− a)2n and (a− b)2n+1 = − (b− a)2n+1.

Exercise 1 : Perform the given operations and simplify completely:

2

Page 63: Calculus 3 Notes Qatar University

1.

A =

[−3

4÷ 9

16+ 21

3

√2

√72− 5

√2

.

2. B = x+ (y − x)− (y − z)

3. C = (x+ y − z)− (x− y + z) + (−x+ y + z) + (x+ y − z)

4. D = (x− y)− (y + z − x) + (y + z − t) + (2y − x)

5. E = (a+ 2b− 6a)− 3b− (6a− 6b)

6. G = 5a+ {3b+ [6c− 2a− (a− c)]} − [9a− (7b+ c)]

7. H = 5x2 − 3xt+ t2 − 4x2 + 5xt− (3x2 − 7xt+ 5t2)− 7t2

Exercise 2 (*): If m = ax, n = ay, a2 = (mxny)z, evaluate (1− xyz)2012.

Exercise 3 : Simplify completely and express your result only under positive pow-ers:

1. (632 × 222 × 121× 14)3, (a2bc4)2, (a2bc)3 × (ab3c)2

2.(x−2y)−3

(x2y−1)3,

(x3y4z5

x−3y−5z−6

)−4

3.(2−1x−2y−1)−2(2x−4y3)−2(16x−3y3)0

(2x−4y−6)2

4. 9x4y5z6 ÷ 27x6y9z7

4m3n2÷ 4n2m3

3x2y4z− 1

5.42mp

65np÷ 15a2

26b2÷ 28b2mp

5a.

Exercise 4 (*) : Express in its simplest form

1.

A =

1

ab− 1

ac− 1

bca2 − (b− c)2

a

.

2.

B =1 +

x

1 + x

x+1

1 + x

÷ (x+ 1)2 − x2

x2 + x+ 1.

3.C =

a

b− c

d− e

f

.

3

Page 64: Calculus 3 Notes Qatar University

4.

D =a+ b

a+ b− 1

a− b+1

a+ b

.

Exercise 5 : Which terms should we eliminate from the sum

S =1

2+

1

4+

1

6+

1

8+

1

10+

1

12

so that the remaining sum equals 1?

Exercise 6 : Evaluate the following expression for a =−1

3

1

2− a−1

4−(1

a

)−2 ÷[

1

2−2(2 + a)− 2a−1 − 1

].

Exercise 7 : Evaluate the following expression for a =−1

4a+

[1 +

(3− a

a+ 1

)−1]−1

−1

.

Identities

1.

(x+ y)2 = x2 + 2xy + y2, (x− y)2 = x2 − 2xy + y2, x2 − y2 = (x− y)(x+ y)

2.(x+ y)3 = x3 + 3x2y + 3xy2 + y3 = x3 + y3 + 3xy(x+ y)

3.(x− y)3 = x3 − 3x2y + 3xy2 − y3 = x3 − y3 − 3xy(x− y)

4.x3 + y3 = (x+ y)(x2 − xy + y2), x3 − y3 = (x− y)(x2 + xy + y2)

5. (x+ y + z

)2= x2 + y2 + z2 + 2

(xy + yz + zx

)Exercise 8 : Compute without any calculator:

A = 1234567892 − 123456790× 123456788.

(a)

(b)

4

Page 65: Calculus 3 Notes Qatar University

(c) Exercise 9 : Perform the given operations and simplify completely:

1. a = 3(x− y)2(x+ y)− 3(x+ y)2(x− y)

2. b = (x− y)3 + (x+ y)3 + 3(x+ y)(x− y)2 + 3(x− y)(x+ y)2

Exercise 10 . Rationalize and simplify

α1 =2a

−b−√b2 − 4ac

, α2 =2a

−b+√b2 − 4ac

.

Exercise 11 : Factor each expression

1. 13x− 169y + 39z

2. ba− 2ab+ 3ba+ 10ab

3. y −my + by

4. xy2 + x2y − x4y4

5. bx+ cx

6. ax2 + bx− cx

7. ax2 + abx− a

8. 3x(x− 13)− (3x− 1)

9. xα+βyα + xβyα+β

10. x3y + x2y3 + x2y

11. 4x2(y2 − 2) + 2yx(−2 + y2)

12. x(y − 1) + z(1− y)− y + 1

13. 2(x− y)2 − 5x(x− y)

14. α(3 + x)− β√3 + x+ 2γ

√3 + x

15. xz + xt+ yz + yt

16. xz − xt+ yz − yt

17. x3 − 2x2 + 2x− 4

18. x2y2 − (x+ y)xy + x+ y − 1

19. x2 − 16

20. x2 − 15

21. (x2 − x)2 − 9

22. (x2 + 2x)2 − 9

23. (x+ y)2 − (z + t)2

5

Page 66: Calculus 3 Notes Qatar University

24. (x+ y)2 − (x− y)2

25. 16x2 − (3x+ 5y)2

26. 81(x2 + 2x)2 − 256

27. (x+ 3y)2 − 25(y − x)2

28. (x2 + y2 − z2)2 − 4x2y2

29. (8x2 − 7y2)2 − (7x2 + 2y2)2

30. (x2 + y2 − 8)2 − (2xy − 8)2

31. 4(xy + zt)2 − (x2 + y2 − z2 − t2)2

32. 4x12 + 25y10 − 20x6y5

33. 8x6 − 2y4x2

34. x3y − y4

35. 1 + (x− y)3

36. 2x4 + 2xy3

37. 180x4y3 − 20x2y5

38. −x3 − 1 + 2x2

39. 25x2 − y4 − 25y2 + x2y2

40. x2 + z2 − y2 + 2xz

41. 4x2y2 − (x2 + y2 − z2)2

Exercise 12 ∗. Factor

E = 6− (x2 − x− 3)(2x2 − 10− 2x), F = x(x+ 1)(x+ 2)(x+ 3) + 1.

3 First Order Equations

In this section we are concerned by solving a first order equation

bx+ c = 0, b, c ∈ R, b = 0.

Solving an equation of this type is equivalent to make the variable-the unknown-”free”, in other terms, we need to separate the unknown from the other constants orparameters (if any) in the given equation. The process of making free the variableis based on the following properties:

1. x+ α = β ⇔ x = β−α.

2. x− α = β ⇔ x = β+α.

6

Page 67: Calculus 3 Notes Qatar University

3. α x = β ⇔ x =β

α, α = 0.

4.x

α= β ⇔ x = α β, α = 0.

5.γ x

α= β ⇔ x = β

α

γ, αγ = 0.

For example, let us start by these equations:

Example 1 . Solve for x : −x+ 3 = 5.

Sol.−x+ 3 = 5 ⇔ −x = 5− 3 ⇔ −x = 2 ⇔ x = −2.

In the last step, we multiplied the both sides by −1 to cancel the ”-” beside x.

Example 2 . Solve for x : 2x− 3 = 6.

Sol.

2x− 3 = 6 ⇔ 2x = 6 + 3 ⇔ 2x = 9 ⇔ x =9

2.

Example 3 . Solve for x :2x

3− 1

5= 2.

Sol.2x

3− 1

5= 2 ⇔ 2x

3= 2 +

1

5⇔ x =

11

5÷ 2

3⇔ x =

11× 3

5× 2=

33

10.

Exercise 13 : If the numerator of the fraction is increased by 4, the fraction in-creases by 2/3, then find the denominator.

3.1 Equations Reducible to linear Equations

In many situations, solving a given equation, may be transformed and or reducedto solve a certain class of linear equations. We will try to make a brief tour aboutsome common situations.The Zero product Rule

A×B = 0 ⇔ A = 0 or B = 0

Also, it may be useful to know also

A×B = 0 ⇔ A = 0 and B = 0

The following examples illustrate some situations.

Example 4 . Solve (x− 1)(x+ 3) = 0.

Sol. This equation is equivalent to two linear equations:

(x− 1)(x+ 3) = 0 ⇔ x− 1 = 0 or x+ 3 = 0 ⇔ x = 1, x = −3 ⇒ S = {−3, 1}.

Example 5 . Solve (2x2 − 3x)(x− 1)(x+ 3) = 0.

7

Page 68: Calculus 3 Notes Qatar University

Sol. Here, one observe that the term 2x2−3x = x(2x−3) and the equation becomes:

x(2x− 3)(x− 1)(x+ 3) = 0 ⇔

x = 0 or2x− 3 = 0 orx− 1 = 0 orx+ 3 = 0

thus S = {0, 3/2, 1,−3}. In the next example, we will state a general rule a class ofequations that are reducible to linear equations.

Example 6 . Solve for X ∈ RX2 = Y.

Sol. If Y is negative, we have a negative quantity equals a positive one, which isimpossible, thus S = ∅.Now, let us consider Y ≥ 0. Our equation can be rewritten as follows:

X2 − Y = 0,

and using the fact that 0 ≤ Y = (√Y )2, we have

X2 − (√Y )2 = 0 ⇔

(X −

√Y)(

X +√Y)= 0

and thus,X = ±

√Y .

This can formulated in general

X2 = Y ⇔ X = ±√Y , Y ≥ 0.

3.2 Quadratic Equations

By a quadratic equation we mean a problem of finding the roots (or zeros) of apolynomial of degree 2

Q(x) = ax2 + bx+ c, a = 0.

∆ = b2 − 4ac Factoring form Roots

∆ < 0 No factoring No real roots

∆ = 0 ax2 + bx+ c = a

(x+

b

2a

)2

x1 = x2 =−b

2a

∆ > 0 ax2 + bx+ c = a(x− x1)(x− x2) roots x1,2 =−b±

√∆

2a

Example 7 . Solve for x

x2 − 3 = 0, 2 + x2 = 0, (x− 1)2 = 5, (2x− 1)2 = (4− x)2.

Example 8 . Solve for x:

x2 − 7x+ 12 = 0, x2 + 7x+ 12 = 0, x2 − 7x− 12 = 0,

Example 9 . Solve for t

(3t− 1)2 − 5t(1− 3t) = 9t2 − 1, (1 + t)2 + 5 = 0, 4t2 − t− 3 = 0.

8

Page 69: Calculus 3 Notes Qatar University

3.3 Rational Equations

By ”Rational equation”, we mean an equation involving at least a ratio of twopolynomials. The general technique to solve these equations is the use the ”crossproduct”

A

B=

C

D⇔ AD = BC OR

E

F= 0 ⇔ E = 0.

and to pay attention to those values that cancel the denominators.

Example 10 : Let the following equation

x− 1

x+ 2=

x

x− 6.

Sol. First of all, the values −2 and 6 are excluded from the solution set becausethey make null the denominators. The equation becomes:

0 =x− 1

x+ 2− x

x− 6=

(x− 1)(x− 6)− x(x+ 2)

(x+ 2)(x− 6).

which is equivalent to

(x− 1)(x− 6)− x(x+ 2) = 0 ⇔ x2 − 7x+ 6− x2 − 2x = 0 ⇔ −9x+ 6 = 0,

and then

x =6

9=

2

3⇒ S = {2/3}.

One can also use the main property of fractions to solve the equation. Indeed,

(x− 1)(x− 6) = x(x+ 2) ⇔ x2 − 7x+ 6 = x2 + 2x ⇔ 6 = 9x ⇔ x =6

9=

2

3,

thus, S = {2/3}.

Example 11 . Solve8− 5x

4(x− 2)+

x

x+ 2+ 1 = 0.

Sol. We start first by rejecting x = ±2 from the solution set and to get rid of thedenominators, we multiply all the terms by the common denominator 4(x−2)(x+2)to get then,

(8− 5x)(x+ 2) + 4x(x− 2) + 4(x− 2)(x+ 2) = 0 ⇔ 3x2 − 10x = 0,

i.e.,⇔ x(3x− 10) = 0 ⇔ x = 0, x = 10/3 ⇒ S = {0, 10/3}.

Example 12 . Solvex− 1

3− x=

2

3− x.

Sol. One can solve this problem as follows: Since the denominators are the same,

x− 1

3− x=

2

3− x⇔ x− 1 = 2 ⇒ x = 3,

but the value x = 3 is not allowed because it involves division by zero, then there isno solution.

9

Page 70: Calculus 3 Notes Qatar University

4 Exercises

Exercise 14 . Solve for x

1.

2(x− 1)− 5(5− x) = 3(2x− 3),2x

3− 1

5=

x

15+

1

3.

2.(1− 2x)2 − 2x(x− 3) = 2(x2 − 1), 2− (1− x)3 = (x2 − 1)(x− 3).

3.2 + x√

2=

3 + x√3

, x =x

2+

x

3+

x

6+

1

7.

Exercise 15 . Solve for u

(a2 + 2)(u− 1) = x− 2, a(u− 2) = u+ a− 1, a2u+ 4 = 16u+ a, a ∈ R.

Exercise 16 . Solve for x

x+ 1

2x− 2+

x2 + 1

x2 − 1− x− 1

2x+ 2=

4x

x2 − 1.

Exercise 17 . Solve for λ

1

2

{1

2

[1

2

(1

2λ− 1

1

2

)− 1

1

2

]− 1

1

2

}= 0.

Exercise 18 . Solve for τ

1

2

{1

2

[1

2

(1

2τ − 2

1

2

)− 2

1

2

]− 2

1

2

}= 0.

Exercise 19 . Solve for ω

1

3

{1

3

[1

3

(1

3ω + 2

)+ 2

]+ 2

}+ 2 = 1.

Exercise 20 . Solve for η

1

9

{1

7

[1

5

(1

3(η + 2) + 4

)+ 6

]+ 8

}− 1 = 0.

Exercise 21 . If a, b, c are positive constants, solve for ξ

ξ − (a+ b)

c+

ξ − (b+ c)

a+

ξ − (c+ a)

b= 3, abc = 0.

Exercise 22 . Solve for z

−3z2+5z+2 = 0,z2

3+4z

5− 1

12= 0, 4.3z2−5.1z+1.428 = 0, (z−1)(z+2) = 70.

Exercise 23 . Solve for u

(5−√2) u2−10u+5+

√2 = 0, u2+(3a−4b)u−12ab = 0, 2 u3−3(2a−1) u2−9a u = 0.

10

Page 71: Calculus 3 Notes Qatar University

Exercise 24 . Solve for z

3z2 =1

2, (2z − 1)2 + (1− 2z)− 6 = 0, z2 + 2z + 1− α4 = 0.

Exercise 25 . Find the domain of each expression

x2 −√3

x2 − 3x+ 1,

x2 − 3x2

x2 + x− 1,

x2 −√3

2x2 −√3x+ 1

.

Exercise 26 .

1. Show that U = V , where

U = (5x2 + 2x− 3)2 − (2x2 + x− 1)2, V = (x+ 1)2[(5x− 3)2 − (2x− 1)2

]2. Factor U and V .

3. Solve U = 0 or V = 0.

4. Evaluate U or V for x = 0, x = −1, x =√2− 1.

5. Simplify

W =(5x2 + 2x− 3)2 − (2x2 + x− 1)2

(7x− 4)2(3x− 2)2.

6. Solve W = 1/21.

Exercise 27 . Evaluate

f(x+ h)− f(x)

h, for each function f(x) = x2−3, f(x) = x3+2x, f(x) =

1

x− 1, f(x) =

√x+ 2.

11

Page 72: Calculus 3 Notes Qatar University
Page 73: Calculus 3 Notes Qatar University
Page 74: Calculus 3 Notes Qatar University
Page 75: Calculus 3 Notes Qatar University
Page 76: Calculus 3 Notes Qatar University
Page 77: Calculus 3 Notes Qatar University
Page 78: Calculus 3 Notes Qatar University
Page 79: Calculus 3 Notes Qatar University
Page 80: Calculus 3 Notes Qatar University
Page 81: Calculus 3 Notes Qatar University
Page 82: Calculus 3 Notes Qatar University
Page 83: Calculus 3 Notes Qatar University
Page 84: Calculus 3 Notes Qatar University
Page 85: Calculus 3 Notes Qatar University
Page 86: Calculus 3 Notes Qatar University
Page 87: Calculus 3 Notes Qatar University
Page 88: Calculus 3 Notes Qatar University
Page 89: Calculus 3 Notes Qatar University
Page 90: Calculus 3 Notes Qatar University
Page 91: Calculus 3 Notes Qatar University
Page 92: Calculus 3 Notes Qatar University
Page 93: Calculus 3 Notes Qatar University
Page 94: Calculus 3 Notes Qatar University
Page 95: Calculus 3 Notes Qatar University
Page 96: Calculus 3 Notes Qatar University
Page 97: Calculus 3 Notes Qatar University
Page 98: Calculus 3 Notes Qatar University
Page 99: Calculus 3 Notes Qatar University
Page 100: Calculus 3 Notes Qatar University
Page 101: Calculus 3 Notes Qatar University
Page 102: Calculus 3 Notes Qatar University
Page 103: Calculus 3 Notes Qatar University
Page 104: Calculus 3 Notes Qatar University
Page 105: Calculus 3 Notes Qatar University
Page 106: Calculus 3 Notes Qatar University
Page 107: Calculus 3 Notes Qatar University
Page 108: Calculus 3 Notes Qatar University
Page 109: Calculus 3 Notes Qatar University
Page 110: Calculus 3 Notes Qatar University
Page 111: Calculus 3 Notes Qatar University
Page 112: Calculus 3 Notes Qatar University

Dr. A. Hamdi——Oct. 23, 2014- Homework 1 and 2- Math 211Due Time November 6th for HW1 and November 30th for HW2Choose 10 questions for HW1 from Q1 to Q18 but HW2 is from Q19 to Q23

1. Find the norm of 2−→a − 3−→b if −→a = ⟨2,−1, 3⟩,

−→b = ⟨−2, 1, 0⟩.

2. Given ∥−→a ∥ = 5, ∥−→b ∥ = 8,

(−→a ,

−→b ) = 150o. Evaluate ∥−→a +

−→b ∥.

3. Given three unit vectors −→a ,−→b , −→c satisfying −→a +

−→b +−→c =

−→0 . Evaluate

−→a •−→b +

−→b • −→c +−→c • −→a .

4. Given A(5, 1, 2) and B(−3, 5, 3), find an equation of the sphere with centerthe midpoint of the segment line [AB] and is tangent to the xy-plane.

5. Determine the projection of−→b on −→a if −→a = ⟨1,−2, 2⟩,

−→b = ⟨3, 4,−5⟩.

6. Find the distance from the point P (2, 3, 4) to the plane 3x− y − 4z + 6 = 0.

7. Under what conditions are −→u +−→v and −→u −−→v orthogonal?

8. Determine whether −→u = ⟨−1, 0, 2⟩, −→v = ⟨0, 1, 1⟩, −→w = ⟨−2, 1,−1⟩ lie in thesame plane.

9. Find the point where the line L through P0 = (2, 1, 3) and P1 = (4,−2, 5)meets the plane 2x+ y − 4z + 5 = 0.

10. Find an equation of the plane that contains (3, 2,−1), (−1, 1− 2) and that is

parallel to−→i −−→

j −−→k

11. Determine whether the following lines intersect, and if so, find their intersec-tion point.

L1 :x− 1

1=

y − 1

1=

z − 4

7, L2 :

x+ 4

5=

2− y

2=

1− z

4,

12. Verify the identity

−→a x(−→b x−→c ) = (−→a • −→c )

−→b − (−→a •

−→b )−→c

for −→a =−→i +

−→j , b = 2

−→i −

−→k , −→c =

−→j −

−→k .

13. If ∥−→a +−→b ∥ = ∥−→a −

−→b ∥ show that −→a ⊥

−→b .

14. Find the value of p for which the vectors −→a = 3−→i + 2

−→j + 9

−→k and−→

b =−→i + p

−→j + 3

−→k are:

(a) perpendicular (b) parallel.

15. For any vectors −→a and−→b , prove that:

∥−→a +−→b ∥ = ∥−→a −

−→b ∥ ⇔ −→a ⊥

−→b

Interpret the result geometrically.

16. If −→a and−→b are such that ∥−→a +

−→b ∥ = ∥−→a ∥, prove that: 2−→a +

−→b is perpen-

dicular to−→b .

17. If −→a ,−→b and −→c are non-null vectors in space such that −→a ·

(−→b ×−→c

)= 0, and

−→b and −→c are not parallel vectors, prove that the three vectors are coplanar.

1

Page 113: Calculus 3 Notes Qatar University

18. For any vector −→a , evaluate:

∥−→a ×−→i ∥2 + ∥−→a ×−→

j ∥2 + ∥−→a ×−→k ∥2 − 2∥−→a ∥2.

19. Find and sketch the domain of just one of the given functions

f(x, y) =

√xy

ln(x2 + y2 − 4

) , g(x, y) = ln(x+ y + 1) + cos−1(x2 + y2 − 1).

20. Find each limit (if it exists)

lim(x,y)→(0,0)

x2 + y2

x2 + |xy|+ y2, lim

(x,y)→(0,0)

3x4y2

7x8 + y4, lim(x,y)→(0,0)

x4 + 2x2y2

x2 + y2, lim(x,y)→(0,0)

xy

sin(x2 + 2y2).

21. Determine α for which f is continuous at the point (1, 2), where

f(x, y) =

x2 − 1 + y − xy

x2 − 3x+ 2 + xy − yif (x, y) = (1, 2)

α if (x, y) = (1, 2).

22. Find the directional derivative of f defined by: f(x, y, z) = (x + y)(y + z) at

the point P (5, 7, 1) in the direction of the vector −→v = 3−→i − 4

−→j + 12

−→k .

23. (a) Find zxy at x = 1, y = 0, if z = u3 + v3, u = x2 + tan−1(y) andv = x+ e−y.

(b) If f(x, y, z) = sin(cz)eax+by where c2 = a2 + b2, then show that for anyx, y, z

fxx + fyy + fzz = 0.

24. Challenging Questions

(a) Solve for −→r : −→r ×−→b = −→a ×

−→b , −→r •−→c = 0 assuming that the non null

vectors−→b and −→c are not perpendicular.

(b) Show that the altitude of the triangle ABC through the vertex A is equalto:

∥−→a ×−→b +

−→b ×−→c +−→c ×−→a ∥

∥−→b −−→c ∥

where the position vectors of A, B and C are respectively −→a ,−→b and −→c .

2

Page 114: Calculus 3 Notes Qatar University
Page 115: Calculus 3 Notes Qatar University
Page 116: Calculus 3 Notes Qatar University
Page 117: Calculus 3 Notes Qatar University
Page 118: Calculus 3 Notes Qatar University
Page 119: Calculus 3 Notes Qatar University
Page 120: Calculus 3 Notes Qatar University
Page 121: Calculus 3 Notes Qatar University
Page 122: Calculus 3 Notes Qatar University
Page 123: Calculus 3 Notes Qatar University
Page 124: Calculus 3 Notes Qatar University
Page 125: Calculus 3 Notes Qatar University
Page 126: Calculus 3 Notes Qatar University
Page 127: Calculus 3 Notes Qatar University
Page 128: Calculus 3 Notes Qatar University
Page 129: Calculus 3 Notes Qatar University
Page 130: Calculus 3 Notes Qatar University
Page 131: Calculus 3 Notes Qatar University
Page 132: Calculus 3 Notes Qatar University
Page 133: Calculus 3 Notes Qatar University
Page 134: Calculus 3 Notes Qatar University
Page 135: Calculus 3 Notes Qatar University
Page 136: Calculus 3 Notes Qatar University
Page 137: Calculus 3 Notes Qatar University
Page 138: Calculus 3 Notes Qatar University
Page 139: Calculus 3 Notes Qatar University
Page 140: Calculus 3 Notes Qatar University
Page 141: Calculus 3 Notes Qatar University
Page 142: Calculus 3 Notes Qatar University
Page 143: Calculus 3 Notes Qatar University
Page 144: Calculus 3 Notes Qatar University
Page 145: Calculus 3 Notes Qatar University
Page 146: Calculus 3 Notes Qatar University
Page 147: Calculus 3 Notes Qatar University
Page 148: Calculus 3 Notes Qatar University
Page 149: Calculus 3 Notes Qatar University
Page 150: Calculus 3 Notes Qatar University
Page 151: Calculus 3 Notes Qatar University
Page 152: Calculus 3 Notes Qatar University
Page 153: Calculus 3 Notes Qatar University
Page 154: Calculus 3 Notes Qatar University
Page 155: Calculus 3 Notes Qatar University
Page 156: Calculus 3 Notes Qatar University
Page 157: Calculus 3 Notes Qatar University
Page 158: Calculus 3 Notes Qatar University
Page 159: Calculus 3 Notes Qatar University
Page 160: Calculus 3 Notes Qatar University
Page 161: Calculus 3 Notes Qatar University
Page 162: Calculus 3 Notes Qatar University
Page 163: Calculus 3 Notes Qatar University
Page 164: Calculus 3 Notes Qatar University
Page 165: Calculus 3 Notes Qatar University
Page 166: Calculus 3 Notes Qatar University
Page 167: Calculus 3 Notes Qatar University
Page 168: Calculus 3 Notes Qatar University
Page 169: Calculus 3 Notes Qatar University
Page 170: Calculus 3 Notes Qatar University
Page 171: Calculus 3 Notes Qatar University
Page 172: Calculus 3 Notes Qatar University
Page 173: Calculus 3 Notes Qatar University
Page 174: Calculus 3 Notes Qatar University
Page 175: Calculus 3 Notes Qatar University
Page 176: Calculus 3 Notes Qatar University
Page 177: Calculus 3 Notes Qatar University
Page 178: Calculus 3 Notes Qatar University
Page 179: Calculus 3 Notes Qatar University
Page 180: Calculus 3 Notes Qatar University
Page 181: Calculus 3 Notes Qatar University
Page 182: Calculus 3 Notes Qatar University
Page 183: Calculus 3 Notes Qatar University
Page 184: Calculus 3 Notes Qatar University
Page 185: Calculus 3 Notes Qatar University
Page 186: Calculus 3 Notes Qatar University
Page 187: Calculus 3 Notes Qatar University
Page 188: Calculus 3 Notes Qatar University
Page 189: Calculus 3 Notes Qatar University
Page 190: Calculus 3 Notes Qatar University
Page 191: Calculus 3 Notes Qatar University
Page 192: Calculus 3 Notes Qatar University
Page 193: Calculus 3 Notes Qatar University
Page 194: Calculus 3 Notes Qatar University
Page 195: Calculus 3 Notes Qatar University
Page 196: Calculus 3 Notes Qatar University
Page 197: Calculus 3 Notes Qatar University
Page 198: Calculus 3 Notes Qatar University
Page 199: Calculus 3 Notes Qatar University

Qatar University- CAS- Dept of Math.-stat- Phy.22/05/14- MidTerm-2-Calculus II(M211) -Dr. A. Hamdi -90 min.

1. Find an equation of the normal line to the graph of the equation:

9x2 − 4y2 − 25z2 = 40, at P (4, 1,−2).

2. Find the point(s) on the surface x2 + 4y2 − z2 = 4 at which the tangent planeis parallel to the plane 4x+ 4y + 2z = 10.

3. Find the local extrema and saddle point(s) if any of the functionf(x, y) = x4 + 2y2 − 4xy.

4. Find the extrema of f(x, y) = x2 + 2x+ y2 subject to x2 + 4y2 − 24 = 0.

5. Let f(x, y, z) = x(xz + y2)− 3 cos(πyz).

(i) Determine the maximum rate of change of f at P (1,−1, 1).

(ii) Show that for any vector unit vector −→u we haveD−→u f(1,−1, 1) ∈ [−

√14,

√14].

(iii) Use linear approximation to estimate f(0.97,−1.02, 1.01).

6. Let z = f(x, y) be a function with continuous second order partial derivatives,where x = s+ t and y = s− t. Show that

zss − ztt − 4zxy = 0.

7. Evaluate∫ ∫

(R)

√x2 + y2dA; (R) is bounded by y =

√2x− x2, y = 0 and the

line y = x.

8. Evaluate∫ 2

0

∫ 4

y2y cos(x2)dxdy.

9. Use double integration to find the area bounded by y =√x, y+x = 0, x = 1

and x = 4.

10. Find the volume of the solid in the first octant that is bounded by the threecoordinate planes and the plane 2x+ y + z = 5.

11. Bonus Use polar coordinates to evaluate∫ 4

0

∫ √25−x2

3dydx.

1

Page 200: Calculus 3 Notes Qatar University
Page 201: Calculus 3 Notes Qatar University
Page 202: Calculus 3 Notes Qatar University
Page 203: Calculus 3 Notes Qatar University
Page 204: Calculus 3 Notes Qatar University
Page 205: Calculus 3 Notes Qatar University
Page 206: Calculus 3 Notes Qatar University
Page 207: Calculus 3 Notes Qatar University
Page 208: Calculus 3 Notes Qatar University
Page 209: Calculus 3 Notes Qatar University
Page 210: Calculus 3 Notes Qatar University
Page 211: Calculus 3 Notes Qatar University
Page 212: Calculus 3 Notes Qatar University
Page 213: Calculus 3 Notes Qatar University
Page 214: Calculus 3 Notes Qatar University
Page 215: Calculus 3 Notes Qatar University
Page 216: Calculus 3 Notes Qatar University
Page 217: Calculus 3 Notes Qatar University
Page 218: Calculus 3 Notes Qatar University
Page 219: Calculus 3 Notes Qatar University
Page 220: Calculus 3 Notes Qatar University
Page 221: Calculus 3 Notes Qatar University
Page 222: Calculus 3 Notes Qatar University
Page 223: Calculus 3 Notes Qatar University
Page 224: Calculus 3 Notes Qatar University
Page 225: Calculus 3 Notes Qatar University
Page 226: Calculus 3 Notes Qatar University
Page 227: Calculus 3 Notes Qatar University
Page 228: Calculus 3 Notes Qatar University
Page 229: Calculus 3 Notes Qatar University
Page 230: Calculus 3 Notes Qatar University
Page 231: Calculus 3 Notes Qatar University
Page 232: Calculus 3 Notes Qatar University
Page 233: Calculus 3 Notes Qatar University
Page 234: Calculus 3 Notes Qatar University
Page 235: Calculus 3 Notes Qatar University
Page 236: Calculus 3 Notes Qatar University
Page 237: Calculus 3 Notes Qatar University