Top Banner
BS 8100- Part 4 Kgs Mean Site Wind Speed A 5400 V s = B 1620 Where C Arm 7900 3 sec Gust wind speed = 50.00 m/s For Zone 1 180 Kmph Relative Hourly Mean Wind speed V b = 24.5 m/s S a = Altitude factor Zone Velocity Hr Mean W S Section 1 is 100m Section 2 Section 3 S a = 1.1 Section 4 Section 5 S d = Direction factor MW Cl 3.1.5 : S d MW Dia = 1.0 GSM S s = Seasonal factor A1 Cl 3.1.6 & Annex E : S s B1 = 1.0 C (Arm 1) A2 V s = 26.9 m/s B2 C (Arm 2) V z = GSM Antenn S 0 = Terrain Factor 0.6 MW Dis GSM Antenn Country Terrain; 0.6 MW Dis S 0 = S c (1 + S h) Section 1 Where S c : Fetch Facto 1.3 Section 1. S h : Topography Factor 0.6 0.6 (Cl 3.2.4 & Annex H) Section 2 Section 3 S 0 = 2.08 Section 4 V B x S b x S d x S c Cl 3.1.4 : S a = 1 + 0.001 D When D V s x S o x g n Pipe Antenne Conrete Height Wind UDL
712
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Calculation

BS 8100- Part 4

Kgs

Mean Site Wind Speed A 5400 5400

V s = B 1620 1620

Where C Arm 7900 7900

3 sec Gust wind speed = 50.00 m/s For Zone 1 180 Kmph

Relative Hourly Mean Wind speed

V b = 24.5 m/s

S a = Altitude factor Zone 1

Velocity 180

Hr Mean W S 24.46

Section 1 0.0483

is 100m Section 2 0.0483

Section 3 0.0483

S a = 1.1 Section 4 0.0483

Section 5 0.0483

S d = Direction factor MW 2.0

Cl 3.1.5 : S d MW Dia 1.2= 1.0 GSM 6.0

S s = Seasonal factor A1 5400Cl 3.1.6 & Annex E : S s B1 1620

= 1.0 C (Arm 1) 7900A2 5400

V s = 26.9 m/s B2 1620C (Arm 2) 7900

V z = 29.84GSM Antenn 34.90

S 0 = Terrain Factor 0.6 MW Dish 33.00GSM Antenn 4.860

Country Terrain; 0.6 MW Dish 5.003 S 0 = S c (1 + S h) Section 1 0.256

Where S c : Fetch Factor = 1.3 Section 1.2 0.256S h : Topography Factor = 0.6 0.6 (Cl 3.2.4 & Annex H) Section 2 0.270

Section 3 0.271 S 0 = 2.08 Section 4 0.294

V B x S b x S d x S c

Cl 3.1.4 : S a = 1 + 0.001 DWhen D

V s x S o x g n

Pipe

Anten

ne

Conre

te

Height

Wind

For

ce

UDL

Page 2: Calculation

Section 5 0.315g n = 1.2 Trun Mome 782

V z = 26.901 x 2.08 x 1.2

= 67.1 m/s 242 Kmph

For Survival Condition

W k (W pres= 0.56 x V z 2

= 2525 N/m2

= 2.525 kN/m2

For Servisibility Condition

W k = V b x Sa x So= 24.455 x 1.1 x 2.08

56.0 m/s 201 Kmph

W k operational= 0.56 x Vk 2

= 1753 N/m2

= 1.753 kN/m2

Selected Factor 0.56

Page 3: Calculation

Multiplication Factor for operational to survival Zone 1 2 3Multi Fac 0.56 0.575 0.59

1.7 : 2.51.0 : 1.47

W k operational W k Survival

R AW = C N K A A A Sin 2 q

Page 4: Calculation

= 0.6

For Power cables W k KN/m2 Force /kN/m

Dia(m) No. OperationSurvivalOperati SurvivalOption1 0.6 1.000 0.025 4 0.1 0.060 1.753 2.525 0.105 0.151Option2 2.0 1.000 0.025 4 0.1 0.200 1.753 2.525 0.351 0.505

C N

C N K A A A R AW

Page 5: Calculation

ANTENNA ANCILLARIES

MW Dishes

Antenne Force/Antennae kN

At height/( Nos Dia Wt Dead(k OperationaSurevivArea (m2) Operatio Survival33.00 2.0 1.2 180 1.765 1.753 2.525 1.131 1.0 1.2617 1.4269 2.502 3.603

R AW = C A K A A A

Wk kN/m2

K A C A R AW

Page 6: Calculation

= 1.18

= 1.0

Cellular Antennas ( GSM )

R AW = C A K A A A

C A

K A

Page 7: Calculation

At Height Nos Size Wt Dead Antenne Force/Antenne kN

(m) B x H (Kg) (kN) OperationaSurevivArea/(m2) Operatio Surevival34.90 6.0 0.27 x 2.90 18.5 0.181 1.753 2.525 0.783 1 1.18 0.9239 1.62 2.33

Wk kN/m2 K A C A

R AW

Page 8: Calculation

Operational Wind Speed

Structural componentsAnciliary Components Width Height Solidity Drag Operation Wind Force

( Data Cable ) (m) (m) Ratio Coeff Wk Pipes

b h y kN/m2 kN

Structural Pipe/Rod Length Area Dia No Length Area

No Dia. (m) (m2) (m) (m)Section-01 2.0 0.0483 0.6000 0.0580 0.025 0 0.600 0.0000(Above32m 2.0 0.0160 0.3805 0.0122

2.0 0.0160 0.2340 0.00750.0776 0.0000 0.2840 0.6000 0.4555 1.1300 1.0 0.0877 1.753 0.2563

Section-01 2.0 0.0483 0.6000 0.0580 0.0250 0 0.6000 0.0000(Bellow32m 2.0 0.0160 0.3805 0.0122

2.0 0.0160 0.2340 0.00750.0776 0.0000 0.2840 0.6000 0.4555 1.1300 1.0 0.0877 1.753 0.2563

Section-02 2.0 0.0483 0.6000 0.0580 0.0250 0 0.6000 0.00002.0 0.0160 0.4633 0.01482.0 0.0160 0.3530 0.0113

0.0841 0.0000 0.4030 0.6000 0.3477 1.1000 1.0 0.0925 1.753 0.2703

Section-03 2.0 0.0483 0.8000 0.0773 0.0250 0 0.8000 0.00002.0 0.0160 0.6225 0.01992.0 0.0160 0.4770 0.0153

0.1125 0.0000 0.5490 0.8000 0.2561 1.1000 1.0 0.1237 1.753 0.2711

Section-04 2.0 0.0483 0.8000 0.0773 0.0250 0 0.8000 0.00002.0 0.0160 0.7573 0.02422.0 0.0160 0.6430 0.0206

0.1221 0.0000 0.6930 0.8000 0.2202 1.1000 1.0 0.1343 1.753 0.2943

K q R M

A S A A C NC

m2

Page 9: Calculation

Section-05 2.0 0.0483 0.8000 0.0773 0.0250 0 0.8000 0.00002.0 0.0160 0.8846 0.02832.0 0.0160 0.7890 0.0252

0.1308 0.0000 0.8380 0.8000 0.1952 1.1000 1.0 0.1439 1.753 0.3154

Zone 1 With 6.0 GSM & 2.0 MW Dishes

OVER TURNING STABILITY CALCULATION

f

YC

G

s pm

Stability Circle YPlatform

AA

km

Page 10: Calculation

Center of Gravity Without Concrete

Weight Force Y Tr M (J)Tower+Head 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Fram 289 Kg 2,835 0.300 8.51 E+022 Front Pol 576 Kg 5,651 -3.000 -1.70 E+042 Rear Poly 0 Kg 0 6.000 0.00 E+00Base Struc 3045 Kg 29,871 1.700 5.08 E+04Wt of Acces 0 Kg 0 0.000 0.00 E+00Resultant W 5443 Kg 53,391 0.790 4.22 E+04

Checking the side most likely to fail

YC

G

LF Cos 60

C

B

LF

LF Sin 60

Y=0 Line

Page 11: Calculation

For Power cables

W k KN/m2 Force /kN/m

Dia(m) No. OperationSurvivalOperati SurvivalOption1 0.6 1.000 0.025 4 0.1 0.060 1.753 2.525 0.105 0.151Option2 2.0 1.000 0.025 4 0.1 0.200 1.753 2.525 0.351 0.505

Center of Gravity of the system with Concrete

C N K A A A R AW

Page 12: Calculation

Weight Force Y Tr M (J)Tower+Head 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Fram 289 Kg 2,835 0.300 8.51 E+022 Rear Poly 0 Kg 0 6.000 0.00 E+00

2 Nos Concrete @ 10800 Kg 105,948 6.000 6.36 E+052 Nos Concrete @ 3240 Kg 31,784 0.000 0.00 E+002 Nos Concrete @ 15800 Kg 154,998 -3.000 -4.65 E+05

2 Front Pol 576 Kg 5,651 -3.000 -1.70 E+04Base Struc 3045 Kg 29,871 1.700 5.08 E+04Wt of Acces 0 Kg 0 0.000 0.00 E+00

Resultant W 35283 Kg 346,121 0.615 2.13 E+05

Page 13: Calculation

Turning Moment = WF Per Segment x No of Segments x Elevation

Total Wind Turning = 1576.07 KNm

Total Wt of the Sys = 346 KN

Leverage Required = Total Wind Turning Moment / Total Wt of the System

4.55 m

Y Platform = 6.5X Platform = 2.3

= 0.615 (Center of gravity of system with concrete Blocks)

L = 6 (Length of Guy Arm)

= Tan -1{ ( L x Sin 60) / (Y platform + Lx Cos60)}

Tan = 5.209.50

Y CG

d

Page 14: Calculation

= 28.68 Degrees

= Tan -1{ ( X Platform) / (Y platform - Y CG)}

Tan = 2.304.20

= 28.71 Degrees

= X Platform / Sin

= 4.79

= Sin

Comparisan to select the side Most likely to fail

Side Leverage = Sin

f

f

km

+ f d

km

+ f d

Page 15: Calculation

4.03 Failure 0.89

A legs leverage = (Y platform - Y CG)

5.88 Stable 1.29

C legs leverage = (Y CG + L x Cos 60)

= 3.62 Failure 0.79

Radius of Stability Circle = 4.55

km

Page 16: Calculation

Concrete Blocks RequiredW 53.391 KN

0.790 m

72 KN 224 KN 186 KN

Taking Moments about A

Over turning momen= 186 x 9

= 1674 KNm

Moment of self Weig=

= 278.15

Resultant Moment = Over turning moment - Moment of self Weight

= 1395.85

Y CG

W x ( 6 - Y CG )B

C6m 3m

A

Page 17: Calculation

Required Weight = Resultant Moment / ( 6 + 3)

= 155.09 Nm

Taking momOver Turning Mome Moment of Self WtResultant MomenRequire @KNm KNm KNm KN

about A 1674 278.15 1395.85 155.09 C

about C 648 202.37 445.63 49.51 A

Page 18: Calculation

1 1 2 3

5400 1.4 Over Lap Kg 1.40 1.40 1.40 1.5 1.50 0.30 1620

1620 A (Near Goose Neck Kg 5400 3900 3200

7900 B ( Under Twr1) Kg 1620 1620 1620

1.29 Goose C (Arm 1) Kg 7900 7900 7900

0.89 Side A (Near Goose Neck Kg 5400 3900 3200

0.79 Legs B ( Under Twr2) Kg 1620 1620 1620 m/hr m/hr Operationl

29840 C (Arm 2) Kg 7900 7900 7900 Zone Post DesasNeutral StruIn Sri Lanka

29840 26840 25440 1 120 110 180

Center of Gravity 0.615 1 2 105 95 160

Zone 1 2 3 3 85 75 120

KPH

m/s 1 Pitch 1 0.6mm TIA SL Pitch 2 0.6mm 1.62 33.13 24.46 Pitch 3 0.8mm 3240 29.80 21.25 Pitch 4 0.8mm 23.13 17.50 Pitch 5 0.8mm

Nos

NosNosKgKgKgKg Perational SurvivalKg V b V sKg 24.46Ton 1.1 S a Altitude Factorm 1 S s

m 26.9005 V s x S b x S d x S ckN 1.3 1.3 S ckN 0.6 0.6 S hkN/m 1 S dkN/mkN/m 2.08 2.08 S 0 = S c (1 + S h)kN/m V k = V b x Sa x 0 1.2 Gamma Partial SFkN/m 55.95304 67.14 V z = V s x S o x g n

Page 19: Calculation

kN/mNm 1753.22 2524.63 N/m2 W k Wind Pressure

1.753 2.525 kN/m2Ratio

1.440

0.59

0.06

Page 20: Calculation

Survival Wind ForceWk Pipes Prof val Rest

kN/m2 kN Cable s

R av= cn ka aa sin 2 shy

2.525 0.5536 0.0896 0.1120 0.1850 #REF! -0.1667 0.1935 0.0000

2.525 0.5536 0.1140 #REF! #REF! 0.1935 0.0000

Prof Has Considered 16mm Rods

2.525 0.5837 0.1040 #REF! #REF! 0.1161 0.0000

2.525 0.7808 0.1392 #REF! -0.1319 0.0641 0.0000

2.525 0.8476 0.1427 #REF! -0.1516 0.0477 0.0000

Sin 2 Shy

Page 21: Calculation

2.525 0.9084 0.1525 #REF! -0.1629 0.0376 0.0000

Page 22: Calculation

26.25 m20.75 m15.25 m

Page 23: Calculation

9.75 m over lap 3

4.25 m

Page 24: Calculation

1.5x.6 3240 64801x1 2400 48001.5 x .3 1620 3240

Z

A 5500 Rear

Page 25: Calculation

0B 16000 Front

5400 Kg5400 Kg1620 Kg1620 Kg7900 Kg7900 Kg

Page 26: Calculation

77.5473

24.75721

Page 27: Calculation

Wind Force effect UDLDescripti Area Repetiti Operational Survival ElevationApp Loads Pt Force

of Segments kN kN m ISURU Operational Surv KNMean Wind SpeGSM Antenn 0.675 m2 3.0 1.6199 2.3326 34.90 4.8596 4.8596 6.9978

m/s 0.6 MW Dish 1.131 m2 2.0 2.5017 3.6025 33.00 5.0035 5.0035 7.2050

24.46 Section 1 0.014 m2 1 0.2563 0.5536 32.65 0.2563 0.2563 0.5536

21.25 Section 1.2 0.020 m2 17 0.2563 0.5536 32.65 0.2563 4.2931 9.2730

17.50 Section 2 0.037 m2 18 0.2703 0.5837 25.55 0.2703 4.7970 10.3615

Section 3 0.052 m2 18 0.2711 0.7808 18.45 0.2711 4.8123 13.8594

Section 4 0.055 m2 18 0.2943 0.8476 11.35 0.2943 5.2241 15.0454

Section 5 0.059 m2 21 0.3154 0.9084 4.25 0.3154 6.7023 19.3025

120

210 ok

Page 28: Calculation

Prof Has Considered 16mm Rods

Page 29: Calculation

Turning MomentOperational Survival

KNm169.60 244.22 8.494742

165.12 237.77 5.247771

8.37 18.08 1.367034

140.17 302.76 2.596099 0.513

122.56 264.74 4.539735

88.79 255.71 4.68949

59.29 170.77 4.725192

28.48 82.04 7.660181782.38 1576.07

Page 30: Calculation

Reference Description Results

BS 8100-4 WIND SPEEDS

Mean Wind Spped

Mean Wind Speed = 180 km/h for Zone 1

Corresponding Hourly Mean Wind Speed = 24.455 m/s

Clause 3.1.3

v

Vs = 24.46 m/s 24.46 m/s

Clause 3.1.4

Δ = 100 m

1.1

Clause 3.1.5

& Table 1 1.0 1.0

Clause 3.1.6

& Annex E-1 1.0 1.0

Vs = 24.46x1.1x1x1 26.90 m/s

Vs = Mean Wind Speed

Vb = Basic Wind Speed (Hourly Mean Wind Speed)

Sa = Altitude Factor

Ss = Seasonal Factor

Sd = Directional Factor

Δ = Elevation from the Mean See Level

Sa = 1+0.001x100

Sd =

Sd =

V S=V b Sa SsSd

Sa=1+0. 001 Λ

V S=V b Sa SsSd

Page 31: Calculation

Reference Description Results Effective Wind Speed

Clause 3.2.1

26.90 m/s 26.90 m/s

Clause 3.2.2 For an Open Country Terrain

Figure 3 1.3

Clause 3.2.4 0.6

So = 1.3(1+0.6) 2.08

Figure 1 considering Upper Graph Performance

1.2 1.2

Vz = 26.9x2.08x1.2 m/s 67.14 m/s

Vz = Effective Wind Speed

VS = Mean Wind Speed

So = Terrain Factor

γv = Partial Safety Factor for Wind Speed

VS =

Sc = Fetch Factor

Sb = Topography Factor

Sc =

Sb =

γv =

V z=V S So γ v

So=Sc (1+Sb )

Page 32: Calculation

Reference Description Results

Charasteristic Wind Speed

Clause 3.2.1

24.46 m/s 24.46 m/s

1.1 1.1

2.08 2.08

Vk = 24.46x1.1x2.08 m/s 55.95 m/s

Vk = Charasteristic Wind Speed

Vb =

Sa =

So =

V k=V b SaSo

Page 33: Calculation

Reference Description Results

WIND RESISTANBCE Section Members

Clause 4.2.1

1. Face of 0.4 m Segments of the Topmest TowerSection 1.1 Pipes

Outer Diameter of the Pipe = 48.3 mm Length of the Pipe Segment = 0.6 m Number of Pipes = 2

Area of Pipes Facing to Wind = 0.0580

1.2 Diaganal Stiffeners

Outer Diameter of the Stiffeners = 16 mm Length of one Stiffener = 0.38 m Number of Stiffeners = 2

Area of Pipes Facing to Wind = 0.0122

1.3 Horizontal Stiffeners

Outer Diameter of the Stiffeners = 16 mm Length of one Stiffener = 0.234 m Number of Stiffeners = 2

Area of Pipes Facing to Wind = 0.0075

RM = Total Wind ResistanceKθ = Wind Incident Factor

CN = Overall Normal Drag Coefficient

As = Total Area Projected on the Concerned Face

m2

m2

m2

RM=KθCN As

Page 34: Calculation

Reference Description Results

1.4 Power Cables

Outer Diameter of the Cable = 25 mm Length of one Cable Segment = 0.6 m Number of Cables = 0

Area of Cables Facing to Wind = 0.0000

0.0776

Width of the Segment = b = 0.284 m

Height of the Segment = h = 0.600 m

Area of the Section = A = 0.1704

0.4555

Figure 7 1.0 1.0

Figure 8 1.13 1.13

0.0877

For a Wind Load Corresponding to 1m Lengthof a Tower Section, The Multipliction Factore

=1/0.6 1.67

= 1.667x0.0877 0.1462

m2

Total Solid Area Facing to Wind = A0 = m2

m2

Solidity Ratio = Ψ = As/A

Kθ =

CN =

RM = m2

mm2 m2

RM=KθCN As

Page 35: Calculation

Reference Description Results

2. Power Cables

Clause 4.3

Clause 4.3 1.0 1.0

Table 2 2.00 2.00

Diameter of a Cable = 25 mm

Area of a Unit Weight = 0.025 0.025

Number of Cables Facing Wind = 3 3

0.150

RAW = Wind ResistanceKA = Reduction Factor for Ancillaries

CN = Drag Coefficient

AA = Reference Area of the Item

KA =

CN =

m2 m2

RAW = m 2

RAW=K ACN A A

Page 36: Calculation

Reference Description Results

3. Microwave Antennae

Clause 4.4

Clause 4.3 1.0 1.0

Clause 4.4 1.26 1.2617

Clause 4.4 Diameter of an Antena = 1.2 m

Area of an Antena = 1.13 1.13

Number of Antenae = 2 2

2.854

CA = Drag Coefficient

KA =

CA =

m2 m2

RAW = m 2

RAW=K ACA A A

Page 37: Calculation

Reference Description Results

4. GSM Antennae

Clause 4.4

Clause 4.3 1.0 1.0

Clause 4.4 1.18 1.18

Clause 4.4 Dimensions of an Antena = 0.27 x 2.90 m

Area of an Antena = 0.783 0.783

Number of Antenae = 6 6

2.772

KA =

CA =

m2 m2

RAW = m 2

RAW=K ACA A ARAW=K ACA A A

Page 38: Calculation

Reference Description Results

WIND LOADING

Clause 5.2.2 Survival Conditions

1.12 1.12

67.14 m/s 67.14 m/s

Wk = 0.5x1.12x67.14 2.52

Clause 5.2.2 Operational Conditions

1.12 1.12

55.95 m/s 55.95 m/s

Wk = 0.5x1.12x55.95 1.75

Survival to Oparational ratio = 1.44

Clause 5.2.2 The Wind Forces for Survival and Operational Conditionscan be Calculated by Multiplying these Wind PressureValues by the Wind Resistance Values of Each Type of Components

Wk = Meam Wind Pressure

ρa = Density of Air

Vz = Effective Wind Speed

ρa = kg/m3 kg/m3

Vz =

kN/m2 kN/m 2

Vz = Effective Wind Speed

ρa = kg/m3 kg/m3

Vz =

kN/m2 kN/m 2

W k=ρa2Vz2

W k=ρa2Vk

2

Page 39: Calculation

Reference Description Results

Uniformly Distributed Loads

Wind Loads on: Operation SurvivalkN/m kN/m

Section 1-1 0.2563 0.3691Section 1-2 0.2563 0.3691Section 2 0.2703 0.3892Section 3 0.2711 0.3904Section 4 0.2943 0.4238Section 5 0.3154 0.4542Data Cables 0.2630 0.3787

Point Loads

Wind Loads on Antennae Operation SurvivalkN kN

6 GSM Antennae 4.8596 6.99782 0.6m Diameter MW Antennae 5.0035 7.2050

The tower has been analyzed fro operationalcanditions.

Page 40: Calculation
Page 41: Calculation

TANTRI MARINE ENGINEERING COMPANYDesign and Consultation Department Date

No. 117, Biyagama Road, Kelaniya Project

Phone - +94777324380 E-mail - [email protected] Performed by

TOWER SPECIFICATION

Tower typeNatulre of supportOverall height 40 m

Number of sections 5

Page 42: Calculation

BS 8100- Part 4Mean Site Wind SpeedV s = V s x V b x S d x S c

Where

3 sec Gust wind speed = 50.00 m/s For Zone 3 180 Kmph

Relative Hourly Mean Wind speed

V b = 25 m/s

V b V sS a = Altitude factor 25 x 1.1 27.5

is 100m 1.3 1.30.59 0.6

S a = 1.1

S d = Direction factor 2.067 2.08Cl 3.1.5 : S d 1.2 1.2

= 1.0 62.01 68.64S s = Seasonal factor

Cl 3.1.6 & Annex E : S s 2268.69 2779.76= 1.0

V s = 27.5 m/s Survival

V z =

S 0 = Terrain Factor

Country Terrain; S 0 = S c (1 + S h)

Where S c : Fetch Factor = 1.3S h : Topography Factor = 0.6 (Cl 3.2.4 & Annex H)

S 0 = 2.08

g n = 1.2

V z = 27.5 2.08 1.2= 68.64 m/s

Wind Pressure

= 0.59

Cl 3.1.4 : S a = 1 + 0.001 DWhen D

V s x S o x g n

0.59 x V z 2

Page 43: Calculation

= 2.78 kN/m2

For Servisibility Condition

V k = V b x Sa x So= 17.5 x 1.1 x 2.08

40.04 m/s

W k operational

=

= 0.946 kN/m2

= 0.6

W k KN/m2 Force /kN/m

Dia(m) No. Perational Survival OperationalSurvivalOption1 0.6 1.000 0.025 4 0.1 0.060 0.946 1.362 0.057 0.082Option2 2.0 1.000 0.025 4 0.1 0.200 0.946 1.362 0.189 0.272

ANTENNA ANCILLARIES

Antenne Force/Antennae kN

At height/( Nos Dia Wt Dead(kN) Operational Surevival Area (m2) OperationalSurvival36 2.0 1.2 180 1.765 0.946 1.362 1.131 1.0 1.2617 1.135 1.94

= 1.18

= 1.0

0.59 x 40.04 2

R AW = C N K A A A Sin 2 q

C N

C N K A A A R AW

R AW = C A K A A A

Wk kN/m2

K A C A

R AW = C A K A A A

C A

K A

Page 44: Calculation

Cellular Antennas Height Varies

At Height Nos Size Wt Dead Antenne K A C A Force / Antenne kN(m) B x H (Kg) (kN) Operational Surevival Area/(m2) OperationalSurevival

40 6.0 0.27 x 2.90 18.5 0.181 0.946 1.362 0.783 1 1.18 0.87 1.26

Anciliary Components Width Height Solidity RaDrag Coeff

( Data Cable ) (m) (m) y

Structural Pipe/Rod Length Area Dia No Length Area

No Dia. (m) (m2) (m) (m)Section-01 2.0 0.0334 0.4000 0.0267(Above32m 2.0 0.0120 0.3210 0.0077

0.0344 0.2840 0.4000 0.3030 1.4000

Section-01 2.0 0.0334 0.4000 0.0267 0.0250 4 0.4000 0.0400(Bellow32m 2.0 0.0120 0.3210 0.0077

0.0344 0.0400 0.2840 0.4000 0.6551 1.4000

Section-02 2.0 0.0334 0.4000 0.0267 0.0250 4 0.4000 0.04002.0 0.0120 0.4260 0.0102

0.0369 0.0400 0.4030 0.4000 0.4773 1.1900

Section-03 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.5410 0.0130

0.0516 0.0400 0.5490 0.4000 0.4172 1.1400

Section-04 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.6760 0.0162

0.0549 0.0400 0.6930 0.4000 0.3422 1.1000

Section-05 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.8320 0.0200

0.0586 0.0400 0.8380 0.4000 0.2942 1.1000

Wk kN/m2

C NC

A S A A

m2

Page 45: Calculation

Over turning stability Calculation

Figure 8.2.2 : Checking the side most likely to fail

YTWR

X Platform

YCG

Rs

pm

l

Stability Circle

b

f

LF Cos 60

YPlatform

m

q Guyo

AA

C

B

LF

LF Sin 60

f

Y=0 Line

d

km

Page 46: Calculation

Center of Gravity Without Concrete

Weight Force Y Tr M (J)Tower+Head 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Frame 289 Kg 2,835 0.300 8.51 E+022 Front Poly 576 Kg 5,651 -3.000 -1.70 E+042 Rear Poly 0 Kg 0 6.000 0.00 E+00Base Struc W 3045 Kg 29,871 1.700 5.08 E+04Wt of Access 0 Kg 0 0.000 0.00 E+00Resultant Wt 5443 Kg 53,391 0.790 4.22 E+04

Center of Gravity of the system with ConcreteWeight Force Y Tr M (J)

Tower+Head 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Frame 289 Kg 2,835 0.300 8.51 E+022 Rear Poly 0 Kg 0 6.000 0.00 E+00Concrete @ 3240 Kg 31,784 6.000 1.91 E+05Concrete @ 3240 Kg 31,784 0.000 0.00 E+00Concrete @ 3240 Kg 31,784 -3.000 -9.54 E+042 Front Poly 576 Kg 5,651 -3.000 -1.70 E+04Base Struc W 3045 Kg 29,871 1.700 5.08 E+04Wt of Access 0 Kg 0 0.000 0.00 E+00

Resultant Wt 15163 Kg 148,744 0.925 1.38 E+05

Turning Moment = WF Per Segment x No of Segments x Elevation

Wind Force effectDescription Area Repetition Elevation WF per seg Turning Moment

of Segments m KN KNmGSM Antenn 0.675 m2 1 30.00 1.260 37.801.2 MW Dish 1.131 m2 1 28.00 1.940 54.32Section 1 0.014 m2 14 26.25 0.134 48.35Section 1.2 0.020 m2 14 24.00 0.213 70.43

Page 47: Calculation

Section 2 0.037 m2 14 20.75 0.179 51.06Section 3 0.052 m2 14 15.25 0.220 46.21Section 4 0.055 m2 14 9.75 0.133 17.80Section 5 0.059 m2 21 4.25 0.236 21.31

347.29

Total Wind Turning M = 347.29 KNm 669663.4

Total Wt of the System = 149 KN

Leverage Required = Total Wind Turning Moment / Total Wt of the System

2.33 m

Y Platform = 6.5X Platform = 2.3

= 0.925 (Center of gravity of system with concrete Blocks)

L = 6 (Length of Guy Arm)

= Tan -1{ ( L x Sin 60) / (Y platform + Lx Cos60)}

Tan = 5.209.50

= 28.68 Degrees

Y CG

d

Page 48: Calculation

= Tan -1{ ( X Platform) / (Y platform - Y CG)}

Tan = 2.304.20

= 28.71 Degrees

= X Platform / Sin 1.5x.61x1

= 4.79 1.5 x .3

= Sin

Comparisan to select the side Most likely to fail

Side Leverag= Sin Rear A 5500

4.03 Stable 1.730

A legs levera = (Y platform - Y CG) Front B 16000

5.58 Stable 2.39

A 3240 KgC legs lever = (Y CG + L x Cos 60) B 3240 Kg

C 3240 Kg= 3.92 Stable 1.68

Radius of Stab= 2.33

900

f

f

km

+ f d

km

+ f d

Page 49: Calculation

Concrete Blocks RequiredW 53.391 KN

0.790 m

72 KN 224 KN 186 KN

Taking Moments about A

Over turning moment = 186 x 9

= 1674 KNm

Moment of self Weight =

= 278.15

Resultant Moment = Over turning moment - Moment of self Weight

= 1395.85

Required Weight = Resultant Moment / ( 6 + 3)

= 155.09 Nm

Y CG

W x ( 6 - Y CG )

B

C6m 3m

Page 50: Calculation

Taking momeOver Turning Moment Moment of Self Wt Resultant Moment Required W @KNm KNm KNm KN

about A 1674 278.15 1395.85 155.09 C

about C 648 202.37 445.63 49.51 A

Page 51: Calculation

OperationlPost Desaster Neutral Str In Sri Lanka

Zone 1 120 110 180Zone 2 105 95 160Zone 3 85 75 120

S a Altitude Factor

S cS h

S 0 = S c (1 + S h)Gamma Partial SFV z = V s x S o x g n

Page 52: Calculation

0.06

0.8561690.856169

R AW

Page 53: Calculation

Height Varies

Drag Coeff OperationalForce with Uni cable

With Solidity

Wk Prof W k * RM Cable Without Solidity

kN/m2 kN/m F1 Balance A with shy A no shy Tot F

1.0 0.0482 2.780 0.0896 0.133966 -0.0444 0.0000 0.0000 0.134 0.1340 0.1340

1.0 0.0482 2.780 0.1140 0.133966 -0.0200 0.0341 0.0560 0.213 0.1681 0.1900

1.0 0.0440 2.780 0.1040 0.122207 -0.0182 0.0219 0.0476 0.179 0.1441 0.1698

1.0 0.0589 2.780 0.1392 0.163592 -0.0244 0.0185 0.0456 0.220 0.1821 0.2092

1.0 0.0604 2.780 0.1427 0.167759 -0.0251 0.0148 0.0440 0.225 0.1825 0.2118

1.0 0.0645 2.780 0.1525 0.179207 -0.0267 0.0128 0.0440 0.236 0.1920 0.2232

K q R M

Page 54: Calculation

26.25 m20.75 m15.25 m9.75 m over lap 3

4.25 m

Lightening 0.030 m2 1 32.00 0.028 0.90Aviation L 0.060 m2 1 32.00 0.056 1.79

Cables 0.150 m2 6 36.00 0.124 26.71

Page 55: Calculation

Prof our1260.00 6019.541940.00 5128.39

742.002460.80 2400.28

3029.85 2400.28

2822.00 2274.53

Page 56: Calculation

3240 64802400 48001620 3240

6480

648012000

Page 57: Calculation

Checking for Bending and Shearing and deflection of Goose neck due to Uplift

No of Beams Weled = 2Weld Thickness = 0.006 m

Weld Len CountyWeld Contact Lenth UB200x150 0.150 m 4 0.600 m

UB200x150 0.395 m 2 0.791 mUB150x150 0.250 m 3 0.750 mUB150x150 0.174 m 2 0.348 m

Total Weld Length 2.488 m

Throught thickness fac = Cos(45)= 0.707

Effective Length = 1.760

Area = 0.0211140953 m2

Distance Between Pivo = 0.264 m

Forces On Cantelevered ArmWeight Force Y Tr M

Self Wt 180 Kg -1766 1.700 -3002 JGuy Top 8449 1.771 14963 J2nd 8272 1.646 13616 J3 rd 7952 1.521 12095 JGuy Bottom 7209 1.396 10064 JUp Lift 30117 47737 J

Force At Pivot = 181163

Stress developed = 8580207.6079 N/m2

= 8.58 N/mm2

Allowed Tensile Stress = 270.00 N/mm2

Page 58: Calculation

S.F = 31.47

Page 59: Calculation

Analysis for bending of Cantilevered Beam.

Up lift = 30,117 N

30,116.73 Kg

E = 210 Gpa

L Extended = 3.00 m

I = 3.60 E-05

Max Bending Moment Allowed = 3.39 E+04

Differential Equations

= q = 0

= V = + c1

=

=2

EI V(x) =

EI V(x) 4

EI V(x) 3

EI V(x) 2 c1.x + c2

EI V(x) 1 + c1.x2 +c2.x +c3

+ c1.x3 +c2.x2 +c3.x +c4

R B =

5

4

3

2

1

Page 60: Calculation

6 2

Boundry Conditions

Sh Force = R A V(L) 3 = R B= ###

BM = 0 V(L) 2 = 0

Tangent = 0 V(L) 1 = infinite

Deflection V(0) = 0 V(L) =

From eq'n 5

V(0) = 0 C4 = 0

From eq'n 4

= 0 C3 = 0

From eq'n 3

= 0

=

=

Form Equation 2

= R B = 30,116.73 Kg

= 295,445.14 N

=

2.10E+11 Pa (N/m2)

V(0) 3

V(0) 2

V(0) 1

d B

V(0) 1

V(L) 2

EI V(L) 2 c1.L +c2

c2 - c1.L

V(L) 3

EI V(L) 3 + c1

5

7

Page 61: Calculation

Moment of Inertia of the Flange =

= 1971875

For two flanges = 3943750

Moment of Inertia of web and Plates =

= 1143333.33333333

For three webs = 3430000

Total Moment of inertia of Lifting I beam = 7373750

= 0.00000737375

c1 = 295,445.14

From 7 c2 = - c1.L

c2 = -886335.4314

Sh Force = + c1 = 295,445.14

BM = 295,445.14 .x -886,335.43

Tangent = + c1.x2 +c2.x +c32

Deflection EI V(x) = 147,723 .x3 -886,335.43 .x2

Table 1 Deflection Parameter Table

(75 x 53 )/12 + (75 x 5) x 72.5

5 x 1403 / 12

mm 4

m 4

EI V(x) 3

EI V(x) 2

EI V(x) 1

Neutral Axis

Page 62: Calculation

X from end Deflection mm SF / N BM

0 0.00 m 0.00 295,445 886,335 0.04 Safe1 0.08 m -0.65 295,445 864,177 0.04 Safe2 0.15 m -2.57 295,445 842,019 0.04 Safe3 0.22 m -5.71 295,445 819,860 0.04 Safe4 0.30 m -10.02 295,445 797,702 0.04 Safe5 0.38 m -15.45 295,445 775,544 0.04 Safe6 0.45 m -21.95 295,445 753,385 0.05 Safe7 0.52 m -29.48 295,445 731,227 0.05 Safe8 0.60 m -37.97 295,445 709,068 0.05 Safe9 0.68 m -47.39 295,445 686,910 0.05 Safe

10 0.75 m -57.69 295,445 664,752 0.05 Safe11 0.83 m -68.80 295,445 642,593 0.05 Safe12 0.90 m -80.69 295,445 620,435 0.05 Safe13 0.98 m -93.31 295,445 598,276 0.06 Safe14 1.05 m -106.60 295,445 576,118 0.06 Safe15 1.13 m -120.52 295,445 553,960 0.06 Safe16 1.20 m -135.02 295,445 531,801 0.06 Safe17 1.28 m -150.04 295,445 509,643 0.07 Safe18 1.35 m -165.54 295,445 487,484 0.07 Safe19 1.42 m -181.47 295,445 465,326 0.07 Safe20 1.50 m -197.78 295,445 443,168 0.08 Safe21 1.58 m -214.42 295,445 421,009 0.08 Safe22 1.65 m -231.33 295,445 398,851 0.09 Safe23 1.72 m -248.48 295,445 376,693 0.09 Safe24 1.80 m -265.81 295,445 354,534 0.10 Safe25 1.88 m -283.28 295,445 332,376 0.10 Safe26 1.95 m -300.82 295,445 310,217 0.11 Safe27 2.03 m -318.40 295,445 288,059 0.12 Safe28 2.10 m -335.96 295,445 265,901 0.13 Safe29 2.18 m -353.45 295,445 243,742 0.14 Safe30 2.25 m -370.83 295,445 221,584 0.15 Safe31 2.33 m -388.05 295,445 199,425 0.17 Safe32 2.40 m -405.05 295,445 177,267 0.19 Safe33 2.47 m -421.79 295,445 155,109 0.22 Safe34 2.55 m -438.21 295,445 132,950 0.26 Safe35 2.63 m -454.27 295,445 110,792 0.31 Safe36 2.70 m -469.92 295,445 88,634 0.38 Safe37 2.78 m -485.11 295,445 66,475 0.51 Safe38 2.85 m -499.78 295,445 44,317 0.77 Safe39 2.93 m -513.90 295,445 22,158 1.53 Safe40 3.00 m -527.41 295,445 0 10,000.00 Safe

Page 63: Calculation

Fig 3.2.3 Deflection Diagram

Fig 3.2.4 Bending moment Diagram

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Shear Force Diagram /( N )

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041

0100,000200,000300,000400,000500,000600,000700,000800,000900,000

1,000,000

Bending Moment Diagram

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041

-600.00

-500.00

-400.00

-300.00

-200.00

-100.00

0.00

Deflection /(mm)

Page 64: Calculation

Fig 3.2.5 Shear Force Diagram

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Shear Force Diagram /( N )

Page 65: Calculation

Max 0.00Min -527.41

Amax 527.408 mm 6.00

5

2

1

Page 66: Calculation

5 5.09E-066 5.98E-067 6.84E-068 7.66E-06

5

Page 67: Calculation

H

W

t w

t f

t w

Neutral Axis

Neutral Axis

Page 68: Calculation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Shear Force Diagram /( N )

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041

0100,000200,000300,000400,000500,000600,000700,000800,000900,000

1,000,000

Bending Moment Diagram

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041

-600.00

-500.00

-400.00

-300.00

-200.00

-100.00

0.00

Deflection /(mm)

Page 69: Calculation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Shear Force Diagram /( N )

Page 70: Calculation

StressComponet Material Type Yield(N/mm2) UTenStr Tensile Shear Bending

Twr Pipes st 52 335 523Stiffner 1020 C Steel 200 380Flat IronPivot Shaft

GuyArm SHS 4'x4'x 6Brackets

Guy Stuff Turn BuckleShaclesGassete Plates

Twr Lock Lock PinVerti Screw

Material ?

(MPa) ? (MPa) ? Yield strength Ultimate strength

first carbon nanotube ropes ? 3,600Structural steel ASTM A36 ste 250 400Steel, API 5L X65 (Fikret Mert 448 531Steel, high strength alloy AS 690 760Steel, prestressing strands 1,650 1,860[citation needed] Steel Wire Steel (AISI 1,060 0.6% carbon2,200-2,482[1] High density polyethylene (H 26-33 37Polypropylene Dec-43 19.7-80 Stainless steel AISI 302 - Cold 520 860Cast iron 4.5% C, ASTM A-48 130 200Titanium alloy (6% Al, 4% V) 830 900Aluminium alloy 2014-T6[citat 400 455Copper 99.9% Cu 70 220Cupronickel 10% Ni, 1.6% Fe, 130 350Brass 200+ 550Tungsten 1,510Glass 50 (in compression) E-Glass N/A 3,450S-Glass N/A 4,710

Page 71: Calculation

Basalt fiber N/A 4,840Marble N/A 15Concrete N/A 3Carbon Fiber N/A 5,650Human hair 380Spider silk (See note below) 1,000Silkworm silk 500 Aramid (Kevlar or Twaron) 3,620 UHMWPE 23 46UHMWPE fibers[2][3] (Dyneema or Spectra) 2,300-3,500 Vectran 2,850-3,340 Polybenzoxazole (Zylon) 5,800Pine Wood (parallel to grain) 40Bone (limb) 104-121 130Nylon, type 6/6 45 75Rubber - 15Boron N/A 3,100Silicon, monocrystalline (m-Si)N/A 7,000Silicon carbide (SiC) N/A 3,440Sapphire (Al2O3) N/A 1,900Carbon nanotube (see note beN/A 62,000Carbon nanotube composites N/A 1,200[4]

Properties of Steel % % H_bUNS Number Processing MYield Strengt Tensile St Elongation Reduction Brinell HardnessG10100 Hot Rolled 179 324 28 50 95G10100 Cold Drawn 303 365 20 40 105G10150 Hot Rolled 186 345 28 50 101G10150 Cold Drawn 324 386 18 40 111G10180 Hot Rolled 220 400 25 50 116G10180 Cold Drawn 372 441 15 40 126G10350 Hot Rolled 269 496 18 40 143G10350 Cold Drawn 462 551 12 35 163G10350 Drawn 800 F 558 758 18 51 220G10350 Drawn 1000 496 710 23 59 201G10350 Drawn 1200 427 627 27 66 180G10400 Hot Rolled 289 524 18 40 149G10400 Cold Drawn 489 586 12 35 170G10400 Drawn 1000 593 779 23 62 235G10500 Hot Rolled 338 620 15 35 179G10500 Cold Drawn 579 689 10 30 197G10500 Drawn 600 F 1240 1516 10 30 450G10500 Drawn 900 F 896 1068 18 55 310G10500 Drawn 1200 551 723 28 65 210G15216 Hot Rolled, 558 689 25 57 192G41300 Hot Rolled, 413 620 30 45 183G41300 Cold Drawn, 599 675 21 52 201G41300 Drawn 1000 916 1006 17 60 293G41400 Hot Rolled, 434 620 27 58 187G41400 Cold Drawn, 620 703 18 50 223G41400 Drawn 1000 903 1054 16 45 302G43400 Hot Rolled, 475 696 21 45 207G43400 Cold Drawn, 682 765 16 42 223

Page 72: Calculation

G43400 Drawn 600 F 1612 1791 12 43 498G43400 Drawn 1000 1116 1254 15 40 363G46200 Case Harden 613 827 22 55 248G46200 Drawn 800 F 648 896 23 66 256G61500 Hot Rolled, 400 627 22 53 183G61500 Drawn 1000 909 1068 15 44 302G87400 Hot Rolled, 441 655 25 55 190G87400 Cold Drawn, 661 737 17 48 223G87400 Drawn 1000 889 1047 15 44 302G92550 Hot Rolled, 537 792 22 45 223G92550 Drawn 1000 1102 1240 15 32 352

Page 73: Calculation

Buckling Modulus E Density Manuf Safty Lim210x 1000 N/mm2

(g/cm³) ?Density

1.37.87.87.87.87.87.8

0.950.918.19

4.51

2.78.928.94

5.319.25

2.532.572.48

Page 74: Calculation

2.7

1.75

1.440.970.97

1.61.15

2.462.33

3.9-4.1

1.34N/A

Brinell Hardness

Page 75: Calculation

BS 8100- Part 4

Mean Site Wind SpeedV s = V s x S b x S d x S c

Where

3 sec Gust wind speed = 50.00 m/s For Zone 1 180 Kmph

Relative Hourly Mean Wind speed

V b = 26.25 m/s

S a = Altitude factor

is 100m

S a = 1.1

S d = Direction factorCl 3.1.5 : S d

= 1.0S s = Seasonal factor

Cl 3.1.6 & Annex E : S s= 1.0

V s = 28.875 m/s

V z =

S 0 = Terrain Factor

Country Terrain; S 0 = S c (1 + S h)

Where S c : Fetch Factor =1.3S h : Topography Factor = 0.6 (Cl 3.2.4 & Annex H)

S 0 = 2.08

g n = 1.2

V z = 28.875 x 2.08 x 1.2

= 72.07 m/s

Cl 3.1.4 : S a = 1 + 0.001 DWhen D

V s x S o x g n

Page 76: Calculation

Wind Pressure

=

= 3065 N/m2= 3.06 kN/m2

For Servisibility Condition

V k = V b x Sa x So= 26.25 x 1.1 x 2.08

60.06 m/s

W k operational

=

2128 N/m2= 2.128 kN/m2

= 0.6

For Power cables W k KN/m2 Force /kN/m

Dia(m) No. PerationSurvivalOperati SurvivalOption1 0.6 1.000 0.025 4 0.1 0.060 2.128 3.065 0.128 0.184Option2 2.0 1.000 0.025 4 0.1 0.200 2.128 3.065 0.426 0.613

0.59 x V z 2

0.59 x 40.04 2

R AW = C N K A A A Sin 2 q

C N

C N K A A A R AW

Page 77: Calculation

ANTENNA ANCILLARIES

MW Dishes

Antenne Force/Antennae kN

At height/( Nos Dia Wt Dead(k OperationaSurevivArea (m Operatio Survival26 1.0 1.2 180 1.765 2.128 3.065 1.131 1.0 1.2617 1.4269 1.822 2.624

= 1.18

= 1.0

Cellular Antennas ( GSM )

At Height Nos Size Wt Dead Antenne Force/Antenne kN

(m) B x H (Kg) (kN) OperationaSurevivArea/(m2) Operatio Surevival30 3.0 0.27 x 2.90 18.5 0.181 2.128 3.065 0.783 1 1.18 0.9239 5.90 8.49

R AW = C A K A A A

Wk kN/m2

K A C A R AW

R AW = C A K A A A

C A

K A

Wk kN/m2 K A C A

R AW

Page 78: Calculation

Structural componentsAnciliary Components Width Height Solidity Drag Operati Force

( Data Cable ) (m) (m) Ratio Coeff Wk Pipes Cables WF

b h y kN/m2 kN kN kNStructural Pipe/Rod Length Area Dia No Length Area

No Dia. (m) (m2) (m) (m)Section-01 2.0 0.0334 0.4000 0.0267(Above32m 2.0 0.0120 0.3210 0.0077

0.0344 0.2840 0.4000 0.3030 1.4000 1.0 0.0482 3.065 0.1477 0.0000 0.1477

Section-01 2.0 0.0334 0.4000 0.0267 0.0250 4 0.4000 0.0400(Bellow32m 2.0 0.0120 0.3210 0.0077

0.0344 0.0400 0.2840 0.4000 0.6551 1.4000 1.0 0.0482 3.065 0.1477 0.1277 0.3265

Section-02 2.0 0.0334 0.4000 0.0267 0.0250 4 0.4000 0.04002.0 0.0120 0.4260 0.0102

0.0369 0.0400 0.4030 0.4000 0.4773 1.1900 1.0 0.0440 3.065 0.13473 0.1277 0.2867

Section-03 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0160 0.5410 0.0173

0.0560 0.0400 0.5490 0.4000 0.4369 1.1400 1.0 0.0638 3.065 0.19548 0.1277 0.3411

Section-04 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0160 0.6760 0.0216

0.0603 0.0400 0.6930 0.4000 0.3617 1.1000 1.0 0.0663 3.065 0.20319 0.1277 0.3437

Section-05 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0160 0.8320 0.0266

0.0653 0.0400 0.8380 0.4000 0.3140 1.1000 1.0 0.0718 3.065 0.22001 0.1277 0.3605

K q R M

A S A A C NC

m2

Page 79: Calculation

BS 8100- Part 4

Mean Site Wind Speed

V s = V s x S b x S d x S c

Where

3 sec Gust wind speed = 50.00 m/s For Zone 1 180 Kmph

Relative Hourly Mean Wind speed Wind factor

V b = 33.00 m/s 1.3

S a = Altitude factor

is 100m

S a = 1.1

S d = Direction factorCl 3.1.5 : S d

= 1.0S s = Seasonal factor

Cl 3.1.6 & Annex E : S s= 1.0

V s = 36.3 m/s

V z =

S 0 = Terrain Factor

Country Terrain; S 0 = S c (1 + S h)

Where S c : Fetch Factor = 1.3S h : Topography Factor = 0.6 (Cl 3.2.4 & Annex H)

S 0 = 2.08

g n = 1.2

V z = 36.3 x 2.08 x 1.2

= 90.60 m/s

Cl 3.1.4 : S a = 1 + 0.001 D

When D

V s x S o x g n

Page 80: Calculation

Wind Pressure

=

= 4843 N/m2= 4.84 kN/m2

For Servisibility Condition

V k = V b x Sa x So= 33 x 1.1 x 2.08

75.50 m/s

W k operational

=

= 3364 N/m2

= 3.364 kN/m2

0.59 x V z 2

0.59 x 40.04 2

Page 81: Calculation

= 0.6

For Power cables W k KN/m2 Force /kN/m

Dia(m) No. PerationSurvivalOperati SurvivalOption1 0.6 1.000 0.025 4 0.1 0.060 3.364 4.843 0.202 0.291Option2 2.0 1.000 0.025 4 0.1 0.200 3.364 4.843 0.673 0.969

R AW = C N K A A A Sin 2 q

C N

C N K A A A R AW

Page 82: Calculation

ANTENNA ANCILLARIES

MW Dishes

Antenne Force/Antennae kN

At height/( Nos Dia Wt Dead(k OperationaSurevivArea (m Operatio Survival36.00 2.0 1.2 180 1.765 3.364 4.843 1.131 1.0 1.2617 1.4269 5.759 8.294

R AW = C A K A A A

Wk kN/m2

K A C A R AW

Page 83: Calculation

= 1.18

= 1.0

Cellular Antennas ( GSM )

At Height Nos Size Wt Dead Antenne Force/Antenne kN

(m) B x H (Kg) (kN) OperationaSurevivArea/(m2) Operatio Surevival37.50 6.0 0.27 x 2.90 18.5 0.181 3.364 4.843 0.3915 1 1.18 0.4620 9.32 13.43

R AW = C A K A A A

C A

K A

Wk kN/m2 K A C A

R AW

Page 84: Calculation

Structural componentsAnciliary Components Width Height Solidity Drag

( Data Cable ) (m) (m) Ratio Coeff

b h y Structural Pipe/Rod Length Area Dia No Length Area

No Dia. (m) (m2) (m) (m)Section-01 2.0 0.0483 0.4000 0.0386(Above32m 2.0 0.0120 0.3210 0.0077

0.0463 0.2840 0.4000 0.4080 1.4000 1.0

Section-01 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.0400(Bellow32m 2.0 0.0120 0.3210 0.0077

0.0463 0.0400 0.2840 0.4000 0.7601 1.4000 1.0

Section-02 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.4260 0.0102

0.0489 0.0400 0.4030 0.4000 0.5513 1.1900 1.0

Section-03 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0160 0.5410 0.0173

0.0560 0.0400 0.5490 0.4000 0.4369 1.1400 1.0

Section-04 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0160 0.6760 0.0216

K q

A S A A C NC

m2

Page 85: Calculation

0.0603 0.0400 0.6930 0.4000 0.3617 1.1000 1.0

Section-05 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0160 0.8320 0.0266

0.0653 0.0400 0.8380 0.4000 0.3140 1.1000 1.0

Zone 1 With 6.0 GSM & 2.0 MW Dishes

OVER TURNING STABILITY CALCULATION

Figure 8.2.2 : Checking the side most likely to fail

YTWR

X Platform

YC

G

Rs pm

l

Stability Circle

b

f

LF Cos 60

YPlatfor

m

m

q Guyo

AA

C

B

LF

LF Sin 60

f

Y=0 Line

d

km

Page 86: Calculation

Center of Gravity Without Concrete

Weight Force Y Tr M (J)Tower+Head 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Fram 289 Kg 2,835 0.300 8.51 E+022 Front Pol 576 Kg 5,651 -3.000 -1.70 E+042 Rear Poly 0 Kg 0 6.000 0.00 E+00Base Struc 3045 Kg 29,871 1.700 5.08 E+04Wt of Acces 0 Kg 0 0.000 0.00 E+00Resultant W 5443 Kg 53,391 0.790 4.22 E+04

Page 87: Calculation

Center of Gravity of the system with ConcreteWeight Force Y Tr M (J)

Tower+Head 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Fram 289 Kg 2,835 0.300 8.51 E+022 Rear Poly 0 Kg 0 6.000 0.00 E+00

2 Nos Concrete @ 7000 Kg 68,670 6.000 4.12 E+052 Nos Concrete @ 9200 Kg 90,252 0.000 0.00 E+002 Nos Concrete @ 7600 Kg 74,556 -3.000 -2.24 E+05

2 Front Pol 576 Kg 5,651 -3.000 -1.70 E+04Base Struc 3045 Kg 29,871 1.700 5.08 E+04Wt of Acces 0 Kg 0 0.000 0.00 E+00

Resultant W 29243 Kg 286,869 0.804 2.31 E+05

Page 88: Calculation

Turning Moment = WF Per Segment x No of Segments x Elevation

Total Wind Turning = 1705.52 KNm

Total Wt of the Sys = 287 KN

Leverage Required = Total Wind Turning Moment / Total Wt of the System

5.95 m

Y Platform = 6.5X Platform = 2.3

= 0.804 (Center of gravity of system with concrete Blocks)

L = 6 (Length of Guy Arm)

= Tan -1{ ( L x Sin 60) / (Y platform + Lx Cos60)}

Tan = 5.209.50

= 28.68 Degrees

= Tan -1{ ( X Platform) / (Y platform - Y CG)}

Tan = 2.304.20

= 28.71 Degrees

Y CG

d

f

f

Page 89: Calculation

= X Platform / Sin

= 4.79

= Sin

Comparisan to select the side Most likely to fail

Side Leverage = Sin

4.03 Failure 0.68

A legs leverage = (Y platform - Y CG)

5.70 Failure 0.96

C legs leverage = (Y CG + L x Cos 60)

= 3.80 Failure 0.64

Radius of Stability Circle = 5.95

f

km

+ f d

km

+ f d

Page 90: Calculation

Concrete Blocks RequiredW 53.391 KN

0.790 m

72 KN 224 KN 186 KN

Taking Moments about A

Over turning momen= 186 x 9

= 1674 KNm

Moment of self Weig=

= 278.15

Resultant Moment = Over turning moment - Moment of self Weight

= 1395.85

Required Weight = Resultant Moment / ( 6 + 3)

= 155.09 Nm

Taking momOver Turning Mome Moment of Self WtResultant MomeRequire @KNm KNm KNm KN

about A 1674 278.15 1395.85 155.09 C

about C 648 202.37 445.63 49.51 A

Y CG

W x ( 6 - Y CG )

B

C6m 3m

A

Page 91: Calculation

1 1 2

Kgs 3500 1.4 Over Lap Kg 1.40 1.40

A 3500 3500 4600 A (Near Goose Neck Kg 3500 2600

B 4600 4600 3800 A Kg 3500 2600

C Arm 3800 3800 0.68 Side B ( Under Twr) Kg 4600 3300

0.96 Goose B Kg 4600 3300

0.64 Legs C (Arm 1) Kg 3800 2800

23800 C (Arm 2) Kg 3800 2800

23800 17400

Center of Gravity 0.804 1

Zone 1

Velocity 180 KPH

Section 1 0.0483 mm Perational Survival

Section 2 0.0483 mm V b V s

Section 3 0.0483 mm 33.00Section 4 0.0483 mm 1.1Section 5 0.0483 mm 1MW 2.0 Nos 36.3GSM 6.0 Nos 1.3 1.3A 3500 Kg 0.6 0.6A 3500 Kg 1B 4600 KgB 4600 Kg 2.08 2.08C (Arm 1) 3800 Kg 0 1.2C (Arm 2) 3800 Kg V k = V b x Sa x 75.504 90.60

23.8 TonGSM Ant 37.50 m 3363.50 4843.451.2 MW 36.00 m 3.364 4.843Section 32.65 m RatioSection 32.65 m Survival 1.440Section 25.55 mSection 18.45 mSection 11.35 mSection 4.25 m

GSM Ant13.425 kN1.2 MW 8.294 kNSection 0.558 kNSection 9.534 kNSection 9.262 kNSection 9.567 kNSection 9.640 kNSection 12.106 kN

Pipe

Anten

ne

Conre

te

Height

Wind

For

ce

Page 92: Calculation

0.59

0.06

Page 93: Calculation

Operatio ForceWk Pipes Cables WF

kN/m2 kN kN kN

0.0649 4.843 0.3143 0.0000 0.3143

0.0649 4.843 0.3143 0.2018 0.5968

0.0581 4.843 0.2816 0.2018 0.5218

0.0638 4.843 0.3089 0.2018 0.5390

R M

Page 94: Calculation

0.0663 4.843 0.3211 0.2018 0.5431

0.0718 4.843 0.3477 0.2018 0.5697

Page 95: Calculation

#########

Page 96: Calculation

### over lap 3

###

Page 97: Calculation

1.5x.6 3240 64801x1 2400 48001.5 x .3 1620 3240

Z

Rear A 5500

0Front B 16000

3500 Kg3500 Kg4600 Kg4600 Kg3800 Kg3800 Kg

Page 98: Calculation

3

1.40

1200

1200 Wind Force effect1200 Descript Area Repetiti1200 of Segments1200 Operationl GSM Anten 0.675 m2 1

1200 Zone Post DesasNeutral Str In Sri Lank 1.2 MW Dis 1.131 m2 1

7200 1 120 110 180 Section 1 0.014 m2 2

2 105 95 160 Section 1.2 0.020 m2 16

3 85 75 120 Section 2 0.037 m2 18

Section 3 0.052 m2 18

Section 4 0.055 m2 18

Section 5 0.059 m2 21

S a Altitude FactorS sV s x S b x S d x S cS cS hS d

S 0 = S c (1 + S h)Gamma Partial SF

N/m2 W k Wind PressurekN/m2

V z = V s x S o x g n

Page 99: Calculation

Cable sA with shy A no shy

0.0000 0.0000

0.0386 0.0560

Prof Has Considered 16mm Rods

0.0249 0.0476

0.0193 0.0456

Page 100: Calculation

0.0156 0.0440

0.0136 0.0440

Page 101: Calculation

SurvivalWF per seg ElevationWF n Seg Turning Moment

KN m KN KNm13.4252 37.50 13.425 503.44 8.494742

8.2936 36.00 8.294 298.57 5.247771

0.3143 32.65 0.558 18.21 1.367034

0.5968 32.65 9.534 311.27 2.596099

0.5218 25.55 9.262 236.64 4.539735

0.5390 18.45 9.567 176.52 4.68949

0.5431 11.35 9.640 109.42 4.725192

0.5697 4.25 12.106 51.45 7.660181

1705.52

KmPH

Page 102: Calculation

= 4.200 x 3.200= 1,928.93

Wind Force Truning Moment = 685712.72 J

Gap between beams = 0.8 m

Force on beam for the criticle case = 857140.89 N

= 87.374199 Ton

Total weight = 24,761 Kg 87.374 Ton

Load on One Beam = 43.687 Ton

Number of points the beam is Suppoted from bottom = 2

Load on Beam 43.7 Ton

Gravitational Acc 9.812 m/s2

Analysis for Bending failure

Section Moduli 310 N/mm2 3 E+08 PaSteel Density 7,900.00 Kg/m3

Considering the critical situation arisen while lifting from lifting hooks

Length L 6.000 m Thickness t 2t

0.0120 0.0240

0.0120

Unit length Weight 51.0 Kg/mBeam weight 306.0 Kg

Fig 3.2.6 I beam Cross section

t f

t w

H

W

t w

t f

Page 103: Calculation

Fig 3.2.7 Free body Diagram I Beam

Shearing stress 300 N/mm2X sec Area 0.0069 m3Allowed Max S Force 2.074 E+06 N

UDL of dead load On One Beam Total weight = 3,265 Kg

On one Beam = 1,633 KgNo of Segments = 40

Linear weight IntensityPer Segment = 40.81 Kgs/m

Table 3.2.4.2 Beam Property input tableMoment of Inertia of the beam Section

X from end Seg Wt/ (Kg) XsecArea H W MI Web MI Fla0 0.00 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-051 0.15 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-052 0.30 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-053 0.45 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-054 0.60 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-055 0.75 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-056 0.90 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-057 1.05 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-058 1.20 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-059 1.35 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-05

10 1.50 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0511 1.65 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0512 1.80 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0513 1.95 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0514 2.10 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0515 2.25 m 31.00 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0516 2.40 m 31.00 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0517 2.55 m 31.00 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0518 2.70 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0519 2.85 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0520 3.00 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0521 3.15 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0522 3.30 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-05

Ad2 I Comp/m4

x

R1 R 2

R 3

Page 104: Calculation

23 3.45 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0524 3.60 m 1389.29 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0525 3.75 m 31.00 0.01171 0.200 0.400 5.45 E-06 5.76 E-08 4.24 E-05 9.04 E-0526 3.90 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0527 4.05 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0528 4.20 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0529 4.35 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0530 4.50 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0531 4.65 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0532 4.80 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0533 4.95 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0534 5.10 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0535 5.25 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0536 5.40 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0537 5.55 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0538 5.70 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0539 5.85 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-0540 6.00 m 31.00 0.00691 0.200 0.200 5.45 E-06 2.88 E-08 2.12 E-05 4.79 E-05

10748.00 Max 0.200

Table 3.2.4.3 Bending moment at diastance x x Mx BM Allowed S Factor

0.00 m 00.00 m -9,056 148,559 16.40 Safe0.15 m -18,007 148,559 8.25 Safe0.30 m -26,851 148,559 5.53 Safe0.45 m -35,591 148,559 4.17 Safe0.60 m -44,224 148,559 3.36 Safe0.75 m -52,752 148,559 2.82 Safe0.90 m -61,174 148,559 2.43 Safe1.05 m -69,490 148,559 2.14 Safe1.20 m -77,701 148,559 1.91 Safe1.35 m -85,806 148,559 1.73 Safe1.50 m -93,806 148,559 1.58 Safe1.65 m -101,699 148,559 1.46 Safe1.80 m -109,487 148,559 1.36 Safe1.95 m -117,170 148,559 1.27 Safe2.10 m -124,747 148,559 1.19 Safe2.25 m -132,218 280,217 2.12 Safe Dis 0.602.40 m -139,583 280,217 2.01 Safe2.55 m -146,843 280,217 1.91 Safe2.70 m -151,998 280,217 1.84 Safe2.85 m -155,049 280,217 1.81 Safe3.00 m -155,995 280,217 1.80 Safe3.15 m -154,838 280,217 1.81 Safe3.30 m -151,575 280,217 1.85 Safe3.45 m -146,209 280,217 1.92 Safe3.60 m -138,738 280,217 2.02 Safe3.75 m -131,161 280,217 2.14 Safe3.90 m -123,478 148,559 1.20 Safe4.05 m -115,690 148,559 1.28 Safe4.20 m -107,797 148,559 1.38 Safe

Page 105: Calculation

4.35 m -99,797 148,559 1.49 Safe4.50 m -91,692 148,559 1.62 Safe4.65 m -83,481 148,559 1.78 Safe4.80 m -75,165 148,559 1.98 Safe4.95 m -66,743 148,559 2.23 Safe5.10 m -58,215 148,559 2.55 Safe5.25 m -49,582 148,559 3.00 Safe5.40 m -40,842 148,559 3.64 Safe5.55 m -31,998 148,559 4.64 Safe5.70 m -23,047 148,559 6.45 Safe5.85 m -13,991 148,559 100000.00 Safe6.00 m 0 148,559

Fig 3.2.9 Bending moment diagram

Table 3.2.4.4 Shear Force at diastance x x SF SF Allowed S Factor

0.00 m -60,374 2,073,600 10000.00 Safe0.15 m -59,670 2,073,600 34.75 Safe0.30 m -58,965 2,073,600 35.17 Safe0.45 m -58,261 2,073,600 35.59 Safe0.60 m -57,556 2,073,600 36.03 Safe0.75 m -56,852 2,073,600 36.47 Safe0.90 m -56,147 2,073,600 36.93 Safe1.05 m -55,443 2,073,600 37.40 Safe1.20 m -54,738 2,073,600 37.88 Safe1.35 m -54,034 2,073,600 38.38 Safe1.50 m -53,329 2,073,600 38.88 Safe1.65 m -52,625 2,073,600 39.40 Safe1.80 m -51,920 2,073,600 39.94 Safe1.95 m -51,216 2,073,600 40.49 Safe2.10 m -50,511 2,073,600 41.05 Safe2.25 m -49,807 2,073,600 41.63 Safe2.40 m -49,102 2,073,600 42.23 Safe2.55 m -48,398 2,073,600 42.84 Safe2.70 m -34,369 2,073,600 60.33 Safe2.85 m -20,339 2,073,600 101.95 Safe3.00 m -6,310 2,073,600 10000.00 Safe3.15 m 7,719 2,073,600 268.63 Safe3.30 m 21,748 2,073,600 95.34 Safe3.45 m 35,778 2,073,600 57.96 Safe3.60 m 49,807 2,073,600 41.63 Safe3.75 m 50,511 2,073,600 41.05 Safe3.90 m 51,216 2,073,600 40.49 Safe4.05 m 51,920 2,073,600 39.94 Safe4.20 m 52,625 2,073,600 39.40 Safe

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142

-200000

-150000

-100000

-50000

0

Mx

Mx

Page 106: Calculation

4.35 m 53,329 2,073,600 38.88 Safe4.50 m 54,034 2,073,600 38.38 Safe4.65 m 54,738 2,073,600 37.88 Safe4.80 m 55,443 2,073,600 37.40 Safe4.95 m 56,147 2,073,600 36.93 Safe5.10 m 56,852 2,073,600 36.47 Safe5.25 m 57,556 2,073,600 36.03 Safe5.40 m 58,261 2,073,600 35.59 Safe5.55 m 58,965 2,073,600 35.17 Safe5.70 m 59,670 2,073,600 34.75 Safe5.85 m 60,374 2,073,600 34.35 Safe6.00 m 0 2,073,600 10000.00 Safe

Fig 3.2.10 Shear Force diagramTable 3.2.4.5. Deflection at diastance x

x Deflection(mm)Allowed Def S Factor0.45 m -0.05 12.00 10000.00 Safe0.60 m -0.19 12.00 63.10 Safe0.75 m -0.38 12.00 31.69 Safe0.90 m -0.56 12.00 21.24 Safe1.05 m -0.75 12.00 16.02 Safe1.20 m -0.93 12.00 12.89 Safe1.35 m -1.11 12.00 10.81 Safe1.50 m -1.29 12.00 9.32 Safe1.65 m -1.46 12.00 8.20 Safe1.80 m -1.64 12.00 7.34 Safe 800 mm1.95 m -1.81 12.00 6.64 Safe2.10 m -1.98 12.00 6.08 Safe2.25 m -2.14 12.00 5.60 Safe 3.274 mm Max Deflection2.40 m -2.31 12.00 5.21 Safe2.55 m -2.47 12.00 4.86 Safe2.70 m -2.63 12.00 4.57 Safe 0.00818613762.85 m -2.78 12.00 4.31 Safe3.00 m -2.94 12.00 4.08 Safe 0.4690206592 Degrees Tower tilt3.15 m -3.08 12.00 3.89 Safe3.30 m -3.19 12.00 3.76 Safe3.45 m -3.25 12.00 10000.00 Safe3.60 m -3.27 12.00 3.66 Safe3.75 m -3.25 12.00 3.69 Safe3.90 m -3.18 12.00 3.77 Safe4.05 m -3.07 12.00 3.91 Safe4.20 m -2.92 12.00 4.11 Safe4.35 m -2.76 12.00 4.34 Safe4.50 m -2.60 12.00 4.62 Safe

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

-80,000-60,000-40,000-20,000

020,00040,00060,00080,000

SF

Page 107: Calculation

4.65 m -2.44 12.00 4.93 Safe4.80 m -2.27 12.00 5.29 Safe4.95 m -2.10 12.00 5.71 Safe5.10 m -1.93 12.00 6.22 Safe5.25 m -1.76 12.00 6.83 Safe5.40 m -1.58 12.00 7.58 Safe5.55 m -1.41 12.00 8.54 Safe5.70 m -1.23 12.00 9.79 Safe5.85 m -1.04 12.00 11.50 Safe6.00 m -0.86 12.00 13.96 Safe0.00 m -0.67 12.00 17.82 Safe0.00 m -0.48 12.00 24.75 Safe0.00 m -0.27 12.00 10000.00 Safe

Fig 3.2.11 Deflection diagram

Reaction Force 40,719.24

Segment Size dx 0.150 m

Table 3.2.4.6. Dummy Tables Used to derive parameters

X n X Seg Wt(Kg/m) UDL Forces R force Resultant Shear Force0.0000

X 1 0.0750 0.000 72 Kg 704.49 -61,078.85 -60,374.36 -60,374.36X 2 0.2250 0.150 72 Kg 704.49 704.49 -59,669.87X 3 0.3750 0.300 72 Kg 704.49 704.49 -58,965.38X 4 0.5250 0.450 72 Kg 704.49 704.49 -58,260.88X 5 0.6750 0.600 72 Kg 704.49 704.49 -57,556.39X 6 0.8250 0.750 72 Kg 704.49 704.49 -56,851.90X 7 0.9750 0.900 72 Kg 704.49 704.49 -56,147.40X 8 1.1250 1.050 72 Kg 704.49 704.49 -55,442.91X 9 1.2750 1.200 72 Kg 704.49 704.49 -54,738.42

X 10 1.4250 1.350 72 Kg 704.49 704.49 -54,033.93X 11 1.5750 1.500 72 Kg 704.49 704.49 -53,329.43X 12 1.7250 1.650 72 Kg 704.49 704.49 -52,624.94X 13 1.8750 1.800 72 Kg 704.49 704.49 -51,920.45X 14 2.0250 1.950 72 Kg 704.49 704.49 -51,215.95X 15 2.1750 2.100 72 Kg 704.49 704.49 -50,511.46X 16 2.3250 2.250 72 Kg 704.49 704.49 -49,806.97X 17 2.4750 2.400 72 Kg 704.49 704.49 -49,102.47X 18 2.6250 2.550 72 Kg 704.49 704.49 -48,397.98X 19 2.7750 2.700 1,430 Kg 14,029.28 14,029.28 -34,368.70X 20 2.9250 2.850 1,430 Kg 14,029.28 14,029.28 -20,339.42X 21 3.0750 3.000 1,430 Kg 14,029.28 0.00 14,029.28 -6,310.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

-3.50 mm

-3.00 mm

-2.50 mm

-2.00 mm

-1.50 mm

-1.00 mm

-0.50 mm

0.00 mm

V/EI / (mm)

Page 108: Calculation

X 22 3.2250 3.150 1,430 Kg 14,029.28 0.00 14,029.28 7,719.13X 23 3.3750 3.300 1,430 Kg 14,029.28 14,029.28 21,748.41X 24 3.5250 3.450 1,430 Kg 14,029.28 14,029.28 35,777.69X 25 3.6750 3.600 1,430 Kg 14,029.28 14,029.28 49,806.97X 26 3.8250 3.750 72 Kg 704.49 704.49 50,511.46X 27 3.9750 3.900 72 Kg 704.49 704.49 51,215.95X 28 4.1250 4.050 72 Kg 704.49 704.49 51,920.45X 29 4.2750 4.200 72 Kg 704.49 704.49 52,624.94X 30 4.4250 4.350 72 Kg 704.49 704.49 53,329.43X 31 4.5750 4.500 72 Kg 704.49 704.49 54,033.93X 32 4.7250 4.650 72 Kg 704.49 704.49 54,738.42X 33 4.8750 4.800 72 Kg 704.49 704.49 55,442.91X 34 5.0250 4.950 72 Kg 704.49 704.49 56,147.40X 35 5.1750 5.100 72 Kg 704.49 704.49 56,851.90X 36 5.3250 5.250 72 Kg 704.49 704.49 57,556.39X 37 5.4750 5.400 72 Kg 704.49 704.49 58,260.88X 38 5.6250 5.550 72 Kg 704.49 704.49 58,965.38X 39 5.7750 5.700 72 Kg 704.49 704.49 59,669.87X 40 5.9250 5.850 72 Kg 704.49 704.49 60,374.36

6.0000 6.000 72 Kg 704.49 -61,078.85 -60,374.36 0.0012,452 Kg 122,157.71 0.00

X n f dx Top plus this BM = V" V ' V V/EI / (mm)0.0000 0 -50.94 -0.05 mm0.0750 -9,056.15 -9,056.15 -9,056.15 -679.21 -203.17 -0.19 mm0.2250 105.67 -8,950.48 -18,006.63 -2,029.71 -404.55 -0.38 mm0.3750 105.67 -8,844.81 -26,851.44 -3,364.36 -603.56 -0.56 mm0.5250 105.67 -8,739.13 -35,590.57 -4,683.15 -800.19 -0.75 mm0.6750 105.67 -8,633.46 -44,224.03 -5,986.10 -994.45 -0.93 mm0.8250 105.67 -8,527.78 -52,751.82 -7,273.19 -1,186.32 -1.11 mm0.9750 105.67 -8,422.11 -61,173.93 -8,544.43 -1,375.82 -1.29 mm1.1250 105.67 -8,316.44 -69,490.36 -9,799.82 -1,562.94 -1.46 mm1.2750 105.67 -8,210.76 -77,701.13 -11,039.36 -1,747.68 -1.64 mm1.4250 105.67 -8,105.09 -85,806.21 -12,263.05 -1,930.05 -1.81 mm1.5750 105.67 -7,999.41 -93,805.63 -13,470.89 -2,110.03 -1.98 mm1.7250 105.67 -7,893.74 -101,699.37 -14,662.87 -2,287.64 -2.14 mm1.8750 105.67 -7,788.07 -109,487.44 -15,839.01 -2,462.87 -2.31 mm2.0250 105.67 -7,682.39 -117,169.83 -16,999.30 -2,635.73 -2.47 mm2.1750 105.67 -7,576.72 -124,746.55 -18,143.73 -2,806.20 -2.63 mm2.3250 105.67 -7,471.05 -132,217.59 -19,272.31 -2,974.30 -2.78 mm2.4750 105.67 -7,365.37 -139,582.97 -20,385.04 -3,140.02 -2.94 mm2.6250 105.67 -7,259.70 -146,842.66 -21,481.92 -3,292.12 -3.08 mm2.7750 2,104.39 -5,155.31 -151,997.97 -22,413.05 -3,408.12 -3.19 mm2.9250 2,104.39 -3,050.91 -155,048.88 -23,028.51 -3,476.76 -3.25 mm3.0750 2,104.39 -946.52 -155,995.40 -23,328.32 -3,498.06 -3.27 mm3.2250 2,104.39 1,157.87 -154,837.53 -23,312.47 -3,472.01 -3.25 mm3.3750 2,104.39 3,262.26 -151,575.27 -22,980.96 -3,398.61 -3.18 mm3.5250 2,104.39 5,366.65 -146,208.62 -22,333.79 -3,277.86 -3.07 mm3.6750 2,104.39 7,471.05 -138,737.57 -21,370.96 -3,121.00 -2.92 mm3.8250 105.67 7,576.72 -131,160.86 -20,242.38 -2,950.52 -2.76 mm

Page 109: Calculation

3.9750 105.67 7,682.39 -123,478.46 -19,097.95 -2,777.67 -2.60 mm4.1250 105.67 7,788.07 -115,690.40 -17,937.66 -2,602.44 -2.44 mm4.2750 105.67 7,893.74 -107,796.65 -16,761.53 -2,424.83 -2.27 mm4.4250 105.67 7,999.41 -99,797.24 -15,569.54 -2,244.84 -2.10 mm4.5750 105.67 8,105.09 -91,692.15 -14,361.70 -2,062.48 -1.93 mm4.7250 105.67 8,210.76 -83,481.39 -13,138.02 -1,877.74 -1.76 mm4.8750 105.67 8,316.44 -75,164.95 -11,898.48 -1,690.62 -1.58 mm5.0250 105.67 8,422.11 -66,742.84 -10,643.08 -1,501.12 -1.41 mm5.1750 105.67 8,527.78 -58,215.06 -9,371.84 -1,309.24 -1.23 mm5.3250 105.67 8,633.46 -49,581.60 -8,084.75 -1,114.99 -1.04 mm5.4750 105.67 8,739.13 -40,842.47 -6,781.80 -918.36 -0.86 mm5.6250 105.67 8,844.81 -31,997.66 -5,463.01 -719.35 -0.67 mm5.7750 105.67 8,950.48 -23,047.18 -4,128.36 -517.97 -0.48 mm5.9250 105.67 9,056.15 -13,991.02 -2,777.87 -287.04 -0.27 mm6.0000 -9,056.15 0.00 0.00 -1,049.33 -78.70 -0.07 mm

Page 110: Calculation

Web

1 m Wt I Comp TYPE Height Width thk Nos B H29.96 2.77 E+07 UB 200 150 6 1 6 18237.07 3.59 E+07 UB 200 200 6 1 6 18266.28 7.02 E+07 UB 215 205 10 1 10 18354.60 4.79 E+07 UB 200 200 12 1 12 176

Page 111: Calculation

-3.27

Page 112: Calculation

E = 210 2.1E+11

I = 5.09E-06 m4

E x I = 1068287.5

Page 113: Calculation
Page 114: Calculation

Flange

d thk Nos B H d0 3.01 E+06 0.00 E+00 9 2 150 9 95.5 9.11 E+03 1.23 E+070 3.01 E+06 0.00 E+00 9 2 200 9 95.5 1.22 E+04 1.64 E+070 5.11 E+06 0.00 E+00 16 2 205 16 99.5 7.00 E+04 3.25 E+070 5.45 E+06 0.00 E+00 12 2 200 12 94 2.88 E+04 2.12 E+07

BH3/12 (BH)d2 BH3/12 (BH)d2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 390

2

4

6

8

10

12 #REF!

Page 115: Calculation

(N/m2)

Page 116: Calculation
Page 117: Calculation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 390

2

4

6

8

10

12 #REF!

Page 118: Calculation

ddf dfww qqq sfsdf 12 7

34 75 4

d 6 87 9

d 7 8.5t qqq s 4 9

8 9.5w 9 10

2 10.5r 67 11

45 11.5344 12

3 12.5

IntroTABLE OF CONTENTS

0 Notations and Symbols…………………………… 00

1 ABSTRACT…………………………………………………… 00

2 INTRODUCTION…………………………………………… 00

3 ANTENNAE DETAILS…………………………………… 0Calculation for antennae suppo 0

4 DESIGN CONCEPT RELATED TO ENVIRON 00

5 STRUCTURE CLASSIFICATION………………… 00

6 Tower Specifications………………………………… 00

7 Material Used for Tower Section………… 00

8 Wind Loads Analysis 00

9 Bending Strength Calculation 0Table 9.1. Wind Velocity Varia 0Table 9.2. Tower Vertical Pip 0Table 9.3. Tower Vertical Pipe 0Table 9.4. Section Wind force a 0Table 9.5. Data of Stiffener 0Table 9.6. Moment of inertia of 0Table 9.7. Weight of Tower Se 0Table9.8. Wind Force Effect on 0Table 9.9. Bending Moment Fai 0

10 Calculation for Buckling 0 Calculation for DeflectionCalculation for buckling failure………… 0Calculation for Lifting Cable strength 0Calculation for Deflection & Guy wire 0Guy wire Data……………………………………………….

Page 119: Calculation

0Analysis For Guy wire behavior Under Loads 010.8 Bending failure of Guide Arms 0

11 Yielding Failure 0Yielding Failure in Compression……………… 0

Table 11.1. Yielding Failure in Compres 00

12 Failure from the pivot……………………………… 0Analysis for Failure from the pivot 0Annex failure While lifting

13 Failure of Landing Leg Sand Shoe……… 00

14 STABILITY CALCULATION………………………… 0Load Details

Cabin Details 0Tower Frame Details 0Guide Arms 0Base Frame Details 0Concrete Block Details 0

Calculation 0Turning Moment Due to Wind Force & Inclina 0Locating the center of Gravity 0

15 Length Parameters of Guide 016 Self Stabe Safety factor Calc 0

Tor bar Safty CalculationAnchored Hilty Calculation

17 Calculation for Dimensions of the Recta 018 Finalized Parameter Values relevent to tower Models a 019 CONCLUSIONS…………………………………………… 020 REFERENCES……………………………………………… 0

ANNEX: BENDING CALCULATION (EACH TOWER SEC 0A 1 Top Most Section 0A 2 2nd Section From Top 0A 3 3rd Section From Top 0A 4 4th Section From Top 0A 5 5th Section From Top 0

0#REF!

Page 120: Calculation

Annex 1

Speciman Deflection Calculation for the bottom Most section

Checking for Deflection of tower Without Guy Wires

Analysis for bending of Cantilevered Beam.

Load at the Top of Bottom Section = #REF!

#REF!E = 210 Gpa

L = #REF!

I = #REF! m4

Fig 1 Tower section

Differential Equations

= q = 0

= V = + c1

EI V(x) 4

EI V(x) 3

R B =

3

2

1

d B

Page 121: Calculation

=

=2

EI V(x) =6 2

Boundry Conditions

Sh Force = R A V(L) 3 = R B= #REF!

BM = 0 V(L) 2 = 0

Tangent = 0 V(L) 1 = infinite

Deflection V(0) = 0 V(L) =

From eq'n 5

V(0) = 0 C4 = 0

From eq'n 4

= 0 C3 = 0

From eq'n 3

= 0

=

=

Form Equation 2

= R B = #REF!

EI V(x) 2 c1.x + c2

EI V(x) 1 + c1.x2 +c2.x +c3

+ c1.x3 +c2.x2 +c3.x +c4

V(0) 3

V(0) 2

V(0) 1

d B

V(0) 1

V(L) 2

EI V(L) 2 c1.L +c2

c2 - c1.L

V(L) 3

5

4

3

7

Page 122: Calculation

= #REF!

=

2.10E+11 Pa (N/m2)

Moment of Inertia of the Flange =

= 1971875

For two flanges = 3943750

Moment of Inertia of web and Plates =

= 1143333.33333333

For three webs = 3430000

Total Moment of inertia of Lifting I beam = 7373750

= 0.00000737375

c1 = #REF!

From 7 c2 = - c1.L

c2 = #REF!

Sh Force = + c1 = #REF!

BM = #REF! #REF!

EI V(L) 3 + c1

(75 x 53 )/12 + (75 x 5) x 72.5

5 x 1403 / 12

mm 4

m 4

EI V(x) 3

EI V(x) 2

Neutral Axis

Page 123: Calculation

Tangent = + c1.x2 +c2.x +c32

Deflection EI V(x) = #REF! #REF!

Table 1 Deflection Parameter Table

X from end Deflection mm0 0.00 m #REF!1 #REF! #REF!2 #REF! #REF!3 #REF! #REF!4 #REF! #REF!5 #REF! #REF!6 #REF! #REF!7 #REF! #REF!8 #REF! #REF!9 #REF! #REF!

10 #REF! #REF!11 #REF! #REF!12 #REF! #REF!13 #REF! #REF!14 #REF! #REF!15 #REF! #REF!16 #REF! #REF!17 #REF! #REF!18 #REF! #REF!19 #REF! #REF!20 #REF! #REF!21 #REF! #REF!22 #REF! #REF!23 #REF! #REF!24 #REF! #REF!25 #REF! #REF!26 #REF! #REF!27 #REF! #REF!28 #REF! #REF!29 #REF! #REF!30 #REF! #REF!31 #REF! #REF!32 #REF! #REF!33 #REF! #REF!34 #REF! #REF!35 #REF! #REF!36 #REF! #REF!37 #REF! #REF!38 #REF! #REF!39 #REF! #REF!40 #REF! #REF!

EI V(x) 1

Page 124: Calculation

Fig 3.2.3 Deflection Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Deflection /(mm)

Page 125: Calculation

4 4 Pro INDEX 4.00

SEMI TRAILER SEMI TRAILER 5 SEMI TRAILER

Stable Stable Mobi 40 New Stable

1.213804125957 1.21380412595676 SEMI TRAILER 1.21

1.213804125957 1.21380412595676 15 m Tower 1.21

#REF! #REF! Pg 0 #REF!

Bearing SF Bearing SF OUTPUTS Bearing SF

0 0 Pg 4

#REF! #REF! 0 #REF!

0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Custo req S factor 1.7 Custo req S factor

0 0.0

0 0

0 0

0 0

Page 126: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 127: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 128: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 129: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 130: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

INTRODUCTION 0 INTRODUCTION

DESIGN PHILOSOPHY RELATED TO ENVIRONMENTAL LOADS 0DESIGN PHILOSOPHY RELATED TO ENVIRONMENTAL LOADS

STRUCTURE CLASSIFICATION 0STRUCTURE CLASSIFICATION

0 0

0 0

0 0

0 0

0 0

Page 131: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Head Area 0 Head Area

0 0

0 0

0 0

0 0

Page 132: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 133: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

GSM Len 0 GSM Len

GSM Wdh 0 GSM Wdh

Page 134: Calculation

GSM L/w 0 GSM L/w

Gsm Area 0 Gsm Area

Gsm Drag 0 Gsm Drag

0 0

0 0

0.6MW Dia 0.6 0.6MW Dia

0.6MW Area 0.000 0.6MW Area

0 0

0 0

1.2MW Dia 0 1.2MW Dia

1.2MW Area 0 1.2MW Area

0 0

0 0

0 0

0 0

0 0

GSM Nos 6 GSM Nos

0.6MW Nos 2 0.6MW Nos

1.2MW Nos 1 1.2MW Nos

0 0

0 0

0 0

0 0

0 0

0 0

0 0

X Head Area 0 X Head Area

Excess Head Load 0 Excess Head Load

#REF! 6.000 #REF!

0 0.000

Page 135: Calculation

0 0

0 0

Antennae Load 400 Antennae Load

0 0 Kg

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

No of Pipes 0 No of Pipes

Antena Frame 6 Antena Frame

Top Most 3 Top Most

2nd Frm Top 3 2nd Frm Top

3rd Frm Top 3 3rd Frm Top

4th Frm Top 3 4th Frm Top

5th Frm Top 3 5th Frm Top

0 3

0 3

0 0

Overlap 0 Overlap

Antena Frame 1.000 Antena Frame

Top Most 1.400 Top Most

2nd Frm Top 1.400 2nd Frm Top

3rd Frm Top 1.400 3rd Frm Top

Page 136: Calculation

4th Frm Top 1.400 4th Frm Top

5th Frm Top 2.000 5th Frm Top

0 0.000

0 0.000

0 0.000

Platform Height 0.9 Platform Height

Building/Mountain Elevation 0.650 Building/Mountain Elevation

0 0.000

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 137: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 138: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 139: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 140: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 141: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 142: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Wt intensity 0 Wt intensity

1.2 0 1.20

2.5 0 2.50

5.41 1.7 5.41

Thickness 0.0 Thickness

Antena Frame 0.00508 Antena Frame

Top Most 0.0046 Top Most

2nd Frm Top 0.0046 2nd Frm Top

3rd Frm Top 0.0051 3rd Frm Top

4th Frm Top 0.0051 4th Frm Top

5th Frm Top 0.0051 5th Frm Top

0 0.0000

0 0.0000

Sch No 0.0000 Sch No

Antena Frame 80 Antena Frame

Top Most 80(Std) Top Most

2nd Frm Top 80(Std) 2nd Frm Top

3rd Frm Top 80(Std) 3rd Frm Top

4th Frm Top 80(Std) 4th Frm Top

5th Frm Top 80(Std) 5th Frm Top

0 80(Std)

0 80(Std)

Page 143: Calculation

D out 0(Std) D out

Antena Frame 0.075 Antena Frame

Top Most 0.0334 Top Most

2nd Frm Top 0.0334 2nd Frm Top

3rd Frm Top 0.0483 3rd Frm Top

4th Frm Top 0.0483 4th Frm Top

5th Frm Top 0.0483 5th Frm Top

0 0.0000

0 0.0000

0 0.0000

Top Most 0 Top Most

2nd Frm Top 0 2nd Frm Top

3rd Frm Top 0 3rd Frm Top

4th Frm Top 0 4th Frm Top

5th Frm Top 0 5th Frm Top

0 0

0 0

0 0

0 0

0 2.4

0 9.300

0 8.500

0 8.500

0 8.500

0 8.500

0 0.000

0 0.000

0 0.000

0 Section Gap

Top Most 0.035 Top Most

Page 144: Calculation

2nd Frm Top 0.035 2nd Frm Top

3rd Frm Top 0.036 3rd Frm Top

4th Frm Top 0.035 4th Frm Top

5th Frm Top 0.035 5th Frm Top

0 0.000

0 0.000

0 0.000

0 0

0 0

0 0

Length of Pipe 0 Length of Pipe

Antena Frame 0 Antena Frame

Top Most 0 Top Most

2nd Frm Top 0 2nd Frm Top

3rd Frm Top 0 3rd Frm Top

4th Frm Top 0 4th Frm Top

5th Frm Top 0 5th Frm Top

0 0

0 0

0 0

0 0

0 0

DiPCenTrCenter 5th 0.789 DiPCenTrCenter 5th

Gap between Sec 0.035 Gap between Sec

0 0.000

0 0

0 0

0 0

0 0

0 0

Page 145: Calculation

0 0

0 0

0 0

0 0.000

0 0

0 0.8373

0 0.000 m

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 146: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

A 0 A

0 0

0.00011309733552923 0 0.00

0.00011309733552923 0 0.00

0.00020106192982975 0 0.00

0.00020106192982975 0 0.00

0.00020106192982975 0 0.00

0 0

0 0.00 E+00

0 0.00 E+00

0 0

0 0

0 0

Page 147: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Pressure/(Pa) 0 Pressure/(Pa)

1889.37334518519 0 1889.37

1889.37334518519 0 1889.37

1732.6492562963 0 1732.65

1732.6492562963 0 1732.65

1641.87140740741 0 1641.87

1553.53601185185 0 1553.54

0 0

0 0

0 0

0 0

0 270

Page 148: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 Guy Presence

Antena Frame 0 Antena Frame

Top Most 1 Top Most

2nd Frm Top 1 2nd Frm Top

3rd Frm Top 1 3rd Frm Top

4th Frm Top 1 4th Frm Top

5th Frm Top 0 5th Frm Top

0 0

0 0

0 4

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 149: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 150: Calculation

0 0

0 0

0 0

0 0.138

0 0.000

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 151: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 152: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 153: Calculation

Shelter 0 Shelter

weight 0 weight

Height 0.00m Height

width 0.00m width

Length 3.50m Length

Y Shelter 3.00m Y Shelter

0 0.00m

0 0

SAND 0 SAND

Height 0 Height

Length 0.000m Length

Breath 0.000m Breath

Volume 0.000m Volume

0 0.000m3

0 0

0 0

0 0

Small Con Cubes 0 Small Con Cubes

0 0

Front Concrete 0 Front Concrete

0 0

0 0

0 0

0 0

0 0

Xsec Size 1.5 Xsec Size

Height 0.60 Height

Fr Nos 2.00 Fr Nos

0 0

Xsec Size 1 Xsec Size

Page 154: Calculation

Height 0.50 Height

Fr Nos 2.00 Fr Nos

Rear Con Position 7 Rear Con Position

0 0.000m

Xsec Size 1 Xsec Size

Height 0.50 Height

Fr Nos 2.00 Fr Nos

0 0

0 0

0 0

0 0

0 0

No of Main I beams 2 No of Main I beams

0 0

No of Cros I beams 3 No of Cros I beams

Side Beam Nos 2 Side Beam Nos

Main I beam Size 205x133 Main I beam Size

Cross I beam Size 205x133 Cross I beam Size

Side Beam Size 205x134 Side Beam Size

Side Beam Unit Wt 30 Side Beam Unit Wt

Side Beam type UB Side Beam type

FrCube 0.5 FrCube

Arm Cube 1.6 Arm Cube

No Fr Cubes 1 No Fr Cubes

No Arm Cubes 2 No Arm Cubes

0 Wt Details Descrip

Axels 0 Axels

Generator 0.00 Generator

Other 0Kg Other

Weight Details 0Kg Weight Details

Page 155: Calculation

Base Descrip Trailer weight Base Descrip

Base Descrip Trailer weight Base Descrip

0 0

Truck 0 Truck

Skeltal 950Kg Skeltal

Tot Ch Weight 0Kg Tot Ch Weight

0 0Kg

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 156: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Front Arm Sufficient 0 Front Arm Sufficient

0 0

0 0

0 0

0 0

0 0

Page 157: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

Safe 0 Safe

0 0

Y Twr & Head Load 0.500m Y Twr & Head Load

0 0.000m

0 0

0 0

0 0

0 0

0 0

Base Gr Centr 5.5 Base Gr Centr

Base Struc Wt 3045 Base Struc Wt

Wts Acc Stab 0 Wts Acc Stab

0 0

0 0

0 0

0 0

0 0

0 0

Rear Arm 0 Rear Arm

Front Arm 0 Front Arm

Auto Create 0 Auto Create

Guy Wire Angle 0 Guy Wire Angle

Y platform 0 Y platform

Y F Pivot 0 Y F Pivot

Page 158: Calculation

Y R Pivot 0 Y R Pivot

LoadGrCentr 0 LoadGrCentr

Weight Details 0 Weight Details

Concrete 0 Concrete

Truck 0 Truck

Skeltal 0 Skeltal

Tot Ch Weight 0 Tot Ch Weight

0 0

4.46609251670008 0 4.47

0 0

0 0

0 0

0 0

Rear Extension 0 Rear Extension

b 0.00 b

Front Extension 6.00 Front Extension

a 120.00 a

Y platform 7 Y platform

X platform 1.15 X platform

Y F Pivot 0.03 Y F Pivot

X F Pivot 1.15 X F Pivot

Y R Pivot frm Back 0.03 Y R Pivot frm Back

Y R Pivot 6.47 Y R Pivot

0 0.00

0 0

0 0

0 0

0 0

q Guy 120 q Guy

0 0

Page 159: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

5.46609251670008 0 5.47

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0 1.00

0 0

0 0

1 0 1.00

1 0 1.00

CASE NUMBER 0 CASE NUMBER

0 0

0 0

Back Leverage 0 Back Leverage

Page 160: Calculation

0 0

0 0

4.2071573977184 0 4.21

4.2071573977184 0 4.21

0 0

5.2928426022816 0 5.29

2.2928426022816 0 2.29

0 0.00 m

0 0

Case 0 Case

1 0 1.00

0 0

0 0

Rear LL Leverage enough 1 0Rear LL Leverage enough 1

R exeeding the Rear LL 2 0R exeeding the Rear LL 2

Front Leverage is enough 0Front Leverage is enough

0 0

0 0

1 0 1.00

Auto Create 0 Auto Create

0 0

4.2071573977184 0 4.21

#REF! 0 #REF!

2.2928426022816 0 2.29

0 0

0 0

0 0

6.5 0 6.50

#REF! 0 #REF!

0 0

Page 161: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

#REF! 0 #REF!

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

#REF! 0 #REF!

0 0

0 0

0 0

Page 162: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 163: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Case NUMBER 0 Case NUMBER

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 164: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 165: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 166: Calculation

0 0

0 0

0 0

Overall Tilted Height / (m) 0Overall Tilted Height / (m)

R 0 R

Y CG - Y F LL 0 Y CG - Y F LL

Y CG 0 Y CG

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 167: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Dia Of Anchor tor Bar 0 Dia Of Anchor tor Bar

0 0.000

0 0

0 0

0 0

0 0

No of Anchor bars 16 No of Anchor bars

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 168: Calculation

0 0

0 0

0 0

Anchor Tor Bar Dia 0 Anchor Tor Bar Dia

0 0.000

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 169: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 170: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 171: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 172: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 173: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Top Most 0 Top Most

2nd From Top 0 2nd From Top

3rd From Top 0 3rd From Top

4th From Top 0 4th From Top

5th From Top 0 5th From Top

0 0

0 0

0 0

0 0

Top Most 0 Top Most

2nd From Top 0 2nd From Top

3rd From Top 0 3rd From Top

4th From Top 0 4th From Top

5th From Top 0 5th From Top

6th From Top 0 6th From Top

7th From Top 0 7th From Top

Page 174: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 175: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 176: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 177: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 178: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 179: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 180: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 181: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Guy Diameter 0.008 Guy Diameter

Alloed Guy Tention 4.200m Alloed Guy Tention

0 0.0Ton

0 0

0 0

Page 182: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Page 183: Calculation

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Presence 0 Presence

1 0 1.00

1 0 0.00

1 0 0.00

0 0 0.00

0 0 0.00

3 0 0.00

0 0 0.00

AntenaFrame 0 0.00

Top Most 0 0.00

2nd From Top 0 0.00

0 0 0.00

Page 184: Calculation

0 0 6180.30

0 0 0.00

0 0 7.23

Percentage 0 0.00

5 0 e

0 0 0.02

0 0 0.02

0 0 0.02

0 0 0.02

0 0 0.00

0 0 0.00

0 0 0.00

0 0 0.07

0 0 0.00

Initial Length 0 0.00

0 0 0.00

(L + e)2 0 0.00

0 0 0.00

(L + e)2 0 0.00

0 0 0.00

0 0 0.00

0 0 0.00

e 0 0.00

0 0 0.00

0 0 0.00

0 0 0.00

0 0 0.00

0

0

0

Page 185: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 186: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 187: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Half of Twist angle

0

0

0

Page 188: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 189: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 190: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 191: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 192: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 193: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 194: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Safe

0

0

0

0

Page 195: Calculation

0

0

0

0

0

0

Top Most

2nd From Top

3rd From Top

4th From Top

5th From Top

0

0

0

3rd From Top

4th From Top

5th From Top

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 196: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 197: Calculation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 198: Calculation

Pro INDEX

5

Mobi 40 New

SEMI TRAILER

15 m Tower

OUTPUTS

4

1.7

Page 199: Calculation
Page 200: Calculation
Page 201: Calculation
Page 202: Calculation
Page 203: Calculation
Page 204: Calculation
Page 205: Calculation
Page 206: Calculation
Page 207: Calculation

0.6

6

2

1

0.163539967061511

6

Page 208: Calculation

400

6

3

3

3

3

3

3

3

1

1.4

1.4

1.4

Page 209: Calculation

1.4

2

0.9

0.65

Page 210: Calculation
Page 211: Calculation
Page 212: Calculation
Page 213: Calculation
Page 214: Calculation
Page 215: Calculation

1.7

0.00508

0.00455

0.00455

0.00508

0.00508

0.00508

80

80

80

80

80

80

80

80

Page 216: Calculation

0.075

0.0334

0.0334

0.0483

0.0483

0.0483

2.4

9.3

8.5

8.5

8.5

8.5

Section Gap

0.035

Page 217: Calculation

0.035

0.0355

0.0345

0.035

0.789

0.035

Page 218: Calculation

0.8373

Page 219: Calculation
Page 220: Calculation

270

Page 221: Calculation

Guy Presence

1

1

1

1

4

Page 222: Calculation
Page 223: Calculation

0.138

Page 224: Calculation
Page 225: Calculation
Page 226: Calculation

3.5

3

1.5

0.6

2

1

Page 227: Calculation

0.5

2

6.85

1

0.5

2

2

3

2

205x133

205x133

205x134

30

UB

0.5

1.6

1

2

Wt Details Descrip

Page 228: Calculation

Trailer weight

Trailer weight

950

Page 229: Calculation
Page 230: Calculation

0.5

5.5

3045

Page 231: Calculation

6

120

6.5

1.15

0.03

1.15

0.03

6.47

120

Page 232: Calculation
Page 233: Calculation
Page 234: Calculation
Page 235: Calculation
Page 236: Calculation
Page 237: Calculation
Page 238: Calculation
Page 239: Calculation
Page 240: Calculation

16

Page 241: Calculation
Page 242: Calculation
Page 243: Calculation
Page 244: Calculation
Page 245: Calculation
Page 246: Calculation
Page 247: Calculation
Page 248: Calculation
Page 249: Calculation
Page 250: Calculation
Page 251: Calculation
Page 252: Calculation
Page 253: Calculation
Page 254: Calculation

0.008

4.2

Page 255: Calculation
Page 256: Calculation

0

0

0

0

0

0

0

0

0

0

Page 257: Calculation

0

0

0

0

3

0.34

0.33

0.33

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 258: Calculation
Page 259: Calculation
Page 260: Calculation
Page 261: Calculation
Page 262: Calculation
Page 263: Calculation
Page 264: Calculation
Page 265: Calculation
Page 266: Calculation
Page 267: Calculation
Page 268: Calculation
Page 269: Calculation
Page 270: Calculation
Page 271: Calculation

BS 8100- Part 4Mean Site Wind SpeedV s = V s x V b x S d x S c

Where

3 sec Gust wind speed = 50 m/s For Zone 3 180 Kmph

Relative Hourly Mean Wind speed

V b = 17.5 m/s

S a = Altitude factor

is 100m

S a = 1.1

S d = Direction factorCl 3.1.5 : S d

= 1.0S s = Seasonal factor

Cl 3.1.6 & Annex E : S s= 1.0

V s = 19.25 m/s

V z =

S 0 = Terrain Factor

Country Terrain; S 0 = S c (1 + S h)

Where S c : Fetch Factor = 1.3S h : Topography Factor = 0.6 (Cl 3.2.4 & Annex H)

S 0 = 2.08

g n = 1.2

V z = 19.25 2.08 1.2= 48.05 m/s

Wind Pressure

=

Cl 3.1.4 : S a = 1 + 0.001 DWhen D

V s x S o x g n

0.59 x V z 2

Page 272: Calculation

= 1362.08 kN/m2

For Servisibility Condition

V k = V b x Sa x So= 17.5 x 1.1 x 2.08

40.04 m/s

30.5000 W k operational

=

= 0.946 kN/m2

= 0.6

W k KN/m2 Force /kN/m

Dia(m) No. Perational Survival OperationalSurvival

Option1 0.6 1.000 0.025 4 0.1 0.060 0.946 1.362 0.057 0.082

Option2 2.0 1.000 0.025 4 0.1 0.200 0.946 1.362 0.189 0.272

ANTENNA ANCILLARIES

Antenne Force/Antennae kN

At height/( Nos Dia Wt Dead(kN) Operational Surevival Area (m2) OperationalSurvival36 2.0 1.2 180 1.765 0.946 1.362 1.131 1.0 1.2617 1.135 1.94

= 1.18

= 1.0

0.59 x 40.04 2

R AW = C N K A A A Sin 2 q

C N

C N K A A A R AW

R AW = C A K A A A

Wk kN/m2

K A C A

R AW = C A K A A A

C A

K A

Page 273: Calculation

Cellular Antennas

At Height Nos Size Wt Dead Antenne K A C A Force / Antenne kN(m) B x H (Kg) (kN) Operational Surevival Area/(m2) OperationalSurevival

40 6.0 0.27 x 2.90 18.5 0.181 0.946 1.362 0.783 1 1.18 0.87 1.26

Anciliary Components Width Height Solidity RaDrag Coeff

( Data Cable ) (m) (m) y

Structural Pipe/Rod Length Area Dia No Length Area

No Dia. (m) (m2) (m) (m)Section-01 2.0 0.0334 0.4000 0.0267(Above32m 2.0 0.0120 0.3210 0.0077

0.0344 0.2840 0.4000 0.3030 1.4000

Section-01 2.0 0.0334 0.4000 0.0267 0.0250 4 0.4000 0.0400(Bellow32m 2.0 0.0120 0.3210 0.0077

0.0344 0.0400 0.2840 0.4000 0.6551 1.4000

Section-02 2.0 0.0334 0.4000 0.0267 0.0250 4 0.4000 0.04002.0 0.0120 0.4260 0.0102

0.0369 0.0400 0.4030 0.4000 0.4773 1.1900

Section-03 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.5410 0.0130

0.0516 0.0400 0.5490 0.4000 0.4172 1.1400

Section-04 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.6760 0.0162

0.0549 0.0400 0.6930 0.4000 0.3422 1.1000

Section-05 2.0 0.0483 0.4000 0.0386 0.0250 4 0.4000 0.04002.0 0.0120 0.8320 0.0200

0.0586 0.0400 0.8380 0.4000 0.2942 1.1000

Wk kN/m2

C NC

A S A A

m2

Page 274: Calculation

Over turning stability Calculation

YTWR

X Platform

YCG

Rs

pm

l

Stability Circle

b

f

YPlatform

m

q Guyo

AAB

LF

f

Y=0 Line

d

km

Page 275: Calculation

Center of Gravity Without Concrete

Weight Force Y Tr M (J)Tower+Head L 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Frame 289 Kg 2,835 0.300 8.51 E+022 Front Poly P 576 Kg 5,651 -3.000 -1.70 E+042 Rear Poly P 0 Kg 0 6.000 0.00 E+00Base Struc Wt 3045 Kg 29,871 1.700 5.08 E+04Wt of Accesso 0 Kg 0 0.000 0.00 E+00Resultant Wt 5443 Kg 53,391 0.790 4.22 E+04

Center of Gravity of the system with ConcreteWeight Force Y Tr M (J)

Tower+Head L 1533 Kg 15,034 0.500 7.52 E+03Shelter 0 Kg 0 4.750 0.00 E+00Tower Frame 289 Kg 2,835 0.300 8.51 E+022 Rear Poly P 0 Kg 0 6.000 0.00 E+00Concrete @ A 5000 Kg 49,050 6.000 2.94 E+05Concrete @ B 5000 Kg 49,050 0.000 0.00 E+00Concrete @ C 5000 Kg 49,050 -3.000 -1.47 E+052 Front Poly P 576 Kg 5,651 -3.000 -1.70 E+04Base Struc Wt 3045 Kg 29,871 1.700 5.08 E+04Wt of Accesso 0 Kg 0 0.000 0.00 E+00Resultant Wt 20443 Kg 200,541 0.944 1.89 E+05

Turning Moment = WF Per Segment x No of Segments x Elevation

Figure 8.2.2 : Checking the side most likely to fail

LF Cos 60

C

LF

LF Sin 60

Page 276: Calculation

Wind Force effectDescription Area No of SegmElevation WF per seg Turning Moment

m KN KNm Prof ourGSM Antenna 0.675 m2 6 40.00 0.760 182.40 4560.00 6019.541.2 MW Dishe 1.131 m2 2 36.00 1.180 84.96 2360.00 5128.39Cables 0.150 m2 6 36.00 0.124 26.71 742.00Section 1 0.034 m2 21 26.25 0.099 55.39 2110.13 2150.54Section 2 0.037 m2 21 20.75 0.091 39.95 1925.25 2099.76Section 3 0.052 m2 21 15.25 0.121 39.31 2577.63 2400.28Section 4 0.055 m2 21 9.75 0.124 25.75 2641.38 2400.28Section 5 0.059 m2 21 4.25 0.133 11.99 2822.00 2274.53Lightening Arr 0.030 m2 1 0.00 0.028 0.00Aviation Lamp 0.060 m2 1 0.00 0.056 0.00

466.47

Total Wind Turning M = 466.47 KNm 669663.4

Total Wt of the System = 201 KN

Leverage Required = Total Wind Turning Moment / Total Wt of the System

2.33 m

Y Platform = 6.5X Platform = 2.3

= 0.944 (Center of gravity of system with concrete Blocks)Y CG

Page 277: Calculation

L = 6 (Length of Guy Arm)

= Tan -1{ ( L x Sin 60) / (Y platform + Lx Cos60)}

Tan = 5.209.50

= 28.68 Degrees

= Tan -1{ ( X Platform) / (Y platform - Y CG)}

Tan = 2.304.20

= 28.71 Degrees

= X Platform / Sin 1.5x.61x1

= 4.79 1.5 x .3

= Sin

Comparisan to select the side Most likely to fail

Side Leverage= Sin Rear A 5500

4.03 Stable 1.730

A legs leverag = (Y platform - Y CG) Front B 16000

d

f

f

km

+ f d

km

+ f d

Page 278: Calculation

5.56 Stable 2.39A 3240 Kg

C legs leverag= (Y CG + L x Cos 60) B 3240 Kg

C 3240 Kg= 3.94 Stable 1.70

Radius of Stabi= 2.33

900

Concrete Blocks RequiredW 53.391 KN

0.790 m

72 KN 224 KN 186 KN

Taking Moments about A

Over turning moment = 186 x 9

= 1674 KNm

Moment of self Weight =

Y CG

W x ( 6 - Y CG )

B

C6m 3m

Page 279: Calculation

= 278.15

Resultant Moment = Over turning moment - Moment of self Weight

= 1395.85

Required Weight = Resultant Moment / ( 6 + 3)

= 155.09 Nm

Taking momenOver Turning Moment Moment of Self Wt Resultant Moment Required W @KNm KNm KNm KN

about A 1674 278.15 1395.85 155.09 C

about C 648 202.37 445.63 49.51 A

Page 280: Calculation

OperationlPost Desaster Neutral Str In Sri Lanka

Zone 1 120 110 180Zone 2 105 95 160Zone 3 85 75 120

Page 281: Calculation

0.59

Section R out / (m) = y d internal/(m)Sec #REF!

0.06 O L Redu Top O L Redu Bot1 8.50 0.000 m 3.000 m2 8.50 0.000 m 3.000 m3 8.50 0.000 m 3.000 m4 8.50 0.000 m 3.000 m5 8.50 0.000 m 3.000 m0 0.000 m 0.000 m

0.8561690.856169

R AW

Page 282: Calculation

Drag Coeff Operational Force

Wk

kN/m2 F1 Tot F kN/m a A A

1.0 0.0482 0.946 0.045586 0.102 0.0896 1.05720656360000

1.0 0.0482 0.946 0.045586 0.102 0.1140 0.091172 0.0635 0.6962929375000

1.0 0.0440 0.946 0.041584 0.098 0.1040 0.083169 0.0421 0.5057689068

1.0 0.0589 0.946 0.055667 0.112 0.1392 0.111334 0.0423 0.3801806007

1.0 0.0604 0.946 0.057085 0.114 0.1427 0.11417 0.0350 0.3067196099

1.0 0.0645 0.946 0.06101 0.118 0.1525 0.161224 0.2860 1.7737467228

K q R M

Page 283: Calculation
Page 284: Calculation

3240 64802400 48001620 3240

Page 285: Calculation

64806480

12000

Page 286: Calculation

d internal/(m) r / (m) x Sec hei Area Rad of Gyration

1.000 #REF! #REF!Center #REF! ### ###

30.5000 26.250 m #REF! ### ###25.0000 20.750 m #REF! ### ###19.5000 15.250 m #REF! ### ###14.0000 9.750 m #REF! ### ###8.5000 4.250 m #REF! ### ###

0.000 m #REF! ### ###30.5000

Page 287: Calculation
Page 288: Calculation
Page 289: Calculation
Page 290: Calculation
Page 291: Calculation
Page 292: Calculation
Page 293: Calculation
Page 294: Calculation

( 294 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0 0 0.00 B SF

CELL ON WHEEL

Tower Model COW 4009

Page 295: Calculation

( 295 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

CONTENTS

1.GENERAL

1.1 Strenth Limt States

1.2 Serviceability Limit States

1.3 Analysis

1.4 Definitions

1.5 Symbols

2.LOADS

Scope

Classification of Structure

Combination of Loads

Tempeerature Effects

Dead Loads

Wind and Ice Loads

3.ANALYSIS

4.DESIGN STRENTH OF STEEL

5.MANUFACTURING

6.OTHER STRUCSTRUCTURE CLASSIFICATION…………………………………………………………………………………..

7.GUY ASSEMBLIES

8.INSULATORS

9.GUY ARM/FOUNDATION AND ANCHORAGES

Page 296: Calculation

( 296 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Conrete

10.PROTECTIV

Table 9.1. Wind Velocity Variation with Height…………………………………………………………………………………..

11.OBSTRUCTION MARKING

Table 9.3. Tower Vertical Pipe Data Derived from Table 03…………………………………………………………………………………..

12.CLIMBING FACILITIES Table 9.4. Section Wind force and Gravity centers…………………………………………………………………………………..

Table 9.5. Data of Stiffeners…………………………………………………………………………………..

13.PLANS, ASSEMBLY TOLARANCES,A Table 9.6. Moment of inertia of the Composite sections…………………………………………………………………………………..

Table 9.7. Weight of Tower Sections…………………………………………………………………………………..

14.MAINTAINANCE AND CONDITION A Table9.8. Wind Force Effect on Projected Area…………………………………………………………………………………..

15.EXISTING STRUCTURES

10 .

Calculation for buckling failure…………………………………………………………………………………..

Table 10.1. Buckling Failure Analysis…………………………………………………………………………………..

Table 10.2. Buckling for bottom most sub section……………………

Calculation for Lifting Cable strength………………………………………………………………………………..

Calculation for Deflection & Guy wire strenth………………………………………………………………………………..

Table 10.2. Guy wire Data……………………………………………….

10.3 Bending failure of Guide Arms

11 . Yielding Failure

Yielding Failure in Compression…………………………………………………………….

Table 11.1. Yielding Failure in Compression Analysis………………

Yielding Failure in Tension

Table 11.2. Tower Tensile failure of the pipe on the wind flow side

12 . Failure from the pivot…………………………………………………………………………………..

Table 12.1. Analysis for Failure from the pivot

13 . Failure of Landing Leg Sand Shoe………………………………………………………………

Bending Strength Calculation

Table 9.2. Tower Vertical Pipe Data…………………………………………………………………………………..

Table 9.9. Bending Moment Failure Analysis…………………………………………………………………………………..

Calculation for Buckling & Deflection

Page 297: Calculation

( 297 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

14 .

Table 14.1. Shelter Details

Table 14.2. Tower Frame Details

Table 14.3. Guide Arms

Table 14.4. Base Frame Details

Table 14.5. Concrete Block Details

Table 14.6. Load Details

Table 14.7. Turning Moment Due to Wind Force & Inclination

Table 14.8. Locating the center of Gravity

15 .

16 . Safety factor Calculation…………………………………………………………………………………..

17 . Calculation for Dimensions of the Rectangular Land Area…………………………

18 . Finalized Parameter Values relevant to tower Models and Relevant Cases

19 . CONCLUSIONS…………………………………………………………………………………..

20 . REFERENCES…………………………………………………………………………………..

ANNEX: BENDING CALCULATION (EACH TOWER SECTION)

1 . GENERAL

0 . Notations and Symbols

Symbol Description Units

a Area needed for I composite calculation m2

Ce Gra Above Center of gravity of the tower sections… m

Cen W Force Center of wind force…………………………………… m

d internal Internal Diameter…………………………………………………… m

D Out External Diameter………………………………………………… m

D Stiff Diameter of Stiffeners………………………………………… m

H Height…………………………………………………………………… m

h1 Upper portion of section height………………………… m

h2 Lower portion of section height………………………… m

Height Above Height above the tower section………………………… m

STABILITY CALCULATION…………………………………………………………………………………..

Length Parameters of Guide Arms…………………………………………………………………………………..

Calculation to find arm length for bolting Option.

Page 298: Calculation

( 298 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

I Moment of Inertia…………………………………………………… Kgm2

I Composite Moment of Inertia of composite section………… Kgm2

L Pipe Length of pipe of the tower section………………… m

L stiff Length of stiffener of the tower section……… m

n Stiffeners No of lengths of stiffeners………………………………… Nos

offset X val Offset due to 1 degree inclination…………………… m

r Internal Radius……………………………………………………… m

R out External Radius……………………………………………………… m

Required Ld Required leverage distance from guide Arms fo m

Sch No Schedule Number…………………………………………………… Num

Sec height Sectional Height of tower section…………………… m

SF Safety Factor…………………………………………………………

Start Height Starting height of a tower section…………………… m

Tr Moment Turning Moment……………………………………………………… Nm

Un Wt of Pipe Unit Weight of Pipe……………………………………………… Kg/m

Un Wt of Stiff Unit weight of stiffeners……………………………………… Kg/m

Symbol Description Units

Wi Pressure Wind Pressure………………………………………………………… Pa

Wind Force Tr M Turning Moment due to wind force…………………… Nm

y Distance to Extreme Fiber…………………………………… m

Y Distance to Center of Gravity from tower side m

// to Center Line Parallel to center line…………………………………………

Perpendicular to Center line………………………………

Note: All other notations are illustrated with figures

90o to Center Line

Page 299: Calculation

( 299 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1 . GENERAL

Standard. While trying to strict to standard the designer have tried to adopt the formal

procedure in order to model the systemcloser to reality. Each action taken will be

explained with illustrations in Calculation section

2 . INTRODUCTION

The study has focused on the most critical aspects of the real tower. While reviewing the reader

will be able to see the data in the form of tables. Also he will notice that Specimen calculation

is provided for the most important (Critical) row of the table. This has been done to prevent the

Proposal getting lengthen unnecessarily. The calculation for the area and weight of antennae

are followed as per customer’s request.

Ref 7. Material Used for Tower Sections

160 Kmph

400 Kg Ref- Head Load details

Customer allowed area Max is 6.00 m2

Tower Calculations have been done according to AISI EIA/TIA 222 G

1.      All steel materials used are made according to DIN standards.

2.      This calculation is withstand a wind speed of

3.      Total head load weight and Area is followed in the section Head Load Details

4.      All tower sections are subjected to Hot dip Galvanization.

5.      Tower support frame and Platform structure is sand blasted, Primered and

Page 300: Calculation

( 300 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

painted according to clients requirement.

4 . DESIGN PHILOSOPHY RELATED TO ENVIRONMENTAL LOADS

The proposed revision of the standard is based on limit states design.

The structures are checked for two major limit states.

i ) Strength limit states

ii ) Serviceability limit states

According to TIA-222-G standard Wind load is considered as the major fact

controlling the stability.

Wind Speeds escalated with height according to the terrain characteristics

surrounding a given site.

Here Exposure C (Flat open area) is selected

The direction of wind and tower orientation of a mobile tower at a given time

cannot be predicted. Therefore AISI/TIA standards have allocated a 0.85

Directionality Safety factor.

According to Figure shown bellow the Wind velocity V is most likely to turn

the whole system about the axis AB depending on the power of the wind force.

But the force which will turn the system will be the cross particle perpendicular

to AB and always will be less then or equal to wind force.

Therefore it is not essential to depend on a

Directionality safety factor as long as critical

situation is concern.

Page 301: Calculation

( 301 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

The calculations are flexible for any wind

flow direction provided Wind velocity is

less than Survival Wind velocity.

5 . STRUCTURE CLASSIFICATION

Structures are classified according to reliability requirements.

to represent structures for which there is a low hazard to human life and to property in

the event of failure.

that may be provided by other means. This tower falls under this category. Also ice loading

does not apply to this category.

Category I Structures have the lowestreliability requirements and are intendeddamage

Category II structures represent a substantial hazard to human life intended for services

Extreme Point

B

d

V

Fig 3.1 Wind flow Direction Analysis

Tower side

Page 302: Calculation

( 302 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

2 . LOAD

HEAD LOAD DETAILS

Length = 2.50 m

Width = 0.27 m

Length to breath Ratio = 9.26

Area = 0.68 m2

Force coefficient of the section = 0.9

Diameter = 0.60 m

Area = 0.28 m2

Diameter = 1.20 m

Area = 1.13 m2

Effect of Cables Per Meter

13 Kg Feeder Cable 0.013 m2 6 0.075 m2 0.5

1 Kg Optical Cables 0.005 m2 3 0.013 m2 0.5

1 Kg Power Cables 0.005 m2 3 0.013 m2 0.5

0.10 m2

Weight and Area parameters of head Loads with Brackets

ANTENNAE AND ACCESSORIES

Unit Wei Description Area Nos Elevation Tot Area Proj Area

35 Kg GSM Antennae 0.68 m2 0 Deg 2 40.0 m 1.35 m2 1.35 m2

35 Kg GSM Antennae 0.68 m2 120 Deg 2 40.0 m 1.35 m2 0.67 m2

35 Kg GSM Antennae 0.68 m2 240 Deg 2 40.0 m 1.35 m2 0.68 m2

Calculation for area of GSM antennae

Calculation for area of 0.6 MW antennae

Calculation for area of 1.2 MW antennae

Wnid Nor q

Page 303: Calculation

( 303 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

45 Kg 1.2 MW Dishes 1.13 m2 0 Deg 1 38.0 m 1.13 m2 1.13 m2

55 Kg 1.2 MW Dishes 1.13 m2 0 Deg 1 36.0 m 1.13 m2 1.13 m2

10 Kg Lightening Arrest 0.03 m2 0 Deg 1 45.0 m 0.03 m2 0.03 m2

4 Kg Aviation Lamp 0.06 m2 0 Deg 1 42.0 m 0.06 m2 0.06 m2

Total Antenne Area 6.40 m2 5.05 m2

Excess Head Load 40.0 m 0.60 m2

7.00 m2 5.05 m2

Antenne Frame Cables

21 Kg Ant Frame Poles 0.18 m2 0.10 m2 6 40.0 m 1.08 m2 1.69 m2

12 Kg Ant Frame Bracke 0.03 m2 0.00 m2 6 40.0 m 0.18 m2 0.00 m2

1.69 m2

680 Kg Total Head Load 6.39 m2

TOWER

Unit Wei Description Area Nos Elevation Tot Area Proj Area

Top Most 2.28 m2 0 Deg 1 33.05 m 2.28 m2 2.28 m2

2nd Frm Top 2.22 m2 0 Deg 1 25.55 m 2.22 m2 2.22 m2

3rd Frm Top 2.77 m2 0 Deg 1 18.45 m 2.77 m2 2.77 m2

4th Frm Top 2.77 m2 0 Deg 1 11.35 m 2.77 m2 2.77 m2

5th Frm Top 2.77 m2 0 Deg 1 4.25 m 2.77 m2 2.77 m2

6 . Tower Specifications

Type & Model = COW

Tower Height = 40 m

Tower Weight = 853 Kg

Wnid Nor q

Page 304: Calculation

( 304 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Total Head Load = 680 Kg

Number Of Sections = 5

Gravity Acceleration = 9.812 m/s2 (On Earth)

Overlap = 1.400 m

Tower Elevation = 0.900 m From System Level

Distance from Elevated level to tower = 0.650 m From Ground Level

Building/Mountain Elevation

7 . Material Used for Tower Sections

1. Pipe Schedule 80 - 1" , 1/2" DIA (DIN 17100 Standard)

OD - 48.3, 33.4 mm

Thickness- 5.08mm

Page 305: Calculation

( 305 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Material ST 52.3 (DIN 17100 Standard)

Tensile Stress = 523 N/mm2

Yield Strength = 335 N/mm2

2. Stiffeners (Lattice Structure )

Bright Steel Rod (DIN 17100 Standard)

Top Stiffeners 1/2" DIA

Bottom Stiffeners 5/8" DIA

Material 1020 Carbon Steel

Tensile Stress = 380 N/mm2

Yield Strength = 200 N/mm2

8 . Wind Loads Analysis

Survival wind speed = 160 Kmph 44.44

Operational wind speed = 140 Kmph 38.89

ms-1

ms-1

Page 306: Calculation

( 306 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Wind Velocity relevant to each case will be found with the following formulae and factors.

There will be two cases one for operational and the other for survival wind velocity.

V z =

Where

= Basic wind speed of the place in m/s

= Probability Factor(Risk coefficient)

= Terrain height and Structure size Factor

= Topography Factor ( 1.0 for planes )

K1 for Towers Terrain Category I

Height/(m) Operational(120) Survival(160) K2 Class A K2 Class B

50 1.05 1.07 1.20 1.18 1.00

40 1.05 1.07 1.20 1.18 1.00

30 1.05 1.07 1.15 1.13 1.00

20 1.05 1.07 1.12 1.10 1.00

15 1.05 1.07 1.09 1.07 1.00

10 1.05 1.07 1.05 1.03 1.00

P z =

Wind Reg H Frm Grnd V z /(ms-1) Pressure/(Pa)

39.45 m 56.12 1.89 E+03

35.30 m 56.12 1.89 E+03

31.75 m 53.74 1.73 E+03

28.20 m 53.74 1.73 E+03

24.65 m 52.31 1.64 E+03

Vb . K1 . K2 . K3

Vb

K1

K2

K3

K3 (Topography)

0.6 x Vz2

Page 307: Calculation

( 307 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

21.10 m 50.88 1.55 E+03

0.00 m 0.00 0.00 E+00

0.00 m 0.00 0.00 E+00

Calculation for wind Load on the antennae

At 160 Kmph 44.44

= 1.07

= 1.18

= 1.00

V z =

V z = 56.12 m/s

Wind Pressure =

= 1,889.37 N/m2

At 140 Kmph 38.89

= 1.05

ms-1

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

ms-1

K1

Page 308: Calculation

( 308 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 1.18

= 1.00

V z =

V z = 48.18 m/s

Wind Pressure =

= 1392.98 N/m2

Calculation for wind Load on the Tower

At 160 Kmph 44.44

= 1.07

= 1.10

= 1.00

V z =

V z = 52.31 m/s

Wind Pressure =

= 1641.87 N/m2

At 140 Kmph 38.89

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

Page 309: Calculation

( 309 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 1.05

= 1.10

= 1.00

V z =

V z = 44.92 m/s

Wind Pressure =

= 1210.50 N/m2

Calculation for wind Load on the Shelter(Only if present)

At 160 Kmph 44.44

= 1.07

= 1.05

= 1.00

V z =

V z = 49.93 m/s

Wind Pressure =

= 1496.00 N/m2

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

Page 310: Calculation

( 310 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

At 140 Kmph 38.89

= 1.05

= 1.05

= 1.00

V z =

V z = 42.88 m/s

Wind Pressure =

= 1102.96 N/m2

9 . Bending Strength Calculation

Terrain category Class B for tower sections

Table 9.1. Wind Velocity on tower sections for Survival wind velocity (160 Kmph)

Section Height/(m) V z /(ms-1)Wi Pressure/(Pa)

Antennae Frame 39.5 56.12 1.89 E+03

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

Page 311: Calculation

( 311 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1 Top Most 35.3 56.12 1.89 E+03

2 2nd Frm Top 31.8 53.74 1.73 E+03

3 3rd Frm Top 28.2 53.74 1.73 E+03

4 4th Frm Top 24.7 52.31 1.64 E+03

5 5th Frm Top 21.1 50.88 1.55 E+03

0 0 0.0 0.00 0.00 E+00

0 0 0.0 0.00 0.00 E+00

Table 9.2. Tower Vertical Pipe Data

Section Material Sch No D Out/(m) Thickness Un Wt of Pipe

0 Antena Frame MS 80(Std) 0.0750 0.00508 8.76 Kg/m

1 Top Most MS 80(Std) 0.0334 0.00455 3.24 Kg/m

2 2nd Frm Top MS 80(Std) 0.0334 0.00455 3.24 Kg/m

3 3rd Frm Top MS 80(Std) 0.0483 0.00508 5.41 Kg/m

4 4th Frm Top MS 80(Std) 0.0483 0.00508 5.41 Kg/m

5 5th Frm Top MS 80(Std) 0.0483 0.00508 5.41 Kg/m

0 0 0 0(Std) 0.0000 0.00000 0.00 Kg/m

0 0 0 0(Std) 0.0000 0.00000 0.00 Kg/m

Table 9.3. Tower Vertical Pipe Data Derived from Table 03

Section R out / (m) = y d internal/(m) r / (m) x Sec height Area

Antena Frame 0.038 m 0.0648 0.032 m 1.000 0.001116

1 Top Most 0.017 m 0.0243 0.012 m 0.217 0.000412

2 2nd Frm Top 0.017 m 0.0243 0.012 m 0.320 0.000412

3 3rd Frm Top 0.024 m 0.0381 0.019 m 0.433 0.000690

4 4th Frm Top 0.024 m 0.0381 0.019 m 0.559 0.000690

5 5th Frm Top 0.024 m 0.0381 0.019 m 0.683 0.000690

0 0 0.000 m 0.0000 0.000 m 0.000 0.000000

0 0 0.000 m 0.0000 0.000 m 0.000 0.000000

Page 312: Calculation

( 312 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 9.4. Section Wind force and Gravity centers

Distance from Elevated level to tower = 0.900 m

= 0.650 mTower base Elevation from ground level H Twr Ele

X

W

q`

H tb

M tot

B A

Fig 9.3. State of tower under equilibrium just before falling

Fig 9.2. Horizontal movement due to 1o Inclination(Worst Case)

Sec Height

h1

h2

Fig 9.1. Section Height detail of tower section

Page 313: Calculation

( 313 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Section H Above Sec bottom Cen W F Sec AbvStart Height CGgAbvTwrBot Self offset X val

Antena Frame 2.40 m 1.20 m 36.70 m 37.90 m 0.66 m

1 Top Most 10.70 m 5.35 m 28.40 m 33.05 m 0.58 m

2 2nd Frm Top 17.80 m 8.90 m 21.30 m 25.55 m 0.45 m

3 3rd Frm Top 24.90 m 12.45 m 14.20 m 18.45 m 0.32 m

4 4th Frm Top 32.00 m 16.00 m 7.10 m 11.35 m 0.20 m

5 5th Frm Top 39.10 m 19.55 m 0.00 m 4.25 m 0.07 m

0 0 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m

0 0 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m

39.10 m 19.55 m

Total Height 40.00 m

Table 9.5. Data of Stiffeners

Section Material Xsec Area D Stiff/(m) Un Wt of Stiff L stiff/(m)

1 Top Most BS Shafting 0.0001131 0.012 0.89 Kg/m 6.000

2 2nd Frm Top BS Shafting 0.0001131 0.012 0.89 Kg/m 6.000

3 3rd Frm Top BS Shafting 0.00020106 0.016 1.58 Kg/m 6.000

4 4th Frm Top BS Shafting 0.00020106 0.016 1.58 Kg/m 6.000

5 5th Frm Top BS Shafting 0.00020106 0.016 1.58 Kg/m 6.000

0 0 0.000 0.00 Kg/m 0.000

0 0 0.000 0.00 Kg/m 0.000

Note : Moment of inertia of the composite section about the neutral axis is found

using the Parallel axis theorem

I =

4

=

p(R4-r4)

I Comp ( I + a x h12) + [2 x ( I + a x h2

2)]

Page 314: Calculation

( 314 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

4

Table 9.6. Moment of inertia of the Composite sections

Section I a / (m2) I Composite

Antenna Frame 6.856 E-07 1.12 E-03 5.53 E-04 1.53 E-04 8.624 E-04

1 Top Most 4.398 E-08 4.12 E-04 1.07 E-05 3.27 E-06 1.801 E-05

2 2nd Frm Top 4.398 E-08 4.12 E-04 2.18 E-05 6.26 E-06 3.572 E-05

3 3rd Frm Top 1.633 E-07 6.90 E-04 6.76 E-05 1.96 E-05 1.115 E-04

4 4th Frm Top 1.633 E-07 6.90 E-04 1.09 E-04 3.06 E-05 1.773 E-04

5 5th Frm Top 1.633 E-07 6.90 E-04 1.59 E-04 4.38 E-05 2.572 E-04

0 0 0.000 E+00 0.00 E+00 0.00 E+00 0.00 E+00 0.000 E+00

0 0 0.000 E+00 0.00 E+00 0.00 E+00 0.00 E+00 0.000 E+00

Table 9.7. Weight of Tower Sections

Weight / (Kg)

Section Pipes Xtra Stuff SectionTot Total Abv Cen Gr Frm

Frame + Head Load126.1 Kg 553.6 Kg 679.7 Kg 679.7 Kg 37.90 m

1 Top Most 90.3 Kg 29.3 Kg 119.6 Kg 799.4 Kg 33.05 m

2 2nd Frm Top 82.5 Kg 37.3 Kg 119.8 Kg 919.2 Kg 25.55 m

3 3rd Frm Top 138.1 Kg 66.4 Kg 204.4 Kg 1123.6 Kg 18.45 m

4 4th Frm Top 138.1 Kg 66.4 Kg 204.4 Kg 1328.1 Kg 11.35 m

5 5th Frm Top 138.1 Kg 66.4 Kg 204.4 Kg 1532.5 Kg 4.25 m

0 0 0.0 Kg 0.0 Kg 0.0 Kg 0.0 Kg 0.00 m

0 0 0.0 Kg 0.0 Kg 0.0 Kg 0.0 Kg 0.00 m

Tower Weight 852.8 Kg 16.39 m

Table 9.8. Wind Force Effect on Projected Area

Force Coefficient for Circular sections = 0.5 (AISI Standard)

Effective Area = Projected Area x Force Coefficient

a.h1 2 a.h2 2

Pole (Only) Center of Gravity

Page 315: Calculation

( 315 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

TM = WF x H

Area Projected/(m2)

Section Pipes Cables Extra Stuff Sec Total Eff Total Total Above

Frame Antennae 1.080 m2 0.245 m2 5.307 m2 6.632 m2 3.316 m2 1.658 m2

1 Top Most 0.932 m2 0.949 m2 0.396 m2 2.276 m2 1.138 m2 2.796 m2

2 2nd Frm Top 0.852 m2 0.867 m2 0.504 m2 2.223 m2 1.111 m2 3.908 m2

3 3rd Frm Top 1.232 m2 0.867 m2 0.672 m2 2.771 m2 1.385 m2 5.293 m2

4 4th Frm Top 1.232 m2 0.867 m2 0.672 m2 2.771 m2 1.385 m2 6.678 m2

5 5th Frm Top 1.232 m2 0.867 m2 0.672 m2 2.771 m2 1.385 m2 8.064 m2

5 0 0.000 m2 0.000 m2 0.000 m2 0.000 m2 0.000 m2 0.000 m2

5 0 0.000 m2 0.000 m2 0.000 m2 0.000 m2 0.000 m2 0.000 m2

12.811 m2

= 270 N/mm2 2.70 E+08 Pa

BM =

y

Table 9.9. Bending Moment Failure Analysis

Righting Moment Turning Moment

Section Guy Cable Stru RigidityWind Force Inclination Sec BM

Antena Frame 3.76 E+03 4.41 E+03 8.17 E+03

1 Top Most -1.36 E+04 -1.55 E+05 2.83 E+04 4.52 E+03 3.28 E+04

2 2nd Frm Top -1.95 E+04 -1.15 E+05 6.03 E+04 4.02 E+03 6.43 E+04

3 3rd Frm Top -3.22 E+04 -1.62 E+05 1.14 E+05 3.55 E+03 1.18 E+05

4 4th Frm Top -6.19 E+04 -1.28 E+05 1.75 E+05 2.58 E+03 1.78 E+05

5 5th Frm Top -6.19 E+04 -1.46 E+05 2.45 E+05 1.12 E+03 2.46 E+05

0 0 -0.00 E+00 0.00 E+00 0.00 E+00 0.00 E+00

0 0 -0.00 E+00 0.00 E+00 0.00 E+00 0.00 E+00

-1.89 E+05 6.23 E+05 1.58 E+04

Bending Stress ( s )

I comp x s

Page 316: Calculation

( 316 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Section BM Total Y Extreme BM Allowed Safety Factor

Antena Frame 8.17 E+03 0.500 4.66 E+05 56.99 Safe

1 Top Most -1.36 E+05 0.143 3.39 E+04 1.95 Safe

2 2nd Frm Top -7.05 E+04 0.211 4.57 E+04 2.35 Safe

3 3rd Frm Top -7.64 E+04 0.286 1.05 E+05 3.08 Safe

4 4th Frm Top -1.17 E+04 0.369 1.30 E+05 12.79 Safe

5 5th Frm Top 3.82 E+04 0.451 1.54 E+05 4.04 Safe

0 0 0.00 E+00 0.000 0.00 E+00 0.00 0

0 0 0.00 E+00 0.000 0.00 E+00 0.00 0

Note: ( - ) safety factor denotes higher safty as it has to go passing 0 to go to Failiure.

Consideration of stiifner Strenth for Bending Effect

= 0.400 mSegment Height (L i )

q

Pipe Distance

L ten Stif

L com Stif

L i / 2

q

Def

b

a

q

Page 317: Calculation

( 317 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

=

b = + -

a = + -

Righting Moment from Stiffners

Total Swaey = 0.14 Deg

Def Allowed at H = Height x Tan (Def)

= 0.094 m

Section Peak H Def All at H Def for Sec DefPerSegment

1 Top Most 39.10 0.094 0.019 0.00041

2 2nd Frm Top 31.20 0.075 0.017 0.00040

3 3rd Frm Top 24.10 0.058 0.017 0.00080

4 4th Frm Top 17.00 0.041 0.017 0.00080

5 5th Frm Top 9.90 0.024 0.024 0.00112

0 0 0.00 0.000 0.000 0.00000

0 0 0.00 0.000 0.000 0.00000

Sway

Section Pipe Distance L Stiff L Ten Stiff L Comp Stiff

1 Top Most 0.251 0.059 0.3206187 0.3207786 0.3204588

2 2nd Frm Top 0.369 0.058 0.4197719 0.4199487 0.4195950

q/(Deg) Tan Inv (Def/Li)

(L I /2) 2 L ten Stiff 2

L Ten Stif x L i

(L I ) 2 L Com Stiff 2

2 x L Com Stif x L i

q/(Deg)

Pipe Distance

Page 318: Calculation

( 318 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

3 3rd Frm Top 0.500 0.115 0.5389253 0.5392989 0.5385516

4 4th Frm Top 0.646 0.115 0.6758561 0.6762404 0.6754717

5 5th Frm Top 0.789 0.161 0.8139539 0.8144976 0.8134099

0 0.000 0.000 0.0000000 0.0000000 0.0000000

0 0.000 0.000 0.0000000 0.0000000 0.0000000

(E ) for BS Shafting = 209.8 Gpa

Considering The Stiffner Being tensioned

Exp len, e Contr Len ,c

1 Top Most 51.370 51.442 0.0001599 0.0001600

2 2nd Frm Top 61.502 61.591 0.0001768 0.0001769

3 3rd Frm Top 68.117 68.315 0.0003735 0.0003738

4 4th Frm Top 72.682 72.892 0.0003842 0.0003845

5 5th Frm Top 75.625 75.927 0.0005437 0.0005440

0 0 0.000 0.000 0.0000000 0.0000000

0 0 0.000 0.000 0.0000000 0.0000000

Righting Moment = Force x Perpedicular Distance

Tentioned Stiffner

e/(m) X sec Area Axial Force Righting Mo No of Segment

1 Top Most 0.00015987 0.0001131 11,831.51 1477.24 47

2 2nd Frm Top 0.00017685 0.0001131 9,996.27 953.91 43

3 3rd Frm Top 0.00037351 0.00020106 29,235.18 2179.30 21

4 4th Frm Top 0.00038424 0.00020106 23,981.89 1427.75 21

5 5th Frm Top 0.00054367 0.00020106 28,175.36 1399.01 21

0 0 0.00000000 0 0.00 0.00 0

0 0 0.00000000 0 0.00 0.00 0

Comressed Stiffner

c/(m) X sec Area Axial Force Righting Mo No of Segment

b/(Deg) a/(Deg)

Page 319: Calculation

( 319 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1 Top Most 0.00015995 0.0001131 11837.42 1851.32 47

2 2nd Frm Top 0.00017692 0.0001131 10000.49 1759.23 43

3 3rd Frm Top 0.00037377 0.00020106 29255.46 5437.02 21

4 4th Frm Top 0.00038446 0.00020106 23995.53 4586.77 21

5 5th Frm Top 0.00054403 0.00020106 28194.19 5469.60 21

0 0 0.00000000 0 0.00 0.00 0

0 0 0.00000000 0 0.00 0.00 0

14 . STABILITY CALCULATION

Coordinate System definition

As shone in the figure front side will be decided according to the orientation of tower when irected

Extream center point of Front side Beam will be taken as the coordinate center.

Y

Y CG

Stability Circle

Page 320: Calculation

( 320 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

X tra Leverage required for stability will given by the extension of Arm or leverage beam.

Details of Heavy Objects effecting the Stability

Table 14.1. Shelter Details

Weight 0 Kg

Height 0.00 m

Width 0.00 m

Length 3.50 m

3.00 m

Area 0.000 mm2

Table 14.1.1 Sanded Volume Details

Height 0.000m

Length 0.000m

Breath 0.000m

Volume 0.000m3

Extra Weights Distributed On the Deck

Unit Wt Country Number Tot Weight

Sand 1840 Kgs 0.0000 m3 1 0.00 Kg

Small Concrete B 10Kgs 1Pcs 0 0.00 Kg 0.00 Kg

Distance at which the Block is fixed from arm End = 0.000 m

Center of gravity of block from End of extension = 0.290 m

Center of gravity of block from Pivot = 5.711 m

Table 14.5. Concrete Base Details(Underneath Landing Legs)

Description Placed Y Dis X sec Size Height Cube WeightNo of Cubes

Y Shelter Start

Page 321: Calculation

( 321 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Twr Side Concret -2.855 m 1.500 m 0.579 m 3127 Kg 2

Mid Concrete 0.000 m 1.500 m 0.579 m 3127 Kg 2

Other Side Concr 6.850 m 1.500 m 0.579 m 3127 Kg 2

Table 14.2. Tower Frame Details

Beam/Plates 402.00 Kg

Other Loads 10.00 Kg

Total 412 Kg

Note. If Guy wires are present they fixed to the X tra leverage Extentions therefore

it only Makes the Structure rigid relative to the Base Frame. The whole system is

made sure to be Stable the self weight of the Whole system.

Tower is checked for stability when the total system is about fall about two ground

contact Points

Table 14.3.Weights at Critical Polygon Points

Unit Wt County Units Total Wt

Front Polygon Po 48 Kg/m 6.00 m 2 576.00 Kg

Rear Polygon Poi 48 Kg/m 0.00 m 2 0.00 Kg

Page 322: Calculation

( 322 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

w4

w3

w2

w1

Wind Force

H/2

Off Set X val

1 o

Fig 14.1. Factors causing Turning Moment

w5

1o

Wind Force

Wt

R = WtR = 0

M tot

Ld Required

Page 323: Calculation

( 323 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

By taking moment about point A

L d Required x Wt "=" M tot

L d Required "=" M tot

Wt

"=" 6.70 E+05 J

1.98 E+05 J

"=" 3.38

P =

WF = P x A

TM = WF x H

Table 14.7. Turning Moment Due to Wind Force & Inclination

Area Pressure Wind Force Cen W ForceTr Moment

Head Loads 6.387 m2 1889 Pa 12068 N 40.0 m 4.8 E+05 J

Tower Wind Forc 12.811 m2 1642 Pa 21034 N 19.6 m 4.1 E+05 J

0 . 0.000 m2 0 Pa 0 N 0.0 m 0.0 E+00 J

Turn ower TM

Tur'gMomenRi'g Moment

r x V2

Ld Required

B A

Fig 14.2. State of tower under equilibrium just before falling

Page 324: Calculation

( 324 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Antennae Moment 4.83E+05 J

Twr Wind F Moment 4.11E+05 J

Twr Inc'n Moment 1.58E+04 J

Self Righting Moment 7.06E+05 J

Guy Righting Moment 4.46E+05 J

Slac Guy Init Moment 2.42E+05 J

1.15E+06 J 1.15E+06 J

Table 14.8. Locating the center of Gravity

Weight Force Y Tr M (J)

Tower+Head Loa 1533 Kg 15,037 0.500 7.52 E+03

Shelter 0 Kg 0 4.750 0.00 E+00

Tower Frame 289 Kg 2,836 0.300 8.51 E+02

2 Front Poly Pts( 576 Kg 1,648 -3.000 4.95 E+03

2 Rear Poly Pts( 0 Kg 1,648 6.000 9.89 E+03

Front arm Con Bl 5000 Kg 49,060 -2.855 -1.40 E+05

Rear concrete Bl 5000 Kg 49,060 6.850 3.36 E+05

Extra Mid Concre 5000 Kg 49,060 0.000 0.00 E+00

Base Struc Wt 3045 Kg 29,878 1.700 5.08 E+04

Wt of Accessorie 0 Kg 0 5.500 0.00 E+00

Resultant Wt 20443 Kg 198,227 1.362 2.70 E+05

Total Tr Moment "=" 6.70 E+05 JCentre of Gravity

YPlatform

Y

Y CG Stability Circle

a

b

Page 325: Calculation

( 325 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

15 . Length Parameters of Extention Points( STABILITY CALCULATION )

Radious of Stability Circle (R) = 3.38 m (Minimum Perpendicular Distance From Tower center)

Critical Leaverag = 4.36 m Calculations are followed

Note:

As discusssed earlier the required R has to be satisfied in and Direction as the Wind Flow and its Direction can't be predicted.

Stability Verification 62,336 N

204 KN 1.362

36 112 WF

Concrete

about C wt Mom 10 982 324

about A 70 1578 837

L Cr

Fig 14.3. Polygon point Arrangement

X Platform

Xa

LF

BA

6m

3m

Page 326: Calculation

( 326 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Practically the structure rotates about two arms, In this section Critical Direction is considered for failiure analysis.

Length (L) Angle

Safty Leverage Parameters = Front Extension 6.00 120 Deg

of the critical points of the Safty Polygon Rear Extention 0.00 0 Deg

COW Stable

6.500

1.150

0.030

6.470

120 Deg

Note: The Polygon created by poligon points

should Be greater than 3m x 3m in size to

have the best stablity and minimum

deflection of platform structure.

Provided above condition is

satisfied the platform structure

can be adjested upto extent

allowed by the design.

Please refer calculation Relevent to case 1

Case 1 _ Stability Circle is within Polygon Rear Points

Case 2 _ Stability Circle is Beyond Polygon Rear Points

Case 3 _ Stability Circle is within Both Rear and Front Polygon points

Length Platform // to center line Y Platform

Width 90o to center line X Platform

Pivot Point Y Distance Front Ext Y F Pivot

Pivot Point Y Distance Rear Ext Y R Pivot

q Guy

X Platform

YTower

k

Fig 14.4. Arm and Guy wire orientation Case 1

Page 327: Calculation

( 327 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Desiding on Number of Arms and Guy Wire Orientation

Platform length = 6.50 m

R = 3.38 m

= 1.36 m

= 5.14 m

Rare leverage, Prefered Direction( if Required )

Rear Extension Not needed

Front Extension Foward Ref Fig 14.3 to see directions

Desiding on front arm sufficiency ( Only for Case 2 )

X = 1.15 m

= 0.03 m

= 0.50 m

k =

= 1.24 m

g =

67.8 Deg

= 112.2 Deg

= 7.8 Deg

By appling Sin formulae

= 6.000 = k =

Y CG

Pl Frm Length - Y CG

Derivation of front Point Inclination Angle a

Y Pivot

Y Tower

( X2 + (Y Pivot - Y Tower)2 ) 1/2

( tan -1 {X / (Y Pivot - Y Tower)}

g Considering the pivot

q Guy - g

LF

Page 328: Calculation

( 328 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0.135

= 1.242 = 0.03

44.378

d = 1.6 Deg

=

a =

CW from referenc = 121.6 Deg

=

Distance to front Exream Point from tower center

= 7.23 m

Checking for front point extention Sufficiency Along Y Axis front side

= 6.00 m

a = 120.0 Deg

R = 3.38 m

= -3.00 m

= 5.20 m

=

= -2.97 m

=

= 6.35 m

Sin ( q Guy- g ) Sin d

Sin d

180 - q Guy 180 - a + d

d + q Guy

L VG k Cos ( q Guy - g) + LF Cos d

L F

LF cos a

LF Sin a

Y FLL Y F Pivot + LF Cos a

X FLL X Platform + LF Sin a

Fig 14.5. Arm and Guy wire orientation Case 2

gYTower

q Guyo

Page 329: Calculation

( 329 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

>

2.97 m > 2.02 m

Front Arm Sufficient

Abs( Y F LL) Abs(R - Y CG)

Fig 14.6.Optimisation Analysis Case 1

Backwards

Side Ways

Forward

YR Pivot

LR

X Platform

YCG

R

R

dd

a

sh

m

k

l

YF Pivot

Stability Circle

b

fm

90-dq

LF

R

YMax

f d

Page 330: Calculation

( 330 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Checking for elimination of Xtra rear Poligon point (Only for Case 1 & 3)

= 1.15 m

R = 3.38 m

= 6.50 m

= 0.50 m

= 1.36 m

= 120.0 Deg

k =

= 5.27 m

f =

12.6 Deg

s =

50.1 Deg

d = 90-s-f

X Platform

Y Platform

Y Tower

Y CG

( q Guy )

( X Platform2 + (Y Platform - Y CG)2 ) 1/2

(Tan -1 { X Platform / ( Y Platform - Y CG )}

( Cos -1 { R / k}

Fig 14.6.Optimisation Analysis Case 3 to eliminate One Arm

YTWR

X Platform

YCG

Rs

m

pm

l

Stability Circle

b

f

LF

m

f

q Guyo

d

km

qm

d

180-m

Page 331: Calculation

( 331 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 27.3 Deg

m = 180-(q+d)

= 32.7 Deg

q =

= 4.25 m

By appling Sin formulae

q = l

= l

0.89

l = 6.98 m

= l

= 6.98 m

=

= -2.99 m

=

= 6.05 m

X platform + {(Y Platform x Tan d) - (Y TWR x Tan d)}

Sin ( 180-m ) Sin ( 90-d )

L VG

Y FLL Y Twr + LGV Cos q Guyo

X FLL LGV Sin q Guyo

BackwardsX Ref

Page 332: Calculation

( 332 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Derivation of Arm length and Angle of Front arm relevent to case 3

=

= 5.76 m

=

a = -58.3 Deg

= 121.7 Deg

Checking for Most Critical side of failure

L F (X FLL - X Platform )2 + ( Y FLL - Y F Pivot)

Tan a (X FLL - X Platform )

( Y FLL - Y F Pivot)

g Considering the pivot

Fig 14.6.Optimisation Analysis Case 2

Backwards

Side Ways

Forward

LR

X Platform

YCG

R

R

dd

a

s h

m

k

l

YF Pivot

Stability Circle

b

fm

90-dq

LF

R

YMax

YR Pivot

Page 333: Calculation

( 333 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Here in this case the designer himself tried maximum to minmise the length of guide arms by

identifiing the optimal angles for Guide arm orientation. Also he have suceeded in doing so.

Shortest Distanc = Two Rear platform pts 5.14 m

Overall Tilted Height / (m) Cross Particle Rear Side Two Rear Pol 5.14 m 5.14 m

Slanted to or // to Center Line ® 6.35 m

Tower Side Two Front Po 4.36 m 4.36 m

Two Front platform pts 1.36 m

Critical Leaverage L = 4.36 m i.e Minimum

16 . Safety factor Calculation ( Only placed on ground, not fixed to Ground )

Righting Moment = Resultant Wt x L Cr

= 8.6 E+05 J

S.F. = 8.6 E+05 J

6.7 E+05 J

= 1.29 Safe

Calculation to find Safty factor After Fixing the System to Ground

In case of taking moment about two Extream points all Bolting material canbe assumed to be at the center

Total Turing Moment = 6.70 E+05

Weight Turing Moment = 8.65 E+05

L Cr

Page 334: Calculation

( 334 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Needed X tra Turning moment = -1.95 E+05

Distance between concurrent bolting points

= 6.500

Fixed Arm Length = 4.60

Note: Always in the criticle case at least two arms will give the Righting moment.

Force Exerted = -4.2 E+04 N

Min Requirement

Bolts Should Withstand = -4.32 Ton (Number of Bolts and size can be desided on this)

Dia of Tor Bar = 0.000m

Shear Capacity of Tor Bar = 500 kN/mm2

= 0 kN

No of bolts = 16

Ability to create resisting moment = 0.00E+00

Total Turing Moment = 6.70E+05

Total resisting Moment = 8.65E+05

SF = 1.29 Safe

Note: Provided anchoring is done Using the appropriate chemical and to

the right standered, The tower will not fail by Tor bar Failiure.

Page 335: Calculation

( 335 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Anchorage depth = 0.000 m

Area = 0.000 m2

Concrete Grade = 25 N/mm2 12566.3706

= 250,000 N/m2 314159.265

Allowable Per Torr Bar = 0.00 N

Force Per Bolt = -2,651.61 N

Anchroing Safty factor = 0.00 Unstable

10 . GUY WIRE

Calculation for Buckling & Deflection with the presence of guy wire

Note: Trailer type tower is taken as example

Page 336: Calculation

( 336 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

When the angle is 30 degrees since Cos(30) is equal to 0.5 the above shown system reduces to the following system

Thus the side view can be analyzed as follows

Even if any case is to be having n number of Guy wires, the case will be considered to have one guy wire per Guy arm

Finally the modification will be restored or corrected by dividing the forces among Guy wires depending on inclination

angles.

T

Fig 10.2. Plan view of Guy wire Orientation

Fig 10.1 Guy wire Orientation

T1

TTot

T2

T3

b1

b2

b3

Fig 10.4 Side view of Guy Wire arrangement

Page 337: Calculation

( 337 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Calculation for buckling failure

Height at which the cable is fixed = 39.10 m

Y distance of Tower = 0.500 m

X length of Platform(Width) = 1.150 m

L(Landing Leg) = 6.00 m

WF Wind Force

R = WtR = 0

B A

Fig 10.5 Side view of the Reduced section

Topposite = 0

TTot

Compression Force

Tensile Force

CF1

b

Page 338: Calculation

( 338 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

a = 120 Deg

= 5.20

= -3.00

= 0.030 m

Ref 14.Stability Calculation

Distance at which the Guy wire is fixed on the Arm = 7.23 m

= Cable Fixing Height / Fixed Distance on Arm

= 0.185

= 0.185)

= 10.5 Deg

By resolving horizontal forces on tower ;

Total Turning Moment =

= Total Turning Moment by Guys

= 445,689 J

7.11

= 62,701 N

L Sin a

L Cos a

Y F Pivot

Tan b

Tan b

b Tan -1 (

TTot x Sin b

T Tot

Heignt x Sin b

T Tot

Page 339: Calculation

( 339 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Downwards compression force =

= 62,336 N =

Considering the whole tower

E = 210 GPa (1020 Carbon Steel)

p = 3.142

I = 1.20E-04

Le Factor = 0.70

Le = L x Le Factor

= 28 m

P cr =

= 3.17 E+05 N

Compression force = 62,336 N

S.F = 5.09 > AISI standard Safety factor 0.85 for a guyed mast

Table 10.1. Buckling Failure Analysis for each section

TTot x Sin b + Head Load

m4

p2 x E x I

Le2

Page 340: Calculation

( 340 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Section Le Factor Le I /(m4) P Cr Subjected load

1 Top Most 0.70 6.51 1.741 E-05 8.52E+05 27,863 N

2 2nd Frm Top 0.70 5.95 3.444 E-05 2.02E+06 49,607 N

3 3rd Frm Top 0.70 5.95 1.073 E-04 6.29E+06 71,354 N

4 4th Frm Top 0.70 5.95 1.703 E-04 9.97E+06 73,359 N

5 5th Frm Top 0.70 5.95 2.468 E-04 1.45E+07 13,028 N

Table 10.2. Buckling Failure Analysis for bottom most sub section of each section

Section L Le Factor Le I /(m4) P Cr Subjected load

1 0.300 0.70 0.21 4.398 E-08 2.07E+06 29,036 N

2 0.300 0.70 0.21 4.398 E-08 2.07E+06 50,783 N

3 0.300 0.70 0.21 1.633 E-07 7.68E+06 73,359 N

4 0.300 0.70 0.21 1.633 E-07 7.68E+06 75,365 N

5 0.300 0.70 0.21 1.633 E-07 7.68E+06 15,034 N

5 0.000 0.00 0 0.000 E+00 0.00E+00 0 N

5 0.000 0.00 0 0.000 E+00 0.00E+00 0 N

Thus Buckling doesn't Occur with present conditions

L + e

L

d H

LW

Fig 10.6 Guy wire and Tower orientation after Deflection

L - a

Page 341: Calculation

( 341 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Analysis For Guy wire behavior Under Loads

Case 1 : Not tensioned

Tightening tension = 5 N

Unit length Weight = 5 N

Length of the cable = 40.65 m

Cable Weigth = 203.24 N

Max Downward Deflection = 6.532 m

Table 10.4. Guy Cable Behavior under tension and self weight

Seg X(L ) y, (H) Y Sag Y red Grp

0 0.00 0.00 20.000 0.000 0.000

1 0.18 1.00 20.637 0.637 0.363

2 0.36 2.00 21.241 1.241 0.759

3 0.54 3.00 21.813 1.813 1.187

4 0.72 4.00 22.351 2.351 1.649

5 0.90 5.00 22.858 2.858 2.142

6 1.08 6.00 23.331 3.331 2.669

7 1.27 7.00 23.772 3.772 3.228

8 1.45 8.00 24.180 4.180 3.820

9 1.63 9.00 24.556 4.556 4.444

10 1.81 10.00 24.899 4.899 5.101

11 1.99 11.00 25.209 5.209 5.791

12 2.17 12.00 25.486 5.486 6.514

13 2.35 13.00 25.731 5.731 7.269

14 2.53 14.00 25.944 5.944 8.056

15 2.71 15.00 26.123 6.123 8.877

16 2.89 16.00 26.270 6.270 9.730

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 342: Calculation

( 342 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

17 3.07 17.00 26.385 6.385 10.615

18 3.25 18.00 26.466 6.466 11.534

19 3.43 19.00 26.515 6.515 12.485

20 3.61 20.00 26.532 6.532 13.468

21 3.80 21.00 26.515 6.515 14.485

22 3.98 22.00 26.466 6.466 15.534

23 4.16 23.00 26.385 6.385 16.615

24 4.34 24.00 26.270 6.270 17.730

25 4.52 25.00 26.123 6.123 18.877

26 4.70 26.00 25.944 5.944 20.056

27 4.88 27.00 25.731 5.731 21.269

28 5.06 28.00 25.486 5.486 22.514

29 5.24 29.00 25.209 5.209 23.791

30 5.42 30.00 24.899 4.899 25.101

31 5.60 31.00 24.556 4.556 26.444

32 5.78 32.00 24.180 4.180 27.820

33 5.96 33.00 23.772 3.772 29.228

34 6.14 34.00 23.331 3.331 30.669

35 6.33 35.00 22.858 2.858 32.142

36 6.51 36.00 22.351 2.351 33.649

37 6.69 37.00 21.813 1.813 35.187

38 6.87 38.00 21.241 1.241 36.759

39 7.05 39.00 20.637 0.637 38.363

40 7.23 40.00 20.000 0.000 40.000

Case 2 : Mannually tensioned

Tightening tension = 1000 N

Unit length Weight = 5 N

Length of the cable = 40.65 m

Cable Weigth = 203.24 N

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 343: Calculation

( 343 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Max Downward Deflection = 0.033 m

Table 10.5. Guy Cable Behavior under tension and self weight

X(L ) y, (H) Y Sag Y red Grp

0 0.00 0.00 20.000 0.000 0.000

1 0.18 1.00 20.003 0.003 0.997

2 0.36 2.00 20.006 0.006 1.994

3 0.54 3.00 20.009 0.009 2.991

4 0.72 4.00 20.012 0.012 3.988

5 0.90 5.00 20.014 0.014 4.986

6 1.08 6.00 20.017 0.017 5.983

7 1.27 7.00 20.019 0.019 6.981

8 1.45 8.00 20.021 0.021 7.979

9 1.63 9.00 20.023 0.023 8.977

10 1.81 10.00 20.024 0.024 9.976

11 1.99 11.00 20.026 0.026 10.974

12 2.17 12.00 20.027 0.027 11.973

13 2.35 13.00 20.029 0.029 12.971

14 2.53 14.00 20.030 0.030 13.970

15 2.71 15.00 20.031 0.031 14.969

16 2.89 16.00 20.031 0.031 15.969

17 3.07 17.00 20.032 0.032 16.968

18 3.25 18.00 20.032 0.032 17.968

19 3.43 19.00 20.033 0.033 18.967

20 3.61 20.00 20.033 0.033 19.967

21 3.80 21.00 20.033 0.033 20.967

22 3.98 22.00 20.032 0.032 21.968

23 4.16 23.00 20.032 0.032 22.968

24 4.34 24.00 20.031 0.031 23.969

25 4.52 25.00 20.031 0.031 24.969

26 4.70 26.00 20.030 0.030 25.970

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 .00 8 .00

0 .00

5 .00

10 .00

15 .00

20 .00

25 .00

30 .00

35 .00

40 .00

45 .00

Page 344: Calculation

( 344 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

27 4.88 27.00 20.029 0.029 26.971

28 5.06 28.00 20.027 0.027 27.973

29 5.24 29.00 20.026 0.026 28.974

30 5.42 30.00 20.024 0.024 29.976

31 5.60 31.00 20.023 0.023 30.977

32 5.78 32.00 20.021 0.021 31.979

33 5.96 33.00 20.019 0.019 32.981

34 6.14 34.00 20.017 0.017 33.983

35 6.33 35.00 20.014 0.014 34.986

36 6.51 36.00 20.012 0.012 35.988

37 6.69 37.00 20.009 0.009 36.991

38 6.87 38.00 20.006 0.006 37.994

39 7.05 39.00 20.003 0.003 38.997

40 7.23 40.00 20.000 0.000 40.000

Case 3 : When Applied Initial tension

Tightening tension = 6180.3 N

Unit length Weight = 5 N

Length of the cable = 40.65 m

Cable Weigth = 203.24 N

Max Downward Deflection = 0.005 m

Table 10.6. Guy Cable Behavior under tension and self weight

X(L ) y, (H) Y Sag Y red Grp

0 0.00 0.00 20.000 0.000 0.000

1 0.18 1.00 20.001 0.001 0.999

2 0.36 2.00 20.001 0.001 1.999

3 0.54 3.00 20.001 0.001 2.999

4 0.72 4.00 20.002 0.002 3.998

5 0.90 5.00 20.002 0.002 4.998

6 1.08 6.00 20.003 0.003 5.997

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 .00 8 .00

0 .00

5 .00

10 .00

15 .00

20 .00

25 .00

30 .00

35 .00

40 .00

45 .00

Page 345: Calculation

( 345 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

7 1.27 7.00 20.003 0.003 6.997

8 1.45 8.00 20.003 0.003 7.997

9 1.63 9.00 20.004 0.004 8.996

10 1.81 10.00 20.004 0.004 9.996

11 1.99 11.00 20.004 0.004 10.996

12 2.17 12.00 20.004 0.004 11.996

13 2.35 13.00 20.005 0.005 12.995

14 2.53 14.00 20.005 0.005 13.995

15 2.71 15.00 20.005 0.005 14.995

16 2.89 16.00 20.005 0.005 15.995

17 3.07 17.00 20.005 0.005 16.995

18 3.25 18.00 20.005 0.005 17.995

19 3.43 19.00 20.005 0.005 18.995

20 3.61 20.00 20.005 0.005 19.995

21 3.80 21.00 20.005 0.005 20.995

22 3.98 22.00 20.005 0.005 21.995

23 4.16 23.00 20.005 0.005 22.995

24 4.34 24.00 20.005 0.005 23.995

25 4.52 25.00 20.005 0.005 24.995

26 4.70 26.00 20.005 0.005 25.995

27 4.88 27.00 20.005 0.005 26.995

28 5.06 28.00 20.004 0.004 27.996

29 5.24 29.00 20.004 0.004 28.996

30 5.42 30.00 20.004 0.004 29.996

31 5.60 31.00 20.004 0.004 30.996

32 5.78 32.00 20.003 0.003 31.997

33 5.96 33.00 20.003 0.003 32.997

34 6.14 34.00 20.003 0.003 33.997

35 6.33 35.00 20.002 0.002 34.998

36 6.51 36.00 20.002 0.002 35.998

37 6.69 37.00 20.001 0.001 36.999

38 6.87 38.00 20.001 0.001 37.999

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 346: Calculation

( 346 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

39 7.05 39.00 20.001 0.001 38.999

40 7.23 40.00 20.000 0.000 40.000

Turn Buckle Strenth

Force allowed by the Guy Wire

= 41202 KN

D Shackle = 10 mm Twice Safer than The Cable for Tensile

Turn Buckle strength(Considering the Tread Shear)

Diameter = 16 mm Safer than The Cable for Tensile

Pitch = 2 mm

Tread Height = 0.8 mm

Tread Length per nut = 16

Number of Nuts = 2

No of Treads = 16

Shear Area = 1,608.50 mm2

Shear Stress = 262.5 N/mm 2

Allowed Force = 422,230 N

Safe 43.04 Ton

Calculation to find the tension required By Guy

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

AF Antenna Wind Force

WF Wind Force Twr

TTot

Tensile Force

b

RM Self Righting Moment

Page 347: Calculation

( 347 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

b = 10.5 Deg

H = 39.10 m

Total Tension to be Taken by Cables

Total Righting Moment = 4.46E+05 J

= Righting Moment

= 62,701N

Calculation for Deflection and Guy wire strength

H = 37.70 m

= 7.23 mCable Fixing Height / Fixed Distance on Arm

Guy Wire Diameter = 0.008 m Allowable lo 4.20

41202

L =

T Tot

H x Sin b

Lw

(H2 + Lw2)1/2

R = 0

B

Fig 10.5 Side view of the Reduced section

RM Self Righting Moment

Page 348: Calculation

( 348 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 38.39 m

= 0.14 Deg

= 90.14 Deg

= -0.002

=

= 1,474.86

(L + e) = 38.40

(e) = 0.017

= 89.86 Deg

= 0.002

=

= 1,472.23

(L - a) = 38.37

(a) = 0.017

F =

15,878 N

E = 210 GPa

d restored with Guy

90 + d

Cos (90+ d)

(L + e)2 Lw2 + H2 - 2 x Lw x H Cos (90+ d)

90 - d

Cos (90 - d)

(L - a)2 Lw2 + H2 - 2 x Lw x H Cos (90+ d)

TTot x Cos b

Page 349: Calculation

( 349 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

A = 5.03E-05

Strain of the wire = F x L

A x E

e = 0.05779 m

L + e L + F x L = 38.445 m

A x E

=

=

-4.44

545.03

= -0.008

= -0.008)

= 90.5 Deg

= 0.47 Deg

Deflection Analy = 0.14 Deg

Ultimate Deflection Will be 0.14 Deg

Guy Wire Should be Given an initial tension of 6,180N

Calculation to find the tension in each Guy wire using the Simplified model.

Distance at which the Guy wire is fixed on the Arm = 7.23 m (From Tower Center)

m2

Cos (90+ d) Lw2 + H2 - (L + e)2

2 x Lw x H

Cos (90+ d)

90 + d Cos -1 (

d restored with Guy

Page 350: Calculation

( 350 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 10.2. Guy wire Data

Guy Wire form Top Initial Length e Factor

1 37.70 m 38.39 m 10.9 Deg 0.0171 m 0.2575

2 29.80 m 30.66 m 13.6 Deg 0.0169 m 0.2548

3 22.70 m 23.82 m 17.7 Deg 0.0166 m 0.2498

4 15.60 m 17.19 m 24.9 Deg 0.0158 m 0.2379

5 0.00 m 0.00 m 0.0 Deg 0.0000 m 0.0000

0 0.00 m 0.00 m 0.0 Deg 0.0000 m 0.0000

0 0.00 m 0.00 m 0.0 Deg 0.0000 m 0.0000

0.0664 m

Calculation for Top most Guy wire

Failure force for = 16,147 N

Max Strain allowe = F x L

A x E

e = 0.059 m

Failure force for = 41202 N

Max Strain allowe = F x L

A x E

e = 0.150 m

Max allowed Tightening of Turn Buckle

= 0.091 m 91 mm

Table 10.3. Turn Buckle safety for Guy Wire form Top(Not applied for self standing)

H i (Fixed H) b i

T1

TTot

T2

T3

b1

b2

b3

Fig 10.7 Side view of Guy Wire arrangement

2

1

3

4

Page 351: Calculation

( 351 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Initial Tension Turns Initial Max e Allow Max Tighten Max No of Turns

1 37.00 m 6,180.30 N 5.62 0.150 m 0.133m 33.22

2 29.80 m 6,180.30 N 4.49 0.120 m 0.103m 25.72

3 22.70 m 6,180.30 N 3.49 0.093 m 0.076m 19.12

4 15.60 m 6,180.30 N 2.52 0.067 m 0.051m 12.84

5 0.00 m 0.00 N 0.00 0.000 m 0.000m 0.00

0 0.00 m 0.00 N 0.00 0.000 m 0.000m 0.00

0 0.00 m 0.00 N 0.00 0.000 m 0.000m 0.00

11 . Twisting Failure

Consideration of a Slanted Member Givng the Righting moment to resist twist

Turning Moment if the total Area is at the X tream Fibre

H i (Fixed H)

Y Xtream

Page 352: Calculation

( 352 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Y extream = 0.50

Dish Radius = 1.38

Distance to Center of Wind Force

= 1.88

Pressure = 1,889.37 Pa

Area = 6.387 m2

Wind Force = 12,068.21 N

Turning Moment = 22,712.10 J

Note: Segments of 3 m Heights is checked to have a righting moment greater than this value

R DishY Xtream

Page 353: Calculation

( 353 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Fig .Incident of Tower section being Rotated

a = 180-5

2

= 87.5

Note: The Twisting Member Can be assumed to be fixed from Both ends if Cross Guys are present at the top.

Trial and error MannerTwist angle at the center of Total tower which satisfies the required safty factor

= 4.90 Degrees

If the Top most section of the tower is applied cross guys then the twist at the center will be Half of the

twist angle at the center.

=

= 14660.2151

= 121.079375

Triangle Height = 1,074 mm

= 709 mm

t 2 2x (L Sh)2 x (1- Cos (g))

t sh

L Sh

t

L Guy Br

L i

L Ex

ao

5o

L sh

Page 354: Calculation

( 354 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 37000 mm

b = 180 - a

= 92.5

= +

-

= 1.369E+09

= 37005.4791

Extension = 5.48 mm

No of Cables At this Height = 12

Total Extension = 65.75 mm

Cable Axial Force required per cable to extend

E = 209.80 Gpa

A = 5.03E-05 m2

e = 0.00547911 m

L = Li - Initial Tightening

= 37.000 m

L i

L Ex 2 L i 2 t 2

2 x t x L i

L Ex

Page 355: Calculation

( 355 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

F = AEe

L I - Initieal Ex

1561.85 N

Righting Turning Moment per cable = 1106.97

Number of Cables = 6

All cables at the same height = 6641.83 J

Gap Between two concecutive stiffner weld points = 0.200

L i Distance Between two wave peaks = 0.400

Height of Twr = 40

No of segments for analysis = 100

Total Rotation allowed = 9.8

Allowed Per Segment = 0.098

a/Deg = 89.951

b/Deg = 90.049

Considering The Pipes Being tensioned

Tri Height X sec Area t/(m) Peak Gap

1 Top Most 0.143 0.000412 0.000245 0.200 0.20000057

2 2nd Frm Top 0.211 0.000412 0.000361 0.200 0.20000094

L Ex

Page 356: Calculation

( 356 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

3 3rd Frm Top 0.286 0.000690 0.000489 0.400 0.40000072

4 4th Frm Top 0.369 0.000690 0.000631 0.400 0.40000104

5 5th Frm Top 0.451 0.000690 0.000771 0.400 0.40000140

0 0 0.000 0.000000 0.000000

0 0 0.000 0.000000 0.000000

e/(m) Axial Force Righting Mo No of SegmentTotal R Mom/(J)

1 Top Most 0.00000057 246 35 47 1640

2 2nd Frm Top 0.00000094 408 86 43 3656

3 3rd Frm Top 0.00000072 260 74 21 1578

4 4th Frm Top 0.00000104 375 139 21 2944

5 5th Frm Top 0.00000140 508 229 21 4866

0 0 0.00000000 0 0 0 0

0 0 0.00000000 0 0 0 0

14683

0.05oL Pipe Cen

L i

a

t

q

L com Stif

L i / 2

Page 357: Calculation

( 357 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

q = + -

=

BS shafting E = 209.8 Gpa

Considering The Stiffner Being tensioned(Only one Side of Prism Considered)

Tensioned Stiffner

Pipe Dis Eff LeverageStiff X sec Initial

1 Top Most 0.070 0.251 0.072 0.0001131 0.2698080

2 2nd Frm Top 0.103 0.369 0.105 0.0001131 0.3823721

3 3rd Frm Top 0.070 0.500 0.143 0.00020106 0.5389253

4 4th Frm Top 0.090 0.646 0.185 0.00020106 0.6758561

5 5th Frm Top 0.110 0.789 0.225 0.00020106 0.8139539

0 0 0.000 0.000 0.000 0 0.0000000

0 0 0.000 0.000 0.000 0 0.0000000

e/(m) Axial Force Righting Mo No of SegmentTotal R Mom/(J)

1 Top Most 0.00011375 10003.16 716.39 47 33312.10

2 2nd Frm Top 0.00017409 10802.79 1139.42 43 48425.20

3 3rd Frm Top 0.00022711 17776.17 2542.35 21 54024.91

4 4th Frm Top 0.00030137 18809.84 3470.44 21 73746.75

5 5th Frm Top 0.00037377 19370.30 4367.75 21 92814.70

0 0 0.00000000 0.00 0.00 0 0.00

0 0 0.00000000 0.00 0.00 0 0.00

302,323.65

L i 2 L Ex 2

2 x L Ex x L i

L Ten Sitff 2 (L i/2) 2 + Pipe Distance 2 - 2xPipe Disx(L i/2) 2

q/(m)

q

q

Pipe Distance

L ten Stif

L i / 2

Page 358: Calculation

( 358 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Total Of Righting Moments For 3m Lengths

Per 0.4 Segment

Max Turning Moment Allowed for 3m Section

= 22,712.10 J

Number of segments for 3 m Distance

= 3/0.4

= 7.5

For 3m Seg

Te'n R Mom/(J) Com/Pipe R MoTe'n R Mom/(J)Com/Pipe R MoGuy Wire

1 Top Most 2149.17 2184.43 16118.76 16383.22 3320.91475

2 2nd Frm Top 3418.25 3504.27 25636.87 26282.00

3 3rd Frm Top 7627.05 7701.31 57202.85 57759.81

4 4th Frm Top 10411.31 10549.84 78084.79 79123.77

5 5th Frm Top 13103.25 13332.22 98274.39 99991.67

0 0 0.00 0.00 0.00

0 0 0.00 0.00 0.00

Total R Mom/(J) SF

1 Top Most 35822.89 1.58

2 2nd Frm Top 51918.87 2.29

3 3rd Frm Top 114962.66 5.06

4 4th Frm Top 157208.56 7.92

5 5th Frm Top 198266.06 9.73

Sections requireing Cyrups indicated as per the color code

SF Stiff PresencColorCode

Page 359: Calculation

( 359 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1 Top Most 1.58 1 2

2 2nd Frm Top 2.29 1 2

3 3rd Frm Top 5.06 0 1

4 4th Frm Top 7.92 0 1

5 5th Frm Top 9.73 0 1

0 0

0 0

11 . Yielding Failure

Yielding Failure in Compression

According AISI standard 1.95 additional safety factor is given to check Yield failure

Considering Bottom most section (5th From Top)

Subjected load = 73,359 N

AISI Load = 143,051 N

Area = 3 x Pipe Cress section area

= 1.24E-03 m2

Page 360: Calculation

( 360 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= P x A

= 115.61 MPa

= 310 MPa

<

Therefore yielding does not occur with current parameters

Table 11.1. Yielding Failure in Compression Analysis

Section AISI Load Yield/(MPa) Status SF

1 Top Most 54,332 N 43.91 Safe 7.06

2 2nd Frm Top 96,734 N 78.18 Safe 3.97

3 3rd Frm Top 139,140 N 112.45 Safe 2.76

4 4th Frm Top 143,051 N 115.61 Safe 2.68

5 5th Frm Top 25,405 N 20.53 Safe 15.10

Table 9.10. Bending Moment Failure Analysis without Guy Wire

Bending Moment/(J)

Section Guy Wind Force Inclination Total BM Allowed

1 Top Most 0.00E+00 2.83E+04 4.52E+03 3.28E+04 3.39E+04

2 2nd Frm Top 0.00E+00 6.03E+04 4.02E+03 6.43E+04 4.57E+04

3 3rd Frm Top 0.00E+00 1.14E+05 3.55E+03 1.18E+05 1.05E+05

4 4th Frm Top 0.00E+00 1.75E+05 2.58E+03 1.78E+05 1.30E+05

5 5th Frm Top 0.00E+00 2.45E+05 1.12E+03 2.46E+05 1.54E+05

0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 6.23E+05 1.58E+04

s

s y

s s y

Page 361: Calculation

( 361 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Bending Moment/(J) Wind Force

Section BM Allowed Inclination M Left for W H Above Wind Force

1 Top Most 2.00E+04 4.52E+03 1.54E+04 5.35 2,886.32

2 2nd Frm Top 2.69E+04 4.02E+03 2.29E+04 8.90 2,569.99

3 3rd Frm Top 6.19E+04 3.55E+03 5.84E+04 12.45 4,689.07

4 4th Frm Top 7.63E+04 2.58E+03 7.37E+04 16.00 4,607.66

5 5th Frm Top 9.06E+04 1.12E+03 8.95E+04 19.55 4,576.40

0 0 0.00E+00 0.00E+00 0.00E+00 0.00 0.00

0 0 0.00E+00 0.00E+00 0.00E+00 0.00 0.00

2.76E+05 1.58E+04 2.60E+05

Section Area Abv Pressure Al Velocity FailureSpeeds

1 Top Most 2.80 m2 1,032 Pa 41.48 ms-1 118 Kmph

2 2nd Frm Top 3.91 m2 658 Pa 33.11 ms-1 94 Kmph

3 3rd Frm Top 5.29 m2 886 Pa 38.43 ms-1 114 Kmph

4 4th Frm Top 6.68 m2 690 Pa 33.91 ms-1 101 Kmph

5 5th Frm Top 8.06 m2 568 Pa 30.76 ms-1 94 Kmph

0 0 0.00 m2 0 Pa 0.00 ms-1 0 Kmph

0 0 0.00 m2 0 Pa 0.00 ms-1 0 Kmph

Note: Irection can be allowed if and only if wind speed is less than 94.07

(Irection Means when no Guy wires)

Calculation for Strength of Lifting Cable

Note : Critical case of tower being lift under 160 KMPH wind velocity while the guy wires fixed

Load on Lifting = Compression force - weight of bottom section

Page 362: Calculation

( 362 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 60,292 N

Load on one cab = 30,146.0 N = 3.1 Ton

Maximum allowed load per cable

= 4 Ton

Thus The system is stable for most Critical Case

Calculation for Strength of tower lock

Load on Tower Lock = 60,292 6 Ton

`

Diameter of the shaft = 38 mm 0.038 m

Shear Area = 0.00113 m2

Shear Area For Both = 0.00227 m2

Stress Developed = F / A

= 2.7 E+07 N/m2

= 270 N/mm2

Shear Strength = 2.70 E+08 (N/mm2)

SF = 10.16

10.3 Bending failure of Guide Arms

1. Plates Top/Bottom Thickness- 5mm High tensile(Equivalent to 8.5mm MS

Side Plate Thickness- 10mm Thickness Height

Thickness Width

Bending Stress ( s )

Page 363: Calculation

( 363 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Material Mild Steel

Tensile Stress = 523 N/mm2

Yield Strength = 335 N/mm2

Reaction Force 9.911 E+04 N

Bending Stress 270 N/mm2 3 E+08 Pa

Steel Density 7,900.00 Kg/m3

Sh stress for M/S 370 N/mm2 4 E+08 Pa

Allowed S Force 8.347 E+05 N

BM =

y

How it prevents bending Note: High tensile steel is used in order to reduce the weight of the arm and maximize the bending Strength, case.

Also Minimum cross section area is considered for critical

Table 10. 7 Bending failure of Guide Arms Input Data

Arm Length x from endX sec Area H h B b

0 0.00 m 0.00226 0.100 0.088 0.100 0.088

1 0.30 m 0.00226 0.100 0.088 0.100 0.088

2 0.60 m 0.00226 0.100 0.088 0.100 0.088

3 0.90 m 0.00226 0.100 0.088 0.100 0.088

4 1.20 m 0.00226 0.100 0.088 0.100 0.088

5 1.50 m 0.00226 0.100 0.088 0.100 0.088

6 1.80 m 0.00226 0.100 0.088 0.100 0.088

7 2.10 m 0.00226 0.100 0.088 0.100 0.088

8 2.40 m 0.00226 0.100 0.088 0.100 0.088

9 2.70 m 0.00226 0.100 0.088 0.100 0.088

I x s

Page 364: Calculation

( 364 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

10 3.00 m 0.00226 0.100 0.088 0.100 0.088

11 3.30 m 0.00226 0.100 0.088 0.100 0.088

12 3.60 m 0.00226 0.100 0.088 0.100 0.088

13 3.90 m 0.00226 0.100 0.088 0.100 0.088

14 4.20 m 0.00226 0.100 0.088 0.100 0.088

15 4.50 m 0.00226 0.100 0.088 0.100 0.088

16 4.80 m 0.00226 0.100 0.088 0.100 0.088

17 5.10 m 0.00226 0.100 0.088 0.100 0.088

18 5.40 m 0.00226 0.100 0.088 0.100 0.088

19 5.70 m 0.00226 0.100 0.088 0.100 0.088

20 6.00 m 0.00226 0.100 0.088 0.100 0.088

Note: A Doublers plate and the pivot bush is playing the role in Increasing the cross section area of the arm near the pivot.

M of Inertia Cross area Projected Area

SHS Slant 100x100x3 1.83 E-06 0.00116 0.001200

SHS for Stiff 100x100x3 1.83 E-06 0.00052 0.000516

Projected Area = Area/ Cos (Angle)

Table 10. 8 Inertia of Guide Arm with extra Box Stiffener

Arm Length x from endInertia Sys Inertia Arm Inertia Top Fixed HeighInertia Extra

0 0.00 m 2.08 E-05 3.34 E-06 1.20 E-05 0.200 5.48 E-06

1 0.30 m 3.90 E-05 3.34 E-06 2.11 E-05 0.265 1.46 E-05

Page 365: Calculation

( 365 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

2 0.60 m 6.47 E-05 3.34 E-06 3.27 E-05 0.330 2.87 E-05

3 0.90 m 3.35 E-05 3.34 E-06 1.20 E-05 0.395 1.81 E-05

4 1.20 m 3.90 E-05 3.34 E-06 2.11 E-05 0.460 1.46 E-05

5 1.50 m 1.12 E-04 3.34 E-06 8.27 E-05 0.525 2.58 E-05

6 1.80 m 1.67 E-04 3.34 E-06 1.04 E-04 0.590 5.95 E-05

7 2.10 m 1.48 E-04 3.34 E-06 1.29 E-04 0.655 1.58 E-05

8 2.40 m 1.63 E-04 3.34 E-06 1.55 E-04 0.720 4.57 E-06

9 2.70 m 2.16 E-04 3.34 E-06 1.85 E-04 0.785 2.79 E-05

10 3.00 m 3.18 E-04 3.34 E-06 2.17 E-04 0.850 9.78 E-05

11 3.30 m 2.82 E-04 3.34 E-06 2.51 E-04 0.915 2.79 E-05

12 3.60 m 2.96 E-04 3.34 E-06 2.88 E-04 0.980 4.57 E-06

13 3.90 m 3.75 E-04 3.34 E-06 3.28 E-04 1.045 4.43 E-05

14 4.20 m 5.36 E-04 3.34 E-06 3.70 E-04 1.110 1.63 E-04

15 4.50 m 4.22 E-04 3.34 E-06 4.14 E-04 1.175 4.57 E-06

16 4.80 m 4.69 E-04 3.34 E-06 4.61 E-04 1.240 4.57 E-06

17 5.10 m 5.19 E-04 3.34 E-06 5.11 E-04 1.305 4.57 E-06

18 5.40 m 5.71 E-04 3.34 E-06 5.63 E-04 1.370 4.57 E-06

19 5.70 m 6.26 E-04 3.34 E-06 6.18 E-04 1.435 4.57 E-06

20 6.00 m 6.83 E-04 3.34 E-06 6.75 E-04 1.500 4.57 E-06

Angle between Two box bars 0.25

14.0 Deg

Table 10.8 .Bending failure of Guide Arms Data comparison

Length x from en Wt/ (Kg) S Force Mx BM Allowed Bending

0 0.00 5.35 0.00 E+00

1 0.30 5.35 9.9 E+04 2.97 E+04 4.21 E+05 Safe

Page 366: Calculation

( 366 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

2 0.60 5.35 9.9 E+04 5.95 E+04 6.98 E+05 Safe

3 0.90 5.35 9.9 E+04 8.92 E+04 3.61 E+05 Safe

4 1.20 5.35 9.9 E+04 1.19 E+05 4.21 E+05 Safe

5 1.50 5.35 9.9 E+04 1.49 E+05 1.21 E+06 Safe

6 1.80 5.35 9.9 E+04 1.78 E+05 1.81 E+06 Safe

7 2.10 5.35 9.9 E+04 2.08 E+05 1.60 E+06 Safe

8 2.40 5.35 9.9 E+04 2.38 E+05 1.76 E+06 Safe

9 2.70 5.35 9.9 E+04 2.68 E+05 2.33 E+06 Safe

10 3.00 5.35 9.9 E+04 2.98 E+05 3.43 E+06 Safe

11 3.30 5.35 9.9 E+04 3.27 E+05 3.05 E+06 Safe

12 3.60 5.35 9.9 E+04 3.57 E+05 3.20 E+06 Safe

13 3.90 5.35 9.9 E+04 3.87 E+05 4.05 E+06 Safe

14 4.20 5.35 9.9 E+04 4.17 E+05 5.79 E+06 Safe

15 4.50 5.35 9.9 E+04 4.47 E+05 4.56 E+06 Safe

16 4.80 5.35 9.9 E+04 4.76 E+05 5.07 E+06 Safe

17 5.10 5.35 9.9 E+04 5.06 E+05 5.60 E+06 Safe

18 5.40 5.35 9.9 E+04 5.36 E+05 6.17 E+06 Safe

19 5.70 5.35 9.9 E+04 5.66 E+05 6.76 E+06 Safe

20 6.00 5.35 9.9 E+04 5.96 E+05 7.37 E+06 Safe

106.93

max Shearing Safe

Arm Pivot Point failures(Strenth of pivoting Point is Neglected, Arm will turn about Upper

pivoting Point)

No of Pivot Plates = 2

Thickness = 0.020 m

Weld Contact Lenth = 0.100 m

Area = 0.004 m2

Distance Between Pivot Pts = 1.5 m

Page 367: Calculation

( 367 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Forces On Cantelevered Arm

Weight Force Y Tr M

Arm Wt 576 Kg -5652 3.250 -18368 J

Concrete 3127 Kg -30678 6.500 -199408 J

Guy Top 15858 7.100 112592 J

Guy Mid 15527 7.000 108686 J

Guy Bottom 14925 6.900 102986 J

Arm Compression 9980 106487 J

Force At Pivot = 70991

This can easily be Overcome by even only one of 8.8 Bolts

Stress developed = 17747784 N/m2

= 17.75 N/mm2

Allowed Tensile Stress = 348.00 N/mm2

S.F = 19.61

According to the Study The most Critical case is near the pivot center

Page 368: Calculation

( 368 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

To increase the bending strength of the arm stiffeners are introduced

at certain points of the arm.

The Doublers plate and the pivot bush is playing the role in Increasing

the cross section area of the arm near the pivot.

Thus the Guide arm is Safe all critical cases considered.

13 . Calculation to find the bearing capacity depending on the soil condition

As mentioned earlier in case of system falling about two arms The total weight can

be considered to act on Just Two Arms

Desiding On concrete Blocks at x tream Points

Total Weight of System-Two Blocks = 14189 Kg 14 Ton

Weight on One Arm = 14 Ton

2

= 7.1 Ton

LandingLegsCapacity = 40 Ton

Therefore the landing legs does not fail due to load

Area of the shoe/Concrete Block = 1.50 m X 1.50 m

= 2.25 m2

Stress On Shoe = Force

Page 369: Calculation

( 369 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Area

= 30,933 Pa 0.031 MPa N/m2

= 30.93 KN/m2

Allowed By site Soil = 40 N/m2

SF = 1.29

Desiding On Concrete Block Under the Twr

Load = 10,443 N 10 Ton

=

= 5.2 Ton

LandingLegsCapacity = 40 Ton

Therefore the landing legs does not fail due to load

Area of the shoe/Concrete Block = 1.50 m X 1.50 m

= 2.25 m2

Stress On Shoe = Force

Area

= 22,765 Pa 0.023 MPa N/m2

Page 370: Calculation

( 370 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 22.76 KN/m2

Allowed By site Soil = 40 N/m2

SF = 1.76

Therefore the landing legs does not fail due to load

Area of the shoe = 0.60 m X 0.60 m

= 0.36 m2

Stress On Shoe = Force

Area

= 19,707 Pa 0.020 MPa

Obviously the stress value Occurred at the shoe much lesser than Yield Stress if steel (355Mpa)

Therefore the shoe of landing legs does not fail due to load

Page 371: Calculation

( 371 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

17 . Calculation for Dimensions of the Occupied Projected Land Area

Length extended from front Bolster = 1.50 m

Max Length // to Center Line =

5.14 m + #REF!

= #REF!

= 2 x (Width Side ways)

= 12.69 m

18 . Finalized Parameter Values relevant to tower Models and Relevant Cases

Front Extention Pivot / (m) = #REF!

Rear Extension Pivot / (m) = 0.000

Front Extention / (m) = 6.00 m

Rear Extension / (m) = 0.00 m

Front Extension Angle / (Deg) = 120 Deg

Rear Extension Angle / (Deg) = 0 Deg

Rented area length/(m) = #REF!

Rented area width/(m) = 12.69 m

Max Inclination/(Degrees) = 0.00 Deg

Max(Y R LL , Y Platform ) +Max(Front Side ,Y F LL )

Width 90o to Center Line

Page 372: Calculation

( 372 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

19 . CONCLUSION

1 ) According to the design calculation carried out throughout the study, It has been proven

beyond doubt that the system isstable under the Strength limit status velocity or Survival

Wind Velocity.

2 ) Therefore it is certain that the system is Stable for the Serviceability limit or Operational Wind

Velocity. (AISI Standard)

3 ) During the Calculation tower has been tested for Bending, Tensile, Shear , Buckling and

Yielding failure, and proven safe.

4 ) All failure tests are satisfied the AISI safety factor Requirements Under

TIA - 222 -G Standards

5 ) The design of the Tower Supporting Frame and the locking system

confirm the rigidity of the tower relative to base frame.

6 ) Provided that the velocity is lower than the survival velocity the system

is stable regardless of the direction of wind flow.

7 ) The ground utilization has been optimized by the design.

20 . REFERENCES

AISI/EIA/TIA-222-G Standard

Page 373: Calculation

( 373 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

STRUCTURE CLASSIFICATION…………………………………………………………………………………..

Page 374: Calculation

( 374 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 9.1. Wind Velocity Variation with Height…………………………………………………………………………………..

Table 9.3. Tower Vertical Pipe Data Derived from Table 03…………………………………………………………………………………..

Table 9.4. Section Wind force and Gravity centers…………………………………………………………………………………..

Table 9.5. Data of Stiffeners…………………………………………………………………………………..

Table 9.6. Moment of inertia of the Composite sections…………………………………………………………………………………..

Table 9.7. Weight of Tower Sections…………………………………………………………………………………..

Table9.8. Wind Force Effect on Projected Area…………………………………………………………………………………..

Calculation for buckling failure…………………………………………………………………………………..

Table 10.1. Buckling Failure Analysis…………………………………………………………………………………..

Calculation for Lifting Cable strength………………………………………………………………………………..

Calculation for Deflection & Guy wire strenth………………………………………………………………………………..

Table 9.2. Tower Vertical Pipe Data…………………………………………………………………………………..

Table 9.9. Bending Moment Failure Analysis…………………………………………………………………………………..

Page 375: Calculation

( 375 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Safety factor Calculation…………………………………………………………………………………..

Page 376: Calculation

( 376 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Ref- Head Load details

Page 377: Calculation

( 377 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Extreme Point

A

d

Page 378: Calculation

( 378 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0.04 m2

0.01 m2

0.01 m2

0.05 m2

Drag Coeff

1.18

1.18

1.18

Page 379: Calculation

( 379 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1.2

1.2

0.5

0.5

0.5

0

0.5

Drag Coeff

0.5

0.5

0.5

0.5

0.5

Page 380: Calculation

( 380 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Terrain height and Structure size Factor

(Topography)

Page 381: Calculation

( 381 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

L Pipe

2.40 m

9.30 m

8.50 m

8.50 m

8.50 m

8.50 m

0.00 m

0.00 m

Rad of Gyration

0.000614

0.000107

0.000107

0.000237

0.000237

0.000237

0.000000

0.000000

Page 382: Calculation

( 382 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

R = Wt

A

Fig 9.3. State of tower under equilibrium just before falling

Page 383: Calculation

( 383 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Cen Gr Abv Section

37.90 mm

33.75 mm

30.20 mm

26.65 mm

23.10 mm

19.55 mm

0.00 mm

0.00 mm

n Stiffeners

5.5

7

7

7

7

0

0

Page 384: Calculation

( 384 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

I Composite

Wt x X

3953.55

3062.06

3771.79

2320.31

868.84

0.00

0.00

13976.55

Page 385: Calculation

( 385 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Wind Force/(N

3.13 E+03

5.28 E+03

6.77 E+03

9.17 E+03

1.10 E+04

1.25 E+04

0.00 E+00

0.00 E+00

BM Total

8.17 E+03

-1.36 E+05

-7.05 E+04

-7.64 E+04

-1.17 E+04

3.82 E+04

0.00 E+00

0.00 E+00

Page 386: Calculation

( 386 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

L Comp Stiff

Pipe Distance 2

L ten Stiff 2

Page 387: Calculation

( 387 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Force x Perpedicular Distance

Total R Mom/(J)

68,692

40,541

46,310

30,340

29,729

0

0

215,612

Total R Mom/(J)

Page 388: Calculation

( 388 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

86,086

74,767

115,537

97,469

116,229

0

0

490,088

As shone in the figure front side will be decided according to the orientation of tower when irected

X

Page 389: Calculation

( 389 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

X tra Leverage required for stability will given by the extension of Arm or leverage beam.

Tot Weight

Page 390: Calculation

( 390 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

6253Kg

6253Kg

6253Kg

18760Kg

Page 391: Calculation

( 391 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

R = Wt

Page 392: Calculation

( 392 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

8.9 E+05 J

6.7 E+05 J

Fig 14.2. State of tower under equilibrium just before falling

Page 393: Calculation

( 393 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Stability Circle

Page 394: Calculation

( 394 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

(Minimum Perpendicular Distance From Tower center)

Calculations are followed

As discusssed earlier the required R has to be satisfied in and Direction as the Wind Flow and its Direction can't be predicted.

93

C

Page 395: Calculation

( 395 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Practically the structure rotates about two arms, In this section Critical Direction is considered for failiure analysis.

a

b

aX Platform

gk

q o

Fig 14.4. Arm and Guy wire orientation Case 1

Page 396: Calculation

( 396 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Ref Fig 14.3 to see directions

44.38

Page 397: Calculation

( 397 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Fig 14.5. Arm and Guy wire orientation Case 2

X Platform

g

k

q Guyo

Page 398: Calculation

( 398 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

YR Pivot

Page 399: Calculation

( 399 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

In case of taking moment about two Extream points all Bolting material canbe assumed to be at the center

Page 400: Calculation

( 400 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

(Number of Bolts and size can be desided on this)

Page 401: Calculation

( 401 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

T

Page 402: Calculation

( 402 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

When the angle is 30 degrees since Cos(30) is equal to 0.5 the above shown system reduces to the following system

Even if any case is to be having n number of Guy wires, the case will be considered to have one guy wire per Guy arm

Finally the modification will be restored or corrected by dividing the forces among Guy wires depending on inclination

T

T

Fig 10.2. Plan view of Guy wire Orientation

Page 403: Calculation

( 403 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Ref 14.Stability Calculation

Cable Fixing Height / Fixed Distance on Arm

Total Turning Moment by Guys

Page 404: Calculation

( 404 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

6.4 Ton

> AISI standard Safety factor 0.85 for a guyed mast

ead Load

Page 405: Calculation

( 405 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

S.F

30.57

40.65

88.09

135.94

1109.20

S.F

71.20

40.71

104.65

101.86

510.64

0.00

0.00

Page 406: Calculation

( 406 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 407: Calculation

( 407 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 408: Calculation

( 408 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 .00 8 .00

0 .00

5 .00

10 .00

15 .00

20 .00

25 .00

30 .00

35 .00

40 .00

45 .00

Page 409: Calculation

( 409 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 .00 8 .00

0 .00

5 .00

10 .00

15 .00

20 .00

25 .00

30 .00

35 .00

40 .00

45 .00

Page 410: Calculation

( 410 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 411: Calculation

( 411 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Twice Safer than The Cable for Tensile

Safer than The Cable for Tensile

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Compression Force

CF1

b

RM Self Righting Moment

Page 412: Calculation

( 412 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Cable Fixing Height / Fixed Distance on Arm

Ton

N

Fig 10.5 Side view of the Reduced section

RM Self Righting Moment

Page 413: Calculation

( 413 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

(From Tower Center)

Page 414: Calculation

( 414 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

16,147 N

15,977 N

15,664 N

14,914 N

0 N

0 N

0 N

62,701 N

Tension Ti

TTot

Fig 10.7 Side view of Guy Wire arrangement

Page 415: Calculation

( 415 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Max No of Turns

Page 416: Calculation

( 416 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

R Dish

Page 417: Calculation

( 417 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Cos (b)

Page 418: Calculation

( 418 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

m

m

Deg

Deg

Deg

Deg

Page 419: Calculation

( 419 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Total R Mom/(J)

L i / 2

Page 420: Calculation

( 420 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Exp Len

0.2699217

0.3825462

0.5391525

0.6761575

0.8143277

0.0000000

0.0000000

Total R Mom/(J)

t 2

x Cos (q + 90)

L i / 2

Page 421: Calculation

( 421 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Safety Factor

1.04

0.71

0.89

0.73

0.63

0.00

0.00

Page 422: Calculation

( 422 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Wind Force

Kmph

Note : Critical case of tower being lift under 160 KMPH wind velocity while the guy wires fixed

Page 423: Calculation

( 423 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

t

0.006

0.006

Page 424: Calculation

( 424 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Note: High tensile steel is used in order to reduce the weight of the arm and maximize the bending Strength, case.

Page 425: Calculation

( 425 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Note: A Doublers plate and the pivot bush is playing the role in Increasing the cross section area of the arm near the pivot.

Fixed Height RHS

Page 426: Calculation

( 426 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0.330

0.165

0.000

0.295

0.590

0.295

0.000

0.425

0.850

0.425

0.000

0.555

1.110

SF

14.17

Page 427: Calculation

( 427 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

11.74

4.05

3.54

8.12

10.12

7.67

7.41

8.71

11.53

9.31

8.95

10.47

13.90

10.21

10.64

11.07

11.50

11.94

12.38

Page 428: Calculation

( 428 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Obviously the stress value Occurred at the shoe much lesser than Yield Stress if steel (355Mpa)

Page 429: Calculation

( 429 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

) +Max(Front Side ,Y F LL )

Page 430: Calculation

( 430 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Page 431: Calculation

( 431 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0 0 0.00 B SF

40 m TOWER CALCULATION SEMI TRAILER

0.650 m Above Ground Level

Revision ( 5.4 )

April 2009 Edition

Page 432: Calculation

( 432 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

CONTENTS

1.GENERAL

1.1 Strenth Limt States

1.2 Serviceability Limit States

1.3 Analysis

1.4 Definitions

1.5 Symbols

2.LOADS

Scope

Classification of Structure

Combination of Loads

Tempeerature Effects

Dead Loads

Wind and Ice Loads

3.ANALYSIS

4.DESIGN STRENTH OF STEEL

5.MANUFACTURING

6.OTHER STRUCSTRUCTURE CLASSIFICATION…………………………………………………………………………………..

7.GUY ASSEMBLIES

8.INSULATORS

9.GUY ARM/FOUNDATION AND ANCHORAGES

Page 433: Calculation

( 433 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Conrete

10.PROTECTIV

Table 9.1. Wind Velocity Variation with Height…………………………………………………………………………………..

11.OBSTRUCTION MARKING

Table 9.3. Tower Vertical Pipe Data Derived from Table 03…………………………………………………………………………………..

12.CLIMBING FACILITIES Table 9.4. Section Wind force and Gravity centers…………………………………………………………………………………..

Table 9.5. Data of Stiffeners…………………………………………………………………………………..

13.PLANS, ASSEMBLY TOL Table 9.6. Moment of inertia of the Composite sections…………………………………………………………………………………..

Table 9.7. Weight of Tower Sections…………………………………………………………………………………..

14.MAINTAINANCE AND CO Table9.8. Wind Force Effect on Projected Area…………………………………………………………………………………..

15.EXISTING STRUCTURES

10 .

Calculation for buckling failure…………………………………………………………………………………..

Table 10.1. Buckling Failure Analysis…………………………………………………………………………………..

Table 10.2. Buckling for bottom most sub section……………………

Calculation for Lifting Cable strength………………………………………………………………………………..

Calculation for Deflection & Guy wire strenth………………………………………………………………………………..

Table 10.2. Guy wire Data……………………………………………….

10.3 Bending failure of Guide Arms

11 . Yielding Failure

Yielding Failure in Compression…………………………………………………………….

Table 11.1. Yielding Failure in Compression Analysis………………

Yielding Failure in Tension

Table 11.2. Tower Tensile failure of the pipe on the wind flow side

12 . Failure from the pivot…………………………………………………………………………………..

Table 12.1. Analysis for Failure from the pivot

13 . Failure of Landing Leg Sand Shoe………………………………………………………………

Bending Strength Calculation

Table 9.2. Tower Vertical Pipe Data…………………………………………………………………………………..

Table 9.9. Bending Moment Failure Analysis…………………………………………………………………………………..

Calculation for Buckling & Deflection

Page 434: Calculation

( 434 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

14 .

Table 14.1. Shelter Details

Table 14.2. Tower Frame Details

Table 14.3. Guide Arms

Table 14.4. Base Frame Details

Table 14.5. Concrete Block Details

Table 14.6. Load Details

Table 14.7. Turning Moment Due to Wind Force & Inclination

Table 14.8. Locating the center of Gravity

15 .

16 . Safety factor Calculation…………………………………………………………………………………..

17 . Calculation for Dimensions of the Rectangular Land Area…

18 . Finalized Parameter Values relevant to tower Models and Relevant Cases

19 . CONCLUSIONS…………………………………………………………………………………..

20 . REFERENCES…………………………………………………………………………………..

ANNEX: BENDING CALCULATION (EACH TOWER SECTION)

1 . GENERAL

0 . Notations and Symbols

Symbol Description Units

a Area needed for I composite cal m2

Ce Gra Above Center of gravity of the tower s m

Cen W Force Center of wind force………………… m

d internal Internal Diameter……………………………… m

D Out External Diameter……………………………… m

D Stiff Diameter of Stiffeners……………………… m

H Height…………………………………………………… m

h1 Upper portion of section height…… m

h2 Lower portion of section height…… m

Height Above Height above the tower section…… m

STABILITY CALCULATION…………………………………………………………………………………..

Length Parameters of Guide Arms…………………………………………………………………………………..

Calculation to find arm length for bolting Option.

Page 435: Calculation

( 435 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

I Moment of Inertia……………………………… Kgm2

I Composite Moment of Inertia of composite sec Kgm2

L Pipe Length of pipe of the tower secti m

L stiff Length of stiffener of the tower se m

n Stiffeners No of lengths of stiffeners…………… Nos

offset X val Offset due to 1 degree inclinatio m

r Internal Radius…………………………………… m

R out External Radius…………………………………… m

Required Ld Required leverage distance from guid m

Sch No Schedule Number………………………………… Num

Sec height Sectional Height of tower section m

SF Safety Factor………………………………………

Start Height Starting height of a tower sectio m

Tr Moment Turning Moment…………………………………… Nm

Un Wt of Pipe Unit Weight of Pipe…………………………… Kg/m

Un Wt of Stiff Unit weight of stiffeners………………… Kg/m

Symbol Description Units

Wi Pressure Wind Pressure……………………………………… Pa

Wind Force Tr M Turning Moment due to wind force Nm

y Distance to Extreme Fiber……………… m

Y Distance to Center of Gravity from to m

// to Center Line Parallel to center line………………………

Perpendicular to Center line…………

Note: All other notations are illustrated with figures

90o to Center Line

Page 436: Calculation

( 436 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1 . GENERAL

Standard. While trying to strict to standard the designer have tried to adopt the formal

procedure in order to model the systemcloser to reality. Each action taken will be

explained with illustrations in Calculation section

2 . INTRODUCTION

The study has focused on the most critical aspects of the real tower. While reviewing the reader

will be able to see the data in the form of tables. Also he will notice that Specimen calculation

is provided for the most important (Critical) row of the table. This has been done to prevent the

Proposal getting lengthen unnecessarily. The calculation for the area and weight of antennae

are followed as per customer’s request.

Ref 7. Material Used for Tower Sections

160 Kmph

400 Kg Ref- Head Load details

Customer allowed area Max is 6.00 m2

Tower Calculations have been done according to AISI EIA/TIA 222 G

1.      All steel materials used are made according to DIN standards.

2.      This calculation is withstand a wind speed of

3.      Total head load weight and Area is followed in the section Head Load Details

4.      All tower sections are subjected to Hot dip Galvanization.

5.      Tower support frame and Platform structure is sand blasted, Primered and

Page 437: Calculation

( 437 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

painted according to clients requirement.

4 . DESIGN PHILOSOPHY RELATED TO ENVIRONMENTAL LOADS

The proposed revision of the standard is based on limit states design.

The structures are checked for two major limit states.

i ) Strength limit states

ii ) Serviceability limit states

According to TIA-222-G standard Wind load is considered as the major fact

controlling the stability.

Wind Speeds escalated with height according to the terrain characteristics

surrounding a given site.

Here Exposure C (Flat open area) is selected

The direction of wind and tower orientation of a mobile tower at a given time

cannot be predicted. Therefore AISI/TIA standards have allocated a 0.85

Directionality Safety factor.

According to Figure shown bellow the Wind velocity V is most likely to turn

the whole system about the axis AB depending on the power of the wind force.

But the force which will turn the system will be the cross particle perpendicular

to AB and always will be less then or equal to wind force.

Therefore it is not essential to depend on a

Directionality safety factor as long as critical

situation is concern.

Page 438: Calculation

( 438 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

The calculations are flexible for any wind

flow direction provided Wind velocity is

less than Survival Wind velocity.

5 . STRUCTURE CLASSIFICATION

Structures are classified according to reliability requirements.

to represent structures for which there is a low hazard to human life and to property in

the event of failure.

that may be provided by other means. This tower falls under this category. Also ice loading

does not apply to this category.

Category I Structures have the lowestreliability requirements and are intendeddamage

Category II structures represent a substantial hazard to human life intended for services

Extreme Point

A

B

d

V

Fig 3.1 Wind flow Direction Analysis

Tower side

Page 439: Calculation

( 439 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

2 . LOAD

HEAD LOAD DETAILS

Calculation for area of GSM antennae

Length = 2.50 m

Width = 0.27 m

Length to breath Ratio = 9.26

Area = 0.68 m2

Force coefficient of the section = 0.9

Calculation for area of 0.6 MW antennae

Diameter = 0.60 m

Area = 0.28 m2

Calculation for area of 1.2 MW antennae

Diameter = 1.20 m

Area = 1.13 m2

Weight and Area parameters of head Loads with Brackets

ANTENNAE AND ACCESSORIES

Unit Wei Description Proj Area Nos Elevation Tot Area Drag Coeff Area

35 Kg GSM Antennae 0.68 m2 6 40.0 m 4.05 m2 1.2 4.86 m2

45 Kg 0.6 MW Dishes 0.28 m2 2 40.0 m 0.57 m2 1.2 0.68 m2

55 Kg 1.2 MW Dishes 1.13 m2 1 40.0 m 1.13 m2 1.2 1.36 m2

10 Kg Lightening Arrest 0.03 m2 1 45.0 m 0.03 m2 0.5 0.02 m2

Page 440: Calculation

( 440 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

4 Kg Aviation Lamp 0.06 m2 1 42.0 m 0.06 m2 0.5 0.03 m2

Total Antenne Area 5.84 m2

Excess Head Load 0.16 m2 0.5 0.08 m2

6.00 m2 7.02 m2

Antenne Frame

21 Kg Ant Frame Poles 0.18 m2 6 40.0 m 1.08 m2 0 0.00 m2

12 Kg Ant Frame Bracke 0.03 m2 6 40.0 m 0.00 m2 0.5 0.09 m2

1.08 m2 0.09 m2

Cables

13 Kg Feeder Cable 0.05 m2 6 0.30 m2 0.5 0.15 m2

1 Kg Optical Cables 0.01 m2 3 0.03 m2 0.5 0.01 m2

1 Kg Power Cables 0.01 m2 3 0.03 m2 0.5 0.01 m2

0.35 m2 0.18 m2

680 Kg Total Head Load 7.29 m2

6 . Tower Specifications

Type & Model = SEMI TRAILER

Tower Height = 40 m

Tower Weight = 853 Kg

Total Head Load = 680 Kg

Number Of Sections = 5

Gravity Acceleration = 9.812 m/s2 (On Earth)

Page 441: Calculation

( 441 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Overlap = 1.400 m

Tower Elevation = 0.900 m From System Level

Distance from Elevated level t = 0.650 m From Ground Level

Building/Mountain Elevation

7 . Material Used for Tower Sections

1. Pipe Schedule 80 - 1" , 1/2" DIA (DIN 17100 Standard)

OD - 48.3, 33.4 mm

Thickness- 5.08mm

Material ST 52.3 (DIN 17100 Standard)

Tensile Stre = 523 N/mm2

Yield Streng = 335 N/mm2

2. Stiffeners (Lattice Structure )

Bright Steel Rod (DIN 17100 Standard)

Page 442: Calculation

( 442 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Top Stiffeners 1/2" DIA

Bottom Stiffeners 5/8" DIA

Material 1020 Carbon Steel

Tensile Stre = 380 N/mm2

Yield Streng = 200 N/mm2

8 . Wind Loads Analysis

Survival wind speed = 160 Kmph 44.44

Operational wind speed = 140 Kmph 38.89

Wind Velocity relevant to each case will be found with the following formulae and factors.

There will be two cases one for operational and the other for survival wind velocity.

V z =

ms-1

ms-1

Vb . K1 . K2 . K3

Page 443: Calculation

( 443 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Where

= Basic wind speed of the place in m/s

= Probability Factor(Risk coefficient)

= Terrain height and Structure size Factor

= Topography Factor ( 1.0 for planes )

K1 for Towers Terrain Category I

Height/(m) Operational(120)Survival(160) K2 Class A K2 Class B

50 1.05 1.07 1.20 1.18 1.00

40 1.05 1.07 1.20 1.18 1.00

30 1.05 1.07 1.15 1.13 1.00

20 1.05 1.07 1.12 1.10 1.00

15 1.05 1.07 1.09 1.07 1.00

10 1.05 1.07 1.05 1.03 1.00

P z =

Wind Reg H F V z /(ms-1) Pressure/(Pa)

39.45 m 56.12 1.89 E+03

35.30 m 56.12 1.89 E+03

31.75 m 53.74 1.73 E+03

28.20 m 53.74 1.73 E+03

24.65 m 52.31 1.64 E+03

21.10 m 50.88 1.55 E+03

0.00 m 0.00 0.00 E+00

0.00 m 0.00 0.00 E+00

Vb

K1

K2

K3

K3 (Topography)

0.6 x Vz2

Page 444: Calculation

( 444 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Calculation for wind Load on the antennae

At 160 Kmph 44.44

= 1.07

= 1.18

= 1.00

V z =

V z = 56.12 m/s

Wind Pressure =

= 1,889.37 N/m2

At 140 Kmph 38.89

= 1.05

= 1.18

= 1.00

ms-1

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

ms-1

K1

K2

K3

Page 445: Calculation

( 445 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

V z =

V z = 48.18 m/s

Wind Pressure =

= 1392.98 N/m2

Calculation for wind Load on the Tower

At 160 Kmph 44.44

= 1.07

= 1.10

= 1.00

V z =

V z = 52.31 m/s

Wind Pressure =

= 1641.87 N/m2

At 140 Kmph 38.89

= 1.05

= 1.10

= 1.00

Vb . K1 . K2 . K3

0.6 x Vz2

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

K1

K2

K3

Page 446: Calculation

( 446 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

V z =

V z = 44.92 m/s

Wind Pressure =

= 1210.50 N/m2

Calculation for wind Load on the Shelter(Only if present)

At 160 Kmph 44.44

= 1.07

= 1.05

= 1.00

V z =

V z = 49.93 m/s

Wind Pressure =

= 1496.00 N/m2

At 140 Kmph 38.89

= 1.05

Vb . K1 . K2 . K3

0.6 x Vz2

K1

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

K1

Page 447: Calculation

( 447 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 1.05

= 1.00

V z =

V z = 42.88 m/s

Wind Pressure =

= 1102.96 N/m2

9 . Bending Strength Calculation

Terrain category Class B for tower sections

Table 9.1. Wind Velocity on tower sections for Survival wind velocity (160 Kmph)

Section Height/(m) V z /(ms-1)Wi Pressure/(Pa)

Antennae Frame 39.5 56.12 1.89 E+03

1 Top Most 35.3 56.12 1.89 E+03

2 2nd Frm Top 31.8 53.74 1.73 E+03

3 3rd Frm Top 28.2 53.74 1.73 E+03

4 4th Frm Top 24.7 52.31 1.64 E+03

5 5th Frm Top 21.1 50.88 1.55 E+03

K2

K3

Vb . K1 . K2 . K3

0.6 x Vz2

Page 448: Calculation

( 448 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0 0 0.0 0.00 0.00 E+00

0 0 0.0 0.00 0.00 E+00

Table 9.2. Tower Vertical Pipe Data

Section Material Sch No D Out/(m) Thickness Un Wt of Pipe L Pipe

0 Antena Frame MS 80(Std) 0.0750 0.00508 8.76 Kg/m 2.40 m

1 Top Most MS 80(Std) 0.0334 0.00455 3.24 Kg/m 9.30 m

2 2nd Frm Top MS 80(Std) 0.0334 0.00455 3.24 Kg/m 8.50 m

3 3rd Frm Top MS 80(Std) 0.0483 0.00508 5.41 Kg/m 8.50 m

4 4th Frm Top MS 80(Std) 0.0483 0.00508 5.41 Kg/m 8.50 m

5 5th Frm Top MS 80(Std) 0.0483 0.00508 5.41 Kg/m 8.50 m

0 0 0 0(Std) 0.0000 0.00000 0.00 Kg/m 0.00 m

0 0 0 0(Std) 0.0000 0.00000 0.00 Kg/m 0.00 m

Table 9.3. Tower Vertical Pipe Data Derived from Table 03

Section R out / (m) = y d internal/(m) r / (m) x Sec height Area Rad of Gyration

Antena Frame 0.038 m 0.0648 0.032 m 1.000 0.001116 0.000614

1 Top Most 0.017 m 0.0243 0.012 m 0.217 0.000412 0.000107

2 2nd Frm Top 0.017 m 0.0243 0.012 m 0.320 0.000412 0.000107

3 3rd Frm Top 0.024 m 0.0381 0.019 m 0.433 0.000690 0.000237

4 4th Frm Top 0.024 m 0.0381 0.019 m 0.559 0.000690 0.000237

5 5th Frm Top 0.024 m 0.0381 0.019 m 0.683 0.000690 0.000237

0 0 0.000 m 0.0000 0.000 m 0.000 0.000000 0.000000

0 0 0.000 m 0.0000 0.000 m 0.000 0.000000 0.000000

h1

Page 449: Calculation

( 449 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 9.4. Section Wind force and Gravity centers

Distance from Elevated level to tower = 0.900 m

= 0.650 m

Section H Above Sec Cen W F Sec AbvStart Height Ce Gra Above Self offset X valCen Gr Abv Section

Antena Frame 2.40 m 1.20 m 36.70 m 37.90 m 0.66 m 37.90 mm

1 Top Most 10.70 m 5.35 m 28.40 m 33.05 m 0.58 m 33.75 mm

2 2nd Frm Top 17.80 m 8.90 m 21.30 m 25.55 m 0.45 m 30.20 mm

3 3rd Frm Top 24.90 m 12.45 m 14.20 m 18.45 m 0.32 m 26.65 mm

Tower base Elevation from ground level H Twr Ele

X

W

q`

R = Wt

H tb

M tot

B A

Fig 9.3. State of tower under equilibrium just before falling

Fig 9.2. Horizontal movement due to 1o Inclination(Worst Case)

Sec Height

h1

h2

Fig 9.1. Section Height detail of tower section

Page 450: Calculation

( 450 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

4 4th Frm Top 32.00 m 16.00 m 7.10 m 11.35 m 0.20 m 23.10 mm

5 5th Frm Top 39.10 m 19.55 m 0.00 m 4.25 m 0.07 m 19.55 mm

0 0 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 mm

0 0 0.00 m 0.00 m 0.00 m 0.00 m 0.00 m 0.00 mm

39.10 m 19.55 m

Total Height 40.00 m

Table 9.5. Data of Stiffeners

Section Material Xsec Area D Stiff/(m) Un Wt of Stiff L stiff/(m) n Stiffeners

1 Top Most BS Shafting 0.0001131 0.012 0.89 Kg/m 6.000 5.5

2 2nd Frm Top BS Shafting 0.0001131 0.012 0.89 Kg/m 6.000 7

3 3rd Frm Top BS Shafting 0.00020106 0.016 1.58 Kg/m 6.000 7

4 4th Frm Top BS Shafting 0.00020106 0.016 1.58 Kg/m 6.000 7

5 5th Frm Top BS Shafting 0.00020106 0.016 1.58 Kg/m 6.000 7

0 0 0.000 0.00 Kg/m 0.000 0

0 0 0.000 0.00 Kg/m 0.000 0

Note : Moment of inertia of the composite section about the neutral axis is found

using the Parallel axis theorem

I =

4

=

4

Table 9.6. Moment of inertia of the Composite sections

p(R4-r4)

I Comp ( I + a x h12) + [2 x ( I + a x h2

2)]

Page 451: Calculation

( 451 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Section I a / (m2) I Composite

Antenna Frame 6.856 E-07 1.12 E-03 5.53 E-04 1.53 E-04 8.624 E-04

1 Top Most 4.398 E-08 4.12 E-04 1.07 E-05 3.27 E-06 1.801 E-05

2 2nd Frm Top 4.398 E-08 4.12 E-04 2.18 E-05 6.26 E-06 3.572 E-05

3 3rd Frm Top 1.633 E-07 6.90 E-04 6.76 E-05 1.96 E-05 1.115 E-04

4 4th Frm Top 1.633 E-07 6.90 E-04 1.09 E-04 3.06 E-05 1.773 E-04

5 5th Frm Top 1.633 E-07 6.90 E-04 1.59 E-04 4.38 E-05 2.572 E-04

0 0 0.000 E+00 0.00 E+00 0.00 E+00 0.00 E+00 0.000 E+00

0 0 0.000 E+00 0.00 E+00 0.00 E+00 0.00 E+00 0.000 E+00

Table 9.7. Weight of Tower Sections

Weight / (Kg)

Section Pipes Xtra Stuff SectionTot Total Abv Cen Gr Frm Wt x X

Frame + Head Load126.1 Kg 553.6 Kg 679.7 Kg 679.7 Kg 37.90 m

1 Top Most 90.3 Kg 29.3 Kg 119.6 Kg 799.4 Kg 33.05 m 3953.55

2 2nd Frm Top 82.5 Kg 37.3 Kg 119.8 Kg 919.2 Kg 25.55 m 3062.06

3 3rd Frm Top 138.1 Kg 66.4 Kg 204.4 Kg 1123.6 Kg 18.45 m 3771.79

4 4th Frm Top 138.1 Kg 66.4 Kg 204.4 Kg 1328.1 Kg 11.35 m 2320.31

5 5th Frm Top 138.1 Kg 66.4 Kg 204.4 Kg 1532.5 Kg 4.25 m 868.84

0 0 0.0 Kg 0.0 Kg 0.0 Kg 0.0 Kg 0.00 m 0.00

0 0 0.0 Kg 0.0 Kg 0.0 Kg 0.0 Kg 0.00 m 0.00

Tower Weight 852.8 Kg 16.39 m 13976.55

Table 9.8. Wind Force Effect on Projected Area

Force Coefficient for Circular = 0.5 (AISI Standard)

Effective Ar = Projected Area x Force Coefficient

TM = WF x H

Area Projected/(m2)

Section Pipes Extra Stuff Sec Total Total Above Wind Force/(NTr Mom Sec Bot/(Nm)

a.h1 2 a.h2 2

Pole (Only) Center of Gravity

Page 452: Calculation

( 452 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Frame Antennae 1.080 m2 6.211 m2 3.645 m2 3.645 m2 6.89 E+03 8.26 E+03

1 Top Most 0.932 m2 0.396 m2 0.664 m2 4.309 m2 8.14 E+03 4.36 E+04

2 2nd Frm Top 0.852 m2 0.504 m2 0.678 m2 4.987 m2 8.64 E+03 7.69 E+04

3 3rd Frm Top 1.232 m2 0.672 m2 0.952 m2 5.939 m2 1.03 E+04 1.28 E+05

4 4th Frm Top 1.232 m2 0.672 m2 0.952 m2 6.891 m2 1.13 E+04 1.81 E+05

5 5th Frm Top 1.232 m2 0.672 m2 0.952 m2 7.843 m2 1.22 E+04 2.38 E+05

5 0 0.000 m2 0.000 m2 0.000 m2 0.000 m2 0.00 E+00 0.00 E+00

5 0 0.000 m2 0.000 m2 0.000 m2 0.000 m2 0.00 E+00 0.00 E+00

4.197 m2

= 270 N/mm2 2.70 E+08 Pa

BM =

y

Table 9.9. Bending Moment Failure Analysis

Righting Moment Turning Moment

Section Guy Cable Stru RigidityWind Force Inclination Sec BM BM Total

Antena Frame 8.26 E+03 4.41 E+03 1.27 E+04 1.27 E+04

1 Top Most -1.36 E+04 -1.55 E+05 4.36 E+04 4.52 E+03 4.81 E+04 -1.20 E+05

2 2nd Frm Top -1.95 E+04 -1.15 E+05 7.69 E+04 4.02 E+03 8.09 E+04 -5.38 E+04

3 3rd Frm Top -3.22 E+04 -1.62 E+05 1.28 E+05 3.55 E+03 1.32 E+05 -6.24 E+04

4 4th Frm Top -6.19 E+04 -1.28 E+05 1.81 E+05 2.58 E+03 1.84 E+05 -6.11 E+03

5 5th Frm Top -6.19 E+04 -1.46 E+05 2.38 E+05 1.12 E+03 2.39 E+05 3.14 E+04

0 0 -0.00 E+00 0.00 E+00 0.00 E+00 0.00 E+00 0.00 E+00

0 0 -0.00 E+00 0.00 E+00 0.00 E+00 0.00 E+00 0.00 E+00

-1.89 E+05 6.68 E+05 1.58 E+04

Section BM Total Y Extreme BM Allowed Safety Factor

Bending Stress ( s )

I comp x s

Page 453: Calculation

( 453 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Antena Frame 1.27 E+04 0.500 4.66 E+05 36.74 Safe

1 Top Most -1.20 E+05 0.143 3.39 E+04 1.98 Safe

2 2nd Frm Top -5.38 E+04 0.211 4.57 E+04 2.55 Safe

3 3rd Frm Top -6.24 E+04 0.286 1.05 E+05 3.39 Safe

4 4th Frm Top -6.11 E+03 0.369 1.30 E+05 22.92 Safe

5 5th Frm Top 3.14 E+04 0.451 1.54 E+05 4.90 Safe

0 0 0.00 E+00 0.000 0.00 E+00 0.00 0

0 0 0.00 E+00 0.000 0.00 E+00 0.00 0

Note: ( - ) safety factor denotes higher safty as it has to go passing 0 to go to Failiure.

Consideration of stiifner Strenth for Bending Effect

= 0.400 m

=

Segment Height (L i )

q/(Deg) Tan Inv (Def/Li)

q

Pipe Distance

L ten Stif

L com Stif

L i / 2

q

Def

b

a

q

Page 454: Calculation

( 454 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

b = + -

a = + -

Righting Moment from Stiffners

Total Swaey = 0.14 Deg

Def Allowed at H = Height x Tan (Def)

= 0.094 m

Section Peak H Def All at H Def for Sec DefPerSegment

1 Top Most 39.10 0.094 0.019 0.00041

2 2nd Frm Top 31.20 0.075 0.017 0.00040

3 3rd Frm Top 24.10 0.058 0.017 0.00080

4 4th Frm Top 17.00 0.041 0.017 0.00080

5 5th Frm Top 9.90 0.024 0.024 0.00112

0 0 0.00 0.000 0.000 0.00000

0 0 0.00 0.000 0.000 0.00000

Sway

Section Pipe Distance L Stiff L Ten Stiff L Comp Stiff

1 Top Most 0.251 0.059 0.3206187 0.3207786 0.3204588

2 2nd Frm Top 0.369 0.058 0.4197719 0.4199487 0.4195950

3 3rd Frm Top 0.500 0.115 0.5389253 0.5392989 0.5385516

4 4th Frm Top 0.646 0.115 0.6758561 0.6762404 0.6754717

5 5th Frm Top 0.789 0.161 0.8139539 0.8144976 0.8134099

0 0.000 0.000 0.0000000 0.0000000 0.0000000

0 0.000 0.000 0.0000000 0.0000000 0.0000000

(L I /2) 2 L ten Stiff 2 Pipe Distance 2

L Ten Stif x L i

(L I ) 2 L Com Stiff 2 L ten Stiff 2

2 x L Com Stif x L i

q/(Deg)

Page 455: Calculation

( 455 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

(E ) for BS Shafting = 209.8 Gpa

Considering The Stiffner Being tensioned

Exp len, e Contr Len ,c

1 Top Most 51.370 51.442 0.0001599 0.0001600

2 2nd Frm Top 61.502 61.591 0.0001768 0.0001769

3 3rd Frm Top 68.117 68.315 0.0003735 0.0003738

4 4th Frm Top 72.682 72.892 0.0003842 0.0003845

5 5th Frm Top 75.625 75.927 0.0005437 0.0005440

0 0 0.000 0.000 0.0000000 0.0000000

0 0 0.000 0.000 0.0000000 0.0000000

Righting Moment = Force x Perpedicular Distance

Tentioned Stiffner

e/(m) X sec Area Axial Force Righting Mo No of SegmentTotal R Mom/(J)

1 Top Most 0.00015987 0.0001131 11,831.51 1477.24 47 68,692

2 2nd Frm Top 0.00017685 0.0001131 9,996.27 953.91 43 40,541

3 3rd Frm Top 0.00037351 0.00020106 29,235.18 2179.30 21 46,310

4 4th Frm Top 0.00038424 0.00020106 23,981.89 1427.75 21 30,340

5 5th Frm Top 0.00054367 0.00020106 28,175.36 1399.01 21 29,729

0 0 0.00000000 0 0.00 0.00 0 0

0 0 0.00000000 0 0.00 0.00 0 0

215,612

Comressed Stiffner

c/(m) X sec Area Axial Force Righting Mo No of SegmentTotal R Mom/(J

1 Top Most 0.00015995 0.0001131 11837.42 1851.32 47 86,086

2 2nd Frm Top 0.00017692 0.0001131 10000.49 1759.23 43 74,767

3 3rd Frm Top 0.00037377 0.00020106 29255.46 5437.02 21 115,537

4 4th Frm Top 0.00038446 0.00020106 23995.53 4586.77 21 97,469

5 5th Frm Top 0.00054403 0.00020106 28194.19 5469.60 21 116,229

b/(Deg) a/(Deg)

Page 456: Calculation

( 456 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

0 0 0.00000000 0 0.00 0.00 0 0

0 0 0.00000000 0 0.00 0.00 0 0

490,088

14 . STABILITY CALCULATION

Coordinate System definition

As shone in the figure front side will be decided according to the orientation of tower when irected

Extream center point of Front side Beam will be taken as the coordinate center.

X tra Leverage required for stability will given by the extension of Arm or leverage beam.

Details of Heavy Objects effecting the Stability

X

Y

Y CG

Stability Circle

Page 457: Calculation

( 457 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 14.1. Shelter Details

Weight 0 Kg

Height 0.00 m

Width 0.00 m

Length 3.50 m

3.00 m

Area 0.000 mm2

Table 14.1.1 Sanded Volume Details

Height 0.000m

Length 0.000m

Breath 0.000m

Volume 0.000m3

Extra Weights Distributed On the Deck

Unit Wt Country Number Tot Weight

Sand 1840 Kgs 0.0000 m3 1 0.00 Kg

Small Concrete B 10Kgs 1Pcs 0 0.00 Kg 0.00 Kg

Distance at which the Block is fixed from = 0.000 m

Center of gravity of block from End of exte = 0.300 m

Center of gravity of block from Pivot = 5.700 m

Table 14.5. Concrete Base Details(Underneath Landing Legs)

Description Placed Y DisX sec Size Height Cube WeightNo of CubesTot Weight

Twr Side Concret -2.850 m 1.500 m 0.600 m 3240 Kg 2 6480Kg

Mid Concrete 0.000 m 1.500 m 0.600 m 3240 Kg 2 6480Kg

Other Side Concr 6.850 m 1.500 m 0.600 m 3240 Kg 2 6480Kg

19440Kg

Y Shelter Start

Page 458: Calculation

( 458 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 14.2. Tower Frame Details

Beam/Plates 402.00 Kg

Other Loads 10.00 Kg

Total 412 Kg

Note. If Guy wires are present they fixed to the X tra leverage Extentions therefore

it only Makes the Structure rigid relative to the Base Frame. The whole system is

made sure to be Stable the self weight of the Whole system.

Tower is checked for stability when the total system is about fall about two ground

contact Points

Table 14.3.Weights at Critical Polygon Points

Unit Wt County Units Total Wt

Front Polygon Po 48 Kg/m 6.00 m 2 576.00 Kg

Rear Polygon Poi 48 Kg/m 0.00 m 2 0.00 Kg

w1

Wind Force

Off Set X val

Page 459: Calculation

( 459 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

By taking moment about point A

w4

w3

w2

w1

H/2

1 o

Fig 14.1. Factors causing Turning Moment

w5

1o

Wind Force

Wt

R = WtR = 0

M tot

Ld Required

B A

Fig 14.2. State of tower under equilibrium just before falling

Page 460: Calculation

( 460 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

L d Required x Wt "=" M tot

L d Required "=" M tot

Wt

"=" 6.86 E+05 J

1.98 E+05 J

"=" 3.47

P =

WF = P x A

TM = WF x H

Table 14.7. Turning Moment Due to Wind Force & Inclination

Area Pressure Wind Force Cen W ForceTr Moment

Head Loads 7.291 m2 1889 Pa 13775 N 40.0 m 5.5 E+05 J

Tower Wind Forc 4.197 m2 1642 Pa 6891 N 19.6 m 1.3 E+05 J

0 . 0.000 m2 0 Pa 0 N 0.0 m 0.0 E+00 J 6.9 E+05 J

Tur'gMomenRi'g Moment

Antennae Moment 5.51E+05 J

Twr Wind F Moment 1.35E+05 J

Twr Inc'n Moment 1.58E+04 J

Self Righting Moment 7.06E+05 J

Guy Righting Moment 2.37E+05 J

Slac Guy Init Moment 2.42E+05 J

9.43E+05 J 9.43E+05 J

Table 14.8. Locating the center of Gravity

r x V2

Page 461: Calculation

( 461 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Weight Force Y Tr M (J)

Tower+Head Loa 1533 Kg 15,037 0.500 7.52 E+03 3.500 52629

Shelter 0 Kg 0 4.750 0.00 E+00 7.750 0

Tower Frame 289 Kg 2,836 0.300 8.51 E+02 3.300 9358

2 Front Poly Pts( 576 Kg 1,648 -3.000 4.95 E+03 0.000 0

2 Rear Poly Pts( 0 Kg 1,648 6.000 9.89 E+03 9.000 14836

Front arm Con Bl 2000 Kg 19,624 -2.850 -5.59 E+04 0.150 2944

Rear concrete Bl 6480 Kg 63,582 6.850 4.36 E+05 9.850 626280

Extra Mid Concre 6480 Kg 63,582 0.000 0.00 E+00 3.000 190745

Base Struc Wt 3045 Kg 29,878 1.700 5.08 E+04 4.700 140424

Wt of Accessorie 0 Kg 0 5.500 0.00 E+00 8.500 0

Resultant Wt 20403 Kg 197,835 2.293 4.54 E+05 1.04 E+06

Total Tr Moment "=" 6.86 E+05 J

15 . Length Parameters of Extention Points( STABILITY CALCULATION )

Centre of Gravity

Fig 14.3. Polygon point Arrangement

X Platform

YPlatform

X

Y

Y CG Stability Circle

a

b

LF

Page 462: Calculation

( 462 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Radious of Stability Circle (R) = 3.47 m (Minimum Perpendicular Distance From Tower center)

Critical Leaverag = 4.21 m Calculations are followed

Note:

As discusssed earlier the required R has to be satisfied in and Direction as the Wind Flow and its Direction can't be predi

Practically the structure rotates about two arms, In this section Critical Direction is considered for failiure analysis.

Length (L) Angle

Safty Leverage Parameters = Front Extension 6.00 120 Deg a

of the critical points of the Safty Polygon Rear Extention 0.00 0 Deg b

SEMI TRAILER Stable

6.500

1.150

0.030

6.470

120 Deg

Note: The Polygon created by poligon points

should Be greater than 3m x 3m in size to

have the best stablity and minimum

deflection of platform structure.

Provided above condition is

satisfied the platform structure

can be adjested upto extent

allowed by the design.

L Cr

Length Platform // to center line Y Platform

Width 90o to center line X Platform

Pivot Point Y Distance Front Ext Y F Pivot

Pivot Point Y Distance Rear Ext Y R Pivot

q Guy

YPivot

LF

a

d

X Platform

g

YTower

k

LVG

+ d q Guyo

q o

Fig 14.4. Arm and Guy wire orientation Case 1

Page 463: Calculation

( 463 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Please refer calculation Relevent to case 1

Case 1 _ Stability Circle is within Polygon Rear Points

Case 2 _ Stability Circle is Beyond Polygon Rear Points

Case 3 _ Stability Circle is within Both Rear and Front Polygon points

Desiding on Number of Arms and Guy Wire Orientation

Platform length = 6.50 m

R = 3.47 m

= 2.29 m

= 4.21 m

Rare leverage, Prefered Direction( if Required )

Rear ExtensionNot needed

Front ExtensionFoward Ref Fig 14.3 to see directions

Desiding on front arm sufficiency ( Only for Case 2 )

X = 1.15 m

= 0.03 m

= 0.50 m

k =

= 1.24 m

g =

67.8 Deg

Y CG

Pl Frm Length - Y CG

Derivation of front Point Inclination Angle a

Y Pivot

Y Tower

( X2 + (Y Pivot - Y Tower)2 ) 1/2

( tan -1 {X / (Y Pivot - Y Tower)}

Page 464: Calculation

( 464 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 112.2 Deg

= 7.8 Deg

By appling Sin formulae

= 6.000 = k = 44.38

0.135

= 1.242 = 0.03

44.378

d = 1.6 Deg

=

a =

CW from referenc = 121.6 Deg

=

Distance to front Exream Point from tower center

= 7.23 m

Checking for front point extention Sufficiency Along Y Axis front side

= 6.00 m

a = 120.0 Deg

R = 3.47 m

= -3.00 m

= 5.20 m

g Considering the pivot

q Guy - g

LF

Sin ( q Guy- g ) Sin d

Sin d

180 - q Guy 180 - a + d

d + q Guy

L VG k Cos ( q Guy - g) + LF Cos d

L F

LF cos a

LF Sin a

Fig 14.5. Arm and Guy wire orientation Case 2

YPivot

LF

a d

X Platform

gYTower

k LVG

q Guyo

- g qGuy

o

q Guyo

Page 465: Calculation

( 465 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

=

= -2.97 m

=

= 6.35 m

>

2.97 m > 1.17 m

Front Arm Sufficient

Y FLL Y F Pivot + LF Cos a

X FLL X Platform + LF Sin a

Abs( Y F LL) Abs(R - Y CG)

Fig 14.6.Optimisation Analysis Case 1

Backwards

Side Ways

Forward

YR Pivot

LR

X Platform

YCG

R

R

dd

a

sh

m

k

l

YF Pivot

Stability Circle

b

fm

90-dq

LF

R

Page 466: Calculation

( 466 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Checking for elimination of Xtra rear Poligon point (Only for Case 1 & 3)

= 1.15 m

R = 3.47 m

= 6.50 m

= 0.50 m

= 2.29 m

= 120.0 Deg

k =

= 4.36 m

f =

X Platform

Y Platform

Y Tower

Y CG

( q Guy )

( X Platform2 + (Y Platform - Y CG)2 ) 1/2

(Tan -1 { X Platform / ( Y Platform - Y CG )}

Fig 14.6.Optimisation Analysis Case 3 to eliminate One Arm

YTWR

X Platform

YCG

Rs

m

pm

l

Stability Circle

b

f

LF

YMax

m

f

q Guyo

d

km

qm

d

180-m

Page 467: Calculation

( 467 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

15.3 Deg

s =

37.4 Deg

d = 90-s-f

= 37.3 Deg

m = 180-(q+d)

= 22.7 Deg

q =

= 5.73 m

By appling Sin formulae

q = l

= l

0.80

l = 11.82 m

= l

= 11.82 m

=

= -5.41 m

( Cos -1 { R / k}

X platform + {(Y Platform x Tan d) - (Y TWR x Tan d)}

Sin ( 180-m ) Sin ( 90-d )

L VG

Y FLL Y Twr + LGV Cos q Guyo

Page 468: Calculation

( 468 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

=

= 10.24 m

Derivation of Arm length and Angle of Front arm relevent to case 3

=

= 10.59 m

=

a = -59.1 Deg

= 120.9 Deg

X FLL LGV Sin q Guyo

L F (X FLL - X Platform )2 + ( Y FLL - Y F Pivot)

Tan a (X FLL - X Platform )

( Y FLL - Y F Pivot)

g Considering the pivot

Fig 14.6.Optimisation Analysis Case 2

Backwards

Side Ways

Forward

LR

X Platform

YCG

R

R

dd

a

s h

m

k

l

YF Pivot

Stability Circle

b

fm

90-dq

LF

R

YMa

x

X Ref

YR Pivot

Page 469: Calculation

( 469 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Checking for Most Critical side of failure

Here in this case the designer himself tried maximum to minmise the length of guide arms by

identifiing the optimal angles for Guide arm orientation. Also he have suceeded in doing so.

Shortest Distanc = Two Rear platform pts 4.21 m

Overall Tilted Height / (m) Cross Particle Rear Side Two Rear Pol 4.21 m 4.21 m

Slanted to or // to Center Line ® 6.35 m

Tower Side Two Front Po 5.29 m 5.29 m

Two Front platform pts 2.29 m

Critical Leaverage L = 4.21 m i.e Minimum

16 . Safety factor Calculation ( Only placed on ground, not fixed to Ground )

Righting Moment = Resultant Wt x L Cr

= 8.3 E+05 J

S.F. = 8.3 E+05 J

6.9 E+05 J

= 1.21 Safe

Calculation to find Safty factor After Fixing the System to Ground

L Cr

Page 470: Calculation

( 470 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

In case of taking moment about two Extream points all Bolting material canbe assumed to be at the center

Total Turing Moment = 6.86 E+05

Weight Turing Moment = 8.32 E+05

Needed X tra Turning moment= -1.47 E+05

Distance between concurrent bolting points

= 6.500

Fixed Arm Length = 4.60

Note: Always in the criticle case at least two arms will give the Righting moment.

Force Exerte= -3.2 E+04 N

Min Requirement

Bolts Should Withstand = -3.25 Ton (Number of Bolts and size can be desided on this)

Dia of Tor Bar = 0.000m

Shear Capacity of Tor Bar = 500 kN/mm2

= 0 kN

No of bolts = 16

Ability to create resisting moment = 0.00E+00

Total Turing Moment = 6.86E+05

Total resisting Moment = 8.32E+05

SF = 1.21 Safe

Page 471: Calculation

( 471 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Note: Provided anchoring is done Using the appropriate chemical and to

the right standered, The tower will not fail by Tor bar Failiure.

Anchorage depth = 0.000 m

Area = 0.000 m2

Concrete Grade = 25 N/mm2 12566.3706

= 250,000 N/m2 314159.265

Allowable Per Torr Bar = 0.00 N

Force Per Bolt = -1,993.61 N

Anchroing Safty factor = 0.00 Unstable

Page 472: Calculation

( 472 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

10 . GUY WIRE

Calculation for Buckling & Deflection with the presence of guy wire

Note: Trailer type tower is taken as example

When the angle is 30 degrees since Cos(30) is equal to 0.5 the above shown system reduces to the following system

T

T

T

120o

120o

Fig 10.2. Plan view of Guy wire Orientation

Fig 10.1 Guy wire Orientation

T1

TTot

T2

T3

b1

b2

b3

Fig 10.4 Side view of Guy Wire arrangement

Page 473: Calculation

( 473 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Thus the side view can be analyzed as follows

Even if any case is to be having n number of Guy wires, the case will be considered to have one guy wire per Guy arm

Finally the modification will be restored or corrected by dividing the forces among Guy wires depending on inclination

angles.

Calculation for buckling failure

Height at which the cable is fixed = 39.10 m

Fig 10.4 Side view of Guy Wire arrangement

WF Wind Force

R = WtR = 0

B A

Fig 10.5 Side view of the Reduced section

Topposite = 0

TTot

Compression Force

Tensile Force

CF1

b

Page 474: Calculation

( 474 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Y distance of Tower = 0.500 m

X length of Platform(Width) = 1.150 m

L(Landing Leg) = 6.00 m

a = 120 Deg

= 5.20

= -3.00

= 0.030 m

Ref 14.Stability Calculation

Distance at which the Guy wire is fixed on the Arm = 7.23 m

= Cable Fixing Height / Fixed Distance on Arm

= 0.185

= 0.185)

= 10.5 Deg

By resolving horizontal forces on tower ;

Total Turning Moment =

= Total Turning Moment by Guys

L Sin a

L Cos a

Y F Pivot

Tan b

Tan b

b Tan -1 (

TTot x Sin b

T Tot

Heignt x Sin b

Page 475: Calculation

( 475 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 237,455 J

7.11

= 33,406 N

Downwards compression force =

= 33,529 N = 3.4 Ton

Considering the whole tower

E = 210 GPa (1020 Carbon Steel)

p = 3.142

I = 1.20E-04

Le Factor = 0.70

Le = L x Le Factor

= 28 m

P cr =

= 3.17 E+05 N

Compression force = 33,529 N

T Tot

TTot x Sin b + Head Load

m4

p2 x E x I

Le2

Page 476: Calculation

( 476 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

S.F = 9.46 > AISI standard Safety factor 0.85 for a guyed mast

Table 10.1. Buckling Failure Analysis for each section

Section Le Factor Le I /(m4) P Cr Subjected load S.F

1 Top Most 0.70 6.51 1.741 E-05 8.52E+05 18,068 N 47.14

2 2nd Frm Top 0.70 5.95 3.444 E-05 2.02E+06 30,306 N 66.54

3 3rd Frm Top 0.70 5.95 1.073 E-04 6.29E+06 42,547 N 147.73

4 4th Frm Top 0.70 5.95 1.703 E-04 9.97E+06 44,552 N 223.83

5 5th Frm Top 0.70 5.95 2.468 E-04 1.45E+07 13,028 N 1109.20

Table 10.2. Buckling Failure Analysis for bottom most sub section of each section

Section L Le Factor Le I /(m4) P Cr Subjected load S.F

1 0.300 0.70 0.21 4.398 E-08 2.07E+06 19,242 N 107.44

2 0.300 0.70 0.21 4.398 E-08 2.07E+06 31,482 N 65.67

3 0.300 0.70 0.21 1.633 E-07 7.68E+06 44,552 N 172.31

4 0.300 0.70 0.21 1.633 E-07 7.68E+06 46,558 N 164.89

5 0.300 0.70 0.21 1.633 E-07 7.68E+06 15,034 N 510.64

5 0.000 0.00 0 0.000 E+00 0.00E+00 0 N 0.00

5 0.000 0.00 0 0.000 E+00 0.00E+00 0 N 0.00

Thus Buckling doesn't Occur with present conditions

L + e

L

d H

LW

L - a

Page 477: Calculation

( 477 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Analysis For Guy wire behavior Under Loads

Case 1 : Not tensioned

Tightening tension = 5 N

Unit length Weight = 5 N

Length of the cable = 40.65 m

Cable Weigth = 203.24 N

Max Downward Deflection = 6.532 m

Table 10.4. Guy Cable Behavior under tension and self weight

Seg X(L ) y, (H) Y Sag Y red Grp

0 0.00 0.00 20.000 0.000 0.000

1 0.18 1.00 20.637 0.637 0.363

2 0.36 2.00 21.241 1.241 0.759

3 0.54 3.00 21.813 1.813 1.187

4 0.72 4.00 22.351 2.351 1.649

5 0.90 5.00 22.858 2.858 2.142

6 1.08 6.00 23.331 3.331 2.669

7 1.27 7.00 23.772 3.772 3.228

8 1.45 8.00 24.180 4.180 3.820

9 1.63 9.00 24.556 4.556 4.444

10 1.81 10.00 24.899 4.899 5.101

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Fig 10.6 Guy wire and Tower orientation after Deflection

Page 478: Calculation

( 478 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

11 1.99 11.00 25.209 5.209 5.791

12 2.17 12.00 25.486 5.486 6.514

13 2.35 13.00 25.731 5.731 7.269

14 2.53 14.00 25.944 5.944 8.056

15 2.71 15.00 26.123 6.123 8.877

16 2.89 16.00 26.270 6.270 9.730

17 3.07 17.00 26.385 6.385 10.615

18 3.25 18.00 26.466 6.466 11.534

19 3.43 19.00 26.515 6.515 12.485

20 3.61 20.00 26.532 6.532 13.468

21 3.80 21.00 26.515 6.515 14.485

22 3.98 22.00 26.466 6.466 15.534

23 4.16 23.00 26.385 6.385 16.615

24 4.34 24.00 26.270 6.270 17.730

25 4.52 25.00 26.123 6.123 18.877

26 4.70 26.00 25.944 5.944 20.056

27 4.88 27.00 25.731 5.731 21.269

28 5.06 28.00 25.486 5.486 22.514

29 5.24 29.00 25.209 5.209 23.791

30 5.42 30.00 24.899 4.899 25.101

31 5.60 31.00 24.556 4.556 26.444

32 5.78 32.00 24.180 4.180 27.820

33 5.96 33.00 23.772 3.772 29.228

34 6.14 34.00 23.331 3.331 30.669

35 6.33 35.00 22.858 2.858 32.142

36 6.51 36.00 22.351 2.351 33.649

37 6.69 37.00 21.813 1.813 35.187

38 6.87 38.00 21.241 1.241 36.759

39 7.05 39.00 20.637 0.637 38.363

40 7.23 40.00 20.000 0.000 40.000

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 479: Calculation

( 479 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Case 2 : Mannually tensioned

Tightening tension = 1000 N

Unit length Weight = 5 N

Length of the cable = 40.65 m

Cable Weigth = 203.24 N

Max Downward Deflection = 0.033 m

Table 10.5. Guy Cable Behavior under tension and self weight

X(L ) y, (H) Y Sag Y red Grp

0 0.00 0.00 20.000 0.000 0.000

1 0.18 1.00 20.003 0.003 0.997

2 0.36 2.00 20.006 0.006 1.994

3 0.54 3.00 20.009 0.009 2.991

4 0.72 4.00 20.012 0.012 3.988

5 0.90 5.00 20.014 0.014 4.986

6 1.08 6.00 20.017 0.017 5.983

7 1.27 7.00 20.019 0.019 6.981

8 1.45 8.00 20.021 0.021 7.979

9 1.63 9.00 20.023 0.023 8.977

10 1.81 10.00 20.024 0.024 9.976

11 1.99 11.00 20.026 0.026 10.974

12 2.17 12.00 20.027 0.027 11.973

13 2.35 13.00 20.029 0.029 12.971

14 2.53 14.00 20.030 0.030 13.970

15 2.71 15.00 20.031 0.031 14.969

16 2.89 16.00 20.031 0.031 15.969

17 3.07 17.00 20.032 0.032 16.968

18 3.25 18.00 20.032 0.032 17.968

19 3.43 19.00 20.033 0.033 18.967

20 3.61 20.00 20.033 0.033 19.967

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 .00 8 .00

0 .00

5 .00

10 .00

15 .00

20 .00

25 .00

30 .00

35 .00

40 .00

45 .00

Page 480: Calculation

( 480 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

21 3.80 21.00 20.033 0.033 20.967

22 3.98 22.00 20.032 0.032 21.968

23 4.16 23.00 20.032 0.032 22.968

24 4.34 24.00 20.031 0.031 23.969

25 4.52 25.00 20.031 0.031 24.969

26 4.70 26.00 20.030 0.030 25.970

27 4.88 27.00 20.029 0.029 26.971

28 5.06 28.00 20.027 0.027 27.973

29 5.24 29.00 20.026 0.026 28.974

30 5.42 30.00 20.024 0.024 29.976

31 5.60 31.00 20.023 0.023 30.977

32 5.78 32.00 20.021 0.021 31.979

33 5.96 33.00 20.019 0.019 32.981

34 6.14 34.00 20.017 0.017 33.983

35 6.33 35.00 20.014 0.014 34.986

36 6.51 36.00 20.012 0.012 35.988

37 6.69 37.00 20.009 0.009 36.991

38 6.87 38.00 20.006 0.006 37.994

39 7.05 39.00 20.003 0.003 38.997

40 7.23 40.00 20.000 0.000 40.000

Case 3 : When Applied Initial tension

Tightening tension = 6180.3 N

Unit length Weight = 5 N

Length of the cable = 40.65 m

Cable Weigth = 203.24 N

Max Downward Deflection = 0.005 m

Table 10.6. Guy Cable Behavior under tension and self weight

X(L ) y, (H) Y Sag Y red Grp

0 0.00 0.00 20.000 0.000 0.000

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00 7 .00 8 .00

0 .00

5 .00

10 .00

15 .00

20 .00

25 .00

30 .00

35 .00

40 .00

45 .00

Page 481: Calculation

( 481 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

1 0.18 1.00 20.001 0.001 0.999

2 0.36 2.00 20.001 0.001 1.999

3 0.54 3.00 20.001 0.001 2.999

4 0.72 4.00 20.002 0.002 3.998

5 0.90 5.00 20.002 0.002 4.998

6 1.08 6.00 20.003 0.003 5.997

7 1.27 7.00 20.003 0.003 6.997

8 1.45 8.00 20.003 0.003 7.997

9 1.63 9.00 20.004 0.004 8.996

10 1.81 10.00 20.004 0.004 9.996

11 1.99 11.00 20.004 0.004 10.996

12 2.17 12.00 20.004 0.004 11.996

13 2.35 13.00 20.005 0.005 12.995

14 2.53 14.00 20.005 0.005 13.995

15 2.71 15.00 20.005 0.005 14.995

16 2.89 16.00 20.005 0.005 15.995

17 3.07 17.00 20.005 0.005 16.995

18 3.25 18.00 20.005 0.005 17.995

19 3.43 19.00 20.005 0.005 18.995

20 3.61 20.00 20.005 0.005 19.995

21 3.80 21.00 20.005 0.005 20.995

22 3.98 22.00 20.005 0.005 21.995

23 4.16 23.00 20.005 0.005 22.995

24 4.34 24.00 20.005 0.005 23.995

25 4.52 25.00 20.005 0.005 24.995

26 4.70 26.00 20.005 0.005 25.995

27 4.88 27.00 20.005 0.005 26.995

28 5.06 28.00 20.004 0.004 27.996

29 5.24 29.00 20.004 0.004 28.996

30 5.42 30.00 20.004 0.004 29.996

31 5.60 31.00 20.004 0.004 30.996

32 5.78 32.00 20.003 0.003 31.997

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Page 482: Calculation

( 482 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

33 5.96 33.00 20.003 0.003 32.997

34 6.14 34.00 20.003 0.003 33.997

35 6.33 35.00 20.002 0.002 34.998

36 6.51 36.00 20.002 0.002 35.998

37 6.69 37.00 20.001 0.001 36.999

38 6.87 38.00 20.001 0.001 37.999

39 7.05 39.00 20.001 0.001 38.999

40 7.23 40.00 20.000 0.000 40.000

Turn Buckle Strenth

Force allowed by the Guy Wire

= 41202 KN

D Shackle = 10 mm Twice Safer than The Cable for Tensile

Turn Buckle strength(Considering the Tread Shear)

Diameter = 16 mm Safer than The Cable for Tensile

Pitch = 2 mm

Tread Height = 0.8 mm

Tread Length per nut = 16

Number of Nuts = 2

No of Treads = 16

Shear Area = 1,608.50 mm2

Shear Stress = 262.5 N/mm 2

Allowed Force = 422,230 N

Safe 43.04 Ton

Calculation to find the tension required By Guy

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

AF Antenna Wind Force

Page 483: Calculation

( 483 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

b = 10.5 Deg

H = 39.10 m

Total Tension to be Taken by Cables

Total Righting Moment = 2.37E+05 J

= Righting Moment

= 33,406N

Calculation for Deflection and Guy wire strength

H = 37.70 m

T Tot

H x Sin b

WF Wind Force Twr

R = WtR = 0

B A

Fig 10.5 Side view of the Reduced section

Topposite = 0

TTot

Compression Force

Tensile Force

CF1

b

TInit RM Self Righting Moment

Page 484: Calculation

( 484 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 7.23 mCable Fixing Height / Fixed Distance on Arm

Guy Wire Diameter = 0.008 m Allowable lo 4.20 Ton

41202 N

L =

= 38.39 m

= 0.14 Deg

= 90.14 Deg

= -0.002

=

= 1,474.86

(L + e) = 38.40

(e) = 0.017

= 89.86 Deg

= 0.002

=

= 1,472.23

(L - a) = 38.37

(a) = 0.017

Lw

(H2 + Lw2)1/2

d restored with Guy

90 + d

Cos (90+ d)

(L + e)2 Lw2 + H2 - 2 x Lw x H Cos (90+ d)

90 - d

Cos (90 - d)

(L - a)2 Lw2 + H2 - 2 x Lw x H Cos (90+ d)

Page 485: Calculation

( 485 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

F =

8,459 N

E = 210 GPa

A = 5.03E-05

Strain of the wire = F x L

A x E

e = 0.03079 m

L + e L + F x L = 38.418 m

A x E

=

=

-2.36

545.03

= -0.004

= -0.004)

= 90.2 Deg

= 0.25 Deg

Deflection Analy = 0.14 Deg

TTot x Cos b

m2

Cos (90+ d) Lw2 + H2 - (L + e)2

2 x Lw x H

Cos (90+ d)

90 + d Cos -1 (

d restored with Guy

Page 486: Calculation

( 486 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Ultimate Deflection Will be 0.14 Deg

Guy Wire Should be Given an initial tension of 6,180N

Calculation to find the tension in each Guy wire using the Simplified model.

Distance at which the Guy wire is fixed on the Arm = 7.23 m (From Tower Center)

Table 10.2. Guy wire Data

Guy Wire form Top Initial Length e Factor

1 37.70 m 38.39 m 10.9 Deg 0.0171 m 0.2575 8,603 N

2 29.80 m 30.66 m 13.6 Deg 0.0169 m 0.2548 8,512 N

3 22.70 m 23.82 m 17.7 Deg 0.0166 m 0.2498 8,345 N

4 15.60 m 17.19 m 24.9 Deg 0.0158 m 0.2379 7,946 N

5 0.00 m 0.00 m 0.0 Deg 0.0000 m 0.0000 0 N

0 0.00 m 0.00 m 0.0 Deg 0.0000 m 0.0000 0 N

0 0.00 m 0.00 m 0.0 Deg 0.0000 m 0.0000 0 N

0.0664 m 33,406 N

Calculation for Top most Guy wire

Failure force for = 8,603 N

Max Strain allowe = F x L

A x E

e = 0.031 m

Failure force for = 41202 N

Max Strain allowe = F x L

A x E

H i (Fixed H) b i Tension Ti

T1

TTot

T2

T3

b1

b2

b3

Fig 10.7 Side view of Guy Wire arrangement

2

1

3

4

Page 487: Calculation

( 487 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

e = 0.150 m

Max allowed Tightening of Turn Buckle

= 0.119 m 119 mm

Table 10.3. Turn Buckle safety for Guy Wire form Top(Not applied for self standing)

Initial Tensi Turns Initial Max e Allow Max Tighten Max No of Turns

1 37.00 m 6,180.30 N 5.62 0.150 m 0.133m 33.22

2 29.80 m 6,180.30 N 4.49 0.120 m 0.103m 25.72

3 22.70 m 6,180.30 N 3.49 0.093 m 0.076m 19.12

4 15.60 m 6,180.30 N 2.52 0.067 m 0.051m 12.84

5 0.00 m 0.00 N 0.00 0.000 m 0.000m 0.00

0 0.00 m 0.00 N 0.00 0.000 m 0.000m 0.00

0 0.00 m 0.00 N 0.00 0.000 m 0.000m 0.00

H i (Fixed H)

Fig 10.7 Side view of Guy Wire arrangement

Page 488: Calculation

( 488 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

11 . Twisting Failure

Consideration of a Slanted Member Givng the Righting moment to resist twist

Turning Moment if the total Area is at the X tream Fibre

Y extream = 0.50

Dish Radius = 1.38

Distance to Center of Wind Force

= 1.88

Pressure = 1,889.37 Pa

Area = 7.291 m2

Wind Force = 13,774.67 N

Turning Moment = 25,923.60 J

R DishY Xtream

Page 489: Calculation

( 489 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Note: Segments of 3 m Heights is checked to have a righting moment greater than this value

Fig .Incident of Tower section being Rotated

a = 180-5

2

= 87.5

Note: The Twisting Member Can be assumed to be fixed from Both ends if Cross Guys are present at the top.

Trial and error MannerTwist angle at the center of Total tower which satisfies the required safty factor

= 4.90 Degrees

If the Top most section of the tower is applied cross guys then the twist at the center will be Half of the

twist angle at the center.

=

= 14660.2151

t 2 2x (L Sh)2 x (1- Cos (g))

t

L Guy Br

L i

L Ex

ao

5o

L sh

Page 490: Calculation

( 490 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

= 121.079375

Triangle Height = 1,074 mm

= 709 mm

= 37000 mm

b = 180 - a

= 92.5

= +

- Cos (b)

= 1.369E+09

= 37005.4791

Extension = 5.48 mm

No of Cables At this Height = 12

Total Extens= 65.75 mm

Cable Axial Force required per cable to extend

E = 209.80 Gpa

A = 5.03E-05 m2

t sh

L Sh

L i

L Ex 2 L i 2 t 2

2 x t x L i

L Ex

Page 491: Calculation

( 491 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

e = 0.00547911 m

L = Li - Initial Tightening

= 37.000 m

F = AEe

L I - Initieal Ex

1561.85 N

Righting Turning Moment per cable = 1106.97

Number of Cables = 6

All cables at the same height = 6641.83 J

Gap Between two concecutive stiffner weld points = 0.200 m

L i Distance Between two wave peaks = 0.400 m

Height of Twr = 40

No of segments for analysis = 100

Total Rotation allowed = 9.8 Deg

Allowed Per Segment = 0.098 Deg

a/Deg = 89.951 Deg

b/Deg = 90.049 Deg

Page 492: Calculation

( 492 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Considering The Pipes Being tensioned

Tri Height X sec Area t/(m) Peak Gap

1 Top Most 0.143 0.000412 0.000245 0.200 0.20000057

2 2nd Frm Top 0.211 0.000412 0.000361 0.200 0.20000094

3 3rd Frm Top 0.286 0.000690 0.000489 0.400 0.40000072

4 4th Frm Top 0.369 0.000690 0.000631 0.400 0.40000104

5 5th Frm Top 0.451 0.000690 0.000771 0.400 0.40000140

0 0 0.000 0.000000 0.000000

0 0 0.000 0.000000 0.000000

e/(m) Axial Force Righting Mo No of SegmentTotal R Mom/(J)

1 Top Most 0.00000057 246 35 47 1640

2 2nd Frm Top 0.00000094 408 86 43 3656

3 3rd Frm Top 0.00000072 260 74 21 1578

4 4th Frm Top 0.00000104 375 139 21 2944

5 5th Frm Top 0.00000140 508 229 21 4866

0 0 0.00000000 0 0 0 0

0 0 0.00000000 0 0 0 0

14683

L Ex

L Pipe Cen

Page 493: Calculation

( 493 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

q = + -

=

BS shafting E = 209.8 Gpa

Considering The Stiffner Being tensioned(Only one Side of Prism Considered)

Tensioned Stiffner

Pipe Dis Eff LeverageStiff X sec Initial Exp Len

1 Top Most 0.070 0.251 0.072 0.0001131 0.2698080 0.2699217

2 2nd Frm Top 0.103 0.369 0.105 0.0001131 0.3823721 0.3825462

3 3rd Frm Top 0.070 0.500 0.143 0.00020106 0.5389253 0.5391525

4 4th Frm Top 0.090 0.646 0.185 0.00020106 0.6758561 0.6761575

5 5th Frm Top 0.110 0.789 0.225 0.00020106 0.8139539 0.8143277

0 0 0.000 0.000 0.000 0 0.0000000 0.0000000

0 0 0.000 0.000 0.000 0 0.0000000 0.0000000

e/(m) Axial Force Righting Mo No of SegmentTotal R Mom/(J)

1 Top Most 0.00011375 10003.16 716.39 47 33312.10

2 2nd Frm Top 0.00017409 10802.79 1139.42 43 48425.20

L i 2 L Ex 2 t 2

2 x L Ex x L i

L Ten Sitff 2 (L i/2) 2 + Pipe Distance 2 - 2xPipe Disx(L i/2) 2 x Cos (q + 90)

q/(m)

0.05oL Pipe Cen

L i

q

a

t

q

Pipe Distance

L ten Stif

L com Stif

L i / 2

Page 494: Calculation

( 494 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

3 3rd Frm Top 0.00022711 17776.17 2542.35 21 54024.91

4 4th Frm Top 0.00030137 18809.84 3470.44 21 73746.75

5 5th Frm Top 0.00037377 19370.30 4367.75 21 92814.70

0 0 0.00000000 0.00 0.00 0 0.00

0 0 0.00000000 0.00 0.00 0 0.00

302,323.65

Total Of Righting Moments For 3m Lengths

Per 0.4 Segment

Max Turning Moment Allowed for 3m Section

= 25,923.60 J

Number of segments for 3 m Distance

= 3/0.4

= 7.5

For 3m Seg

Te'n R Mom/(J)Com/Pipe R MoTe'n R Mom/(J)Com/Pipe R MoGuy Wire

1 Top Most 2149.17 2184.43 16118.76 16383.22 3320.91475

2 2nd Frm Top 3418.25 3504.27 25636.87 26282.00

3 3rd Frm Top 7627.05 7701.31 57202.85 57759.81

4 4th Frm Top 10411.31 10549.84 78084.79 79123.77

5 5th Frm Top 13103.25 13332.22 98274.39 99991.67

0 0 0.00 0.00 0.00

0 0 0.00 0.00 0.00

Total R Mom/(J SF

1 Top Most 35822.89 1.38

2 2nd Frm Top 51918.87 2.00

3 3rd Frm Top 114962.66 4.43

4 4th Frm Top 157208.56 7.06

5 5th Frm Top 198266.06 8.65

Page 495: Calculation

( 495 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Sections requireing Cyrups indicated as per the color code

SF Stiff PresencColorCode

1 Top Most 1.38 1 2

2 2nd Frm Top 2.00 1 2

3 3rd Frm Top 4.43 0 1

4 4th Frm Top 7.06 0 1

5 5th Frm Top 8.65 0 1

0 0

0 0

11 . Yielding Failure

Yielding Failure in Compression

According AISI standard 1.95 additional safety factor is given to check Yield failure

Considering Bottom most section (5th From Top)

Page 496: Calculation

( 496 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Subjected load = 44,552 N

AISI Load = 86,877 N

Area = 3 x Pipe Cress section area

= 1.24E-03

= P x A

= 70.21 MPa

= 310 MPa

<

Therefore yielding does not occur with current parameters

Table 11.1. Yielding Failure in Compression Analysis

Section AISI Load Yield/(MPa) Status SF

1 Top Most 35,233 N 28.48 Safe 10.89

2 2nd Frm Top 59,097 N 47.76 Safe 6.49

3 3rd Frm Top 82,966 N 67.05 Safe 4.62

4 4th Frm Top 86,877 N 70.21 Safe 4.42

5 5th Frm Top 25,405 N 20.53 Safe 15.10

Table 9.10. Bending Moment Failure Analysis without Guy Wire

Bending Moment/(J)

Section Guy Wind Force Inclination Total BM Allowed Safety Factor

1 Top Most 0.00E+00 4.36E+04 4.52E+03 4.81E+04 3.39E+04 0.71

2 2nd Frm Top 0.00E+00 7.69E+04 4.02E+03 8.09E+04 4.57E+04 0.56

m2

s

s y

s s y

Page 497: Calculation

( 497 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

3 3rd Frm Top 0.00E+00 1.28E+05 3.55E+03 1.32E+05 1.05E+05 0.80

4 4th Frm Top 0.00E+00 1.81E+05 2.58E+03 1.84E+05 1.30E+05 0.71

5 5th Frm Top 0.00E+00 2.38E+05 1.12E+03 2.39E+05 1.54E+05 0.64

0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00

0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00

0.00E+00 6.68E+05 1.58E+04

Bending Moment/(J) Wind Force

Section BM Allowed Inclination M Left for W H Above Wind Force

1 Top Most 2.00E+04 4.52E+03 1.54E+04 5.35 2,886.32

2 2nd Frm Top 2.69E+04 4.02E+03 2.29E+04 8.90 2,569.99

3 3rd Frm Top 6.19E+04 3.55E+03 5.84E+04 12.45 4,689.07

4 4th Frm Top 7.63E+04 2.58E+03 7.37E+04 16.00 4,607.66

5 5th Frm Top 9.06E+04 1.12E+03 8.95E+04 19.55 4,576.40

0 0 0.00E+00 0.00E+00 0.00E+00 0.00 0.00

0 0 0.00E+00 0.00E+00 0.00E+00 0.00 0.00

2.76E+05 1.58E+04 2.60E+05

Section Area Abv Pressure Al Velocity FailureSpeeds

1 Top Most 4.31 m2 670 Pa 33.41 ms-1 95 Kmph

2 2nd Frm Top 4.99 m2 515 Pa 29.31 ms-1 84 Kmph

3 3rd Frm Top 5.94 m2 790 Pa 36.28 ms-1 108 Kmph

4 4th Frm Top 6.89 m2 669 Pa 33.38 ms-1 99 Kmph

5 5th Frm Top 7.84 m2 584 Pa 31.19 ms-1 95 Kmph

0 0 0.00 m2 0 Pa 0.00 ms-1 0 Kmph

0 0 0.00 m2 0 Pa 0.00 ms-1 0 Kmph

Note: Irection can be allowed if and only if wind speed is 83.56 Kmph

(Irection Means when no Guy wires)

Page 498: Calculation

( 498 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Calculation for Strength of Lifting Cable

Note : Critical case of tower being lift under 160 KMPH wind velocity while the guy wires fixed

Load on Lifting = Compression force - weight of bottom section

= 31,485 N

Load on one cab = 15,742.5 N = 1.6 Ton

Maximum allowed load per cable

= 4 Ton

Thus The system is stable for most Critical Case

Calculation for Strength of tower lock

Load on Tower Lock = 31,485 3 Ton

`

Diameter of the shaft = 38 mm 0.038 m

Shear Area = 0.00113 m2

Shear Area For Both = 0.00227 m2

Stress Developed = F / A

= 1.4 E+07 N/m2

= 270 N/mm2

Shear Strength = 2.70 E+08 (N/mm2)

SF = 19.45

Bending Stress ( s )

Page 499: Calculation

( 499 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

10.3 Bending failure of Guide Arms

1. Plates Top/Bottom Thickness- 5mm High tensile(Equivalent to 8.5mm t

Side Plate Thickness- 10mm Thickness Height 0.006

Thickness Width 0.006

Material Mild Steel

Tensile Stre = 523 N/mm2

Yield Streng = 335 N/mm2

Reaction Force 9.892 E+04 N

Bending Stress 270 N/mm2 3 E+08 Pa

Steel Density 7,900.00 Kg/m3

Sh stress for M/S 370 N/mm2 4 E+08 Pa

Allowed S Force 8.347 E+05 N

BM =

y

How it prevents bending Note: High tensile steel is used in order to reduce the weight of the arm and maximize the bending Strength, case.

Also Minimum cross section area is considered for critical

Table 10. 7 Bending failure of Guide Arms Input Data

Arm Length x from endX sec Area H h B b

0 0.00 m 0.00226 0.100 0.088 0.100 0.088

1 0.30 m 0.00226 0.100 0.088 0.100 0.088

2 0.60 m 0.00226 0.100 0.088 0.100 0.088

3 0.90 m 0.00226 0.100 0.088 0.100 0.088

I x s

Page 500: Calculation

( 500 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

4 1.20 m 0.00226 0.100 0.088 0.100 0.088

5 1.50 m 0.00226 0.100 0.088 0.100 0.088

6 1.80 m 0.00226 0.100 0.088 0.100 0.088

7 2.10 m 0.00226 0.100 0.088 0.100 0.088

8 2.40 m 0.00226 0.100 0.088 0.100 0.088

9 2.70 m 0.00226 0.100 0.088 0.100 0.088

10 3.00 m 0.00226 0.100 0.088 0.100 0.088

11 3.30 m 0.00226 0.100 0.088 0.100 0.088

12 3.60 m 0.00226 0.100 0.088 0.100 0.088

13 3.90 m 0.00226 0.100 0.088 0.100 0.088

14 4.20 m 0.00226 0.100 0.088 0.100 0.088

15 4.50 m 0.00226 0.100 0.088 0.100 0.088

16 4.80 m 0.00226 0.100 0.088 0.100 0.088

17 5.10 m 0.00226 0.100 0.088 0.100 0.088

18 5.40 m 0.00226 0.100 0.088 0.100 0.088

19 5.70 m 0.00226 0.100 0.088 0.100 0.088

20 6.00 m 0.00226 0.100 0.088 0.100 0.088

Note: A Doublers plate and the pivot bush is playing the role in Increasing the cross section area of the arm near the pivot.

M of Inertia Cross area Projected Area

SHS Slant 100x100x3 1.83 E-06 0.00116 0.001200

SHS for Stiff 100x100x3 1.83 E-06 0.00052 0.000516

Projected Area = Area/ Cos (Angle)

Page 501: Calculation

( 501 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 10. 8 Inertia of Guide Arm with extra Box Stiffener

Arm Length x from endInertia Sys Inertia Arm Inertia Top Fixed HeighInertia ExtraFixed Height RHS

0 0.00 m 2.08 E-05 3.34 E-06 1.20 E-05 0.200 5.48 E-06

1 0.30 m 3.90 E-05 3.34 E-06 2.11 E-05 0.265 1.46 E-05

2 0.60 m 6.47 E-05 3.34 E-06 3.27 E-05 0.330 2.87 E-05 0.330

3 0.90 m 3.35 E-05 3.34 E-06 1.20 E-05 0.395 1.81 E-05 0.165

4 1.20 m 3.90 E-05 3.34 E-06 2.11 E-05 0.460 1.46 E-05 0.000

5 1.50 m 1.12 E-04 3.34 E-06 8.27 E-05 0.525 2.58 E-05 0.295

6 1.80 m 1.67 E-04 3.34 E-06 1.04 E-04 0.590 5.95 E-05 0.590

7 2.10 m 1.48 E-04 3.34 E-06 1.29 E-04 0.655 1.58 E-05 0.295

8 2.40 m 1.63 E-04 3.34 E-06 1.55 E-04 0.720 4.57 E-06 0.000

9 2.70 m 2.16 E-04 3.34 E-06 1.85 E-04 0.785 2.79 E-05 0.425

10 3.00 m 3.18 E-04 3.34 E-06 2.17 E-04 0.850 9.78 E-05 0.850

11 3.30 m 2.82 E-04 3.34 E-06 2.51 E-04 0.915 2.79 E-05 0.425

12 3.60 m 2.96 E-04 3.34 E-06 2.88 E-04 0.980 4.57 E-06 0.000

13 3.90 m 3.75 E-04 3.34 E-06 3.28 E-04 1.045 4.43 E-05 0.555

14 4.20 m 5.36 E-04 3.34 E-06 3.70 E-04 1.110 1.63 E-04 1.110

15 4.50 m 4.22 E-04 3.34 E-06 4.14 E-04 1.175 4.57 E-06

16 4.80 m 4.69 E-04 3.34 E-06 4.61 E-04 1.240 4.57 E-06

17 5.10 m 5.19 E-04 3.34 E-06 5.11 E-04 1.305 4.57 E-06

18 5.40 m 5.71 E-04 3.34 E-06 5.63 E-04 1.370 4.57 E-06

19 5.70 m 6.26 E-04 3.34 E-06 6.18 E-04 1.435 4.57 E-06

20 6.00 m 6.83 E-04 3.34 E-06 6.75 E-04 1.500 4.57 E-06

Angle between Two box bars 0.25

14.0 Deg

Page 502: Calculation

( 502 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Table 10.8 .Bending failure of Guide Arms Data comparison

Length x from en Wt/ (Kg) S Force Mx BM Allowed Bending SF

0 0.00 5.35 0.00 E+00

1 0.30 5.35 9.9 E+04 2.97 E+04 4.21 E+05 Safe 14.20

2 0.60 5.35 9.9 E+04 5.94 E+04 6.98 E+05 Safe 11.77

3 0.90 5.35 9.9 E+04 8.90 E+04 3.61 E+05 Safe 4.06

4 1.20 5.35 9.9 E+04 1.19 E+05 4.21 E+05 Safe 3.55

5 1.50 5.35 9.9 E+04 1.48 E+05 1.21 E+06 Safe 8.14

6 1.80 5.35 9.9 E+04 1.78 E+05 1.81 E+06 Safe 10.14

7 2.10 5.35 9.9 E+04 2.08 E+05 1.60 E+06 Safe 7.68

8 2.40 5.35 9.9 E+04 2.38 E+05 1.76 E+06 Safe 7.43

9 2.70 5.35 9.9 E+04 2.67 E+05 2.33 E+06 Safe 8.73

10 3.00 5.35 9.9 E+04 2.97 E+05 3.43 E+06 Safe 11.56

11 3.30 5.35 9.9 E+04 3.27 E+05 3.05 E+06 Safe 9.33

12 3.60 5.35 9.9 E+04 3.56 E+05 3.20 E+06 Safe 8.97

13 3.90 5.35 9.9 E+04 3.86 E+05 4.05 E+06 Safe 10.49

14 4.20 5.35 9.9 E+04 4.16 E+05 5.79 E+06 Safe 13.93

15 4.50 5.35 9.9 E+04 4.46 E+05 4.56 E+06 Safe 10.23

16 4.80 5.35 9.9 E+04 4.75 E+05 5.07 E+06 Safe 10.66

17 5.10 5.35 9.9 E+04 5.05 E+05 5.60 E+06 Safe 11.09

18 5.40 5.35 9.9 E+04 5.35 E+05 6.17 E+06 Safe 11.53

19 5.70 5.35 9.9 E+04 5.65 E+05 6.76 E+06 Safe 11.96

20 6.00 5.35 9.9 E+04 5.94 E+05 7.37 E+06 Safe 12.41

106.93

max Shearing Safe

Arm Pivot Point failures(Strenth of pivoting Point is Neglected, Arm will turn about Upper

pivoting Point)

No of Pivot Plates = 2

Page 503: Calculation

( 503 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Thickness = 0.020 m

Weld Contact Lenth = 0.100 m

Area = 0.004 m2

Distance Between Pivot Pts = 1.5 m

Forces On Cantelevered Arm

Weight Force Y Tr M

Arm Wt 576 Kg -5652 3.250 -18368 J

Concrete 3240 Kg -31791 6.500 -206641 J

Guy Top 8449 7.100 59987 J

Guy Mid 8272 7.000 57906 J

Guy Bottom 7952 6.900 54869 J

Arm Compression -12769 -52247 J

Force At Pivot = 34832

This can easily be Overcome by even only one of 8.8 Bolts

Stress developed = 8707903.21 N/m2

= 8.71 N/mm2

Allowed Tensile Stress = 348.00 N/mm2

S.F = 39.96

Page 504: Calculation

( 504 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

According to the Study The most Critical case is near the pivot center

To increase the bending strength of the arm stiffeners are introduced

at certain points of the arm.

The Doublers plate and the pivot bush is playing the role in Increasing

the cross section area of the arm near the pivot.

Thus the Guide arm is Safe all critical cases considered.

13 . Calculation to find the bearing capacity depending on the soil condition

As mentioned earlier in case of system falling about two arms The total weight can

be considered to act on Just Two Arms

Desiding On concrete Blocks at x tream Points

Total Weight of System-Two Blocks = 13923 Kg 14 Ton

Weight on One Arm = 14 Ton

2

= 7.0 Ton

LandingLegsCapacity = 40 Ton

Therefore the landing legs does not fail due to load

Page 505: Calculation

( 505 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Area of the shoe/Concrete Block = 1.50 m X 1.50 m

= 2.25 m2

Stress On Shoe = Force

Area

= 30,351 Pa 0.030 MPa N/m2

= 30.35 KN/m2

Allowed By site Soil = 40 N/m2

SF = 1.32

Desiding On Concrete Block Under the Twr

Load = 11,923 N 12 Ton

=

= 6.0 Ton

LandingLegsCapacity = 40 Ton

Therefore the landing legs does not fail due to load

Area of the shoe/Concrete Block = 1.50 m X 1.50 m

= 2.25 m2

Page 506: Calculation

( 506 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Stress On Shoe = Force

Area

= 25,991 Pa 0.026 MPa N/m2

= 25.99 KN/m2

Allowed By site Soil = 40 N/m2

SF = 1.54

Therefore the landing legs does not fail due to load

Area of the shoe = 0.60 m X 0.60 m

= 0.36 m2

Stress On Shoe = Force

Area

= 19,337 Pa 0.019 MPa

Obviously the stress value Occurred at the shoe much lesser than Yield Stress if steel (355Mpa)

Therefore the shoe of landing legs does not fail due to load

Page 507: Calculation

( 507 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

17 . Calculation for Dimensions of the Occupied Projected Land Area

Length extended from front Bolster = 1.50 m

Max Length // to Center Line =

4.21 m + #REF!

= #REF!

= 2 x (Width Side ways)

= 12.69 m

18 . Finalized Parameter Values relevant to tower Models and Relevant Cases

Front Extention Pivot / (m) = #REF!

Rear Extension Pivot / (m) = 0.000

Front Extention / (m) = 6.00 m

Rear Extension / (m) = 0.00 m

Front Extension Angle / (Deg) = 120 Deg

Rear Extension Angle / (Deg) = 0 Deg

Max(Y R LL , Y Platform ) +Max(Front Side ,Y F LL )

Width 90o to Center Line

Page 508: Calculation

( 508 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

Rented area length/(m) = #REF!

Rented area width/(m) = 12.69 m

Max Inclination/(Degrees) = 0.00 Deg

19 . CONCLUSION

1 ) According to the design calculation carried out throughout the study, It has been proven

beyond doubt that the system isstable under the Strength limit status velocity or Survival

Wind Velocity.

2 ) Therefore it is certain that the system is Stable for the Serviceability limit or Operational Wind

Velocity. (AISI Standard)

3 ) During the Calculation tower has been tested for Bending, Tensile, Shear , Buckling and

Yielding failure, and proven safe.

4 ) All failure tests are satisfied the AISI safety factor Requirements Under

TIA - 222 -G Standards

5 ) The design of the Tower Supporting Frame and the locking system

confirm the rigidity of the tower relative to base frame.

6 ) Provided that the velocity is lower than the survival velocity the system

is stable regardless of the direction of wind flow.

7 ) The ground utilization has been optimized by the design.

Page 509: Calculation

( 509 )

Checked By: Athula Haputantri Design By : Aravinda Perera Approved By:Mr.K.V.G.G.Jayantha

20 . REFERENCES

AISI/EIA/TIA-222-G Standard

Page 510: Calculation

RISA Std MS TowerBasic wind Speed 177Structure Class IIExposure Category CTopographic Category 1Crest Height 0Deflections calculated using a wind speed of 97Tower sections Welded ER-70S-6 electrodes

FlangedGalvanised ASTM A123 and ASTM A153

Bolts A325 Galvanised TIA/EIA-222 Pressure calculated at Each SectionGuy Design SF 1Stress Ratio for twr Design 1Local bending stresses due to climbing loads, Not consideredfeedline supports Not consideredappurtenance mounts Not considered

Page 511: Calculation

Rank Brand Parent Company Brand Value ($bn)TANTRI 1 Vodafone Vodafone Group 26.59

2 AT&T AT&T 24.63 Verizon Verizon Comm 24.384 Orange France Telecom 18.355 China Mobile China Mobile 13.876 Telecom Italia Telecom Italia 9.437 T-Mobile Deutsche Telekom 8.968 Movistar Telefonica 7.959 NTT DoCoMo NTTC 7.54

ASTM A123 and ASTM A153 10 BT BT Group 7.2911 Sprint Sprint Nextel Corp. 7.0712 Telefonica Telefonica 6.3313 Alcatel-Lucent Alcatel-Lucent 5.1614 America Movil America Movil 5.0815 Telstra Telstra Corp. 4.6416 O2 Telefonica 4.6217 China Unicom China Unicom 3.4518 Qwest Qwest Comm Intl 3.0619 SoftBank Softbank Corp. 3.0220 KDDI KDDI Corp. 3.0121 Telenor Telenor 2.9722 Swisscom Swisscom 2.9623 MTS Mobil TeleSystems 2.7924 CNC China Netcom Group 2.5525 Airtel Bharti Airtel Ltd 2.48

Page 512: Calculation

6.50Y platform

Page 513: Calculation

Table 14.2. Tower Frame DetailsUnit Wt/( Country Number Tot Weight Tot Weight

50mm Sha15.40 1.10 m 1 16.94 Kg 18.63 Kg2" Box Ba 4.25 2.69 m 4 45.73 Kg 492.05 Kg3" Box Ba 6.60 2.30 m 1 15.18 Kg 34.91 Kg3" Box Ba 6.60 2.52 m 2 33.29 Kg 167.92 Kg3" Box Ba 6.60 0.64 m 2 8.45 Kg 10.81 Kg3" Box Ba 6.60 2.25 m 2 29.70 Kg 133.65 Kg3" Box Ba 6.60 3.02 m 2 39.86 Kg 240.78 Kg4" Box ba 8.96 2.87 m 2 51.34 Kg 294.18 Kg8mm Thk 62.64 0.0041 m2 16 4.13 Kg 0.27 Kg10mm Thk 75.16 0.0375 m2 4 11.27 Kg 1.69 Kg12mm Thk100.22 0.0126 m2 12 15.15 Kg 2.29 Kg12mm Thk100.22 0.0060 m2 4 2.39 Kg 0.06 Kg12mm Thk100.22 0.0023 m2 8 1.80 Kg 0.03 Kg20mm Thk162.85 0.0110 m2 2 3.58 Kg 0.08 KgOther Loads 10.00 Kg 10.00 Kg

Total

Roof topTable 14.4. Base Frame Details

Type Size Unit Wt Country Number Tot WeightMain UB #REF! 51.0 Kg/m 6.00 m 2 612.00 KgCross UB #REF! 51.0 Kg/m 6.00 m 2 612.00 KgSide UB #REF! 51.0 Kg/m 0.90 m 2 91.80 Kg

Other Weights 40.00 Kg1355.80 Kg

Page 514: Calculation

Table 14.6. Structure Load Details0.000 #REF!Base Frame 0 KgAxels #REF!Generator #REF!Other #REF!Tot Weight #REF!

288.83 Kg289 Kg

SemitrailerTable 14.4. Base Frame Details

Type Size Unit Wt CountryMain UB 200x150 51.0 Kg/m 6.00 mCross UB 200x150 51.0 Kg/m 6.00 mSide UB 200x151 51.0 Kg/m 0.90 m

Other WeTwer SupSteel PlatesOther Accsesories

Page 515: Calculation

Number Tot Weight2 612 Kg2 612 Kg2 92 Kg

800 Kg700 Kg

2816 Kg

Page 516: Calculation

Deflection Update

remove shelteer wind cal Dear Aravinda,Box bar details

Wind speed matrix (topography factor)

Rented area y platform len?

in puts / out puts (Solid Works)

Weight details common

Page reorganise

index?

eleminate frame wt

guy wire load percentage

Buckling slenderness ratio

Buckling load factor 1224 line

raida

Thank you.

Note: Strenth of the Guy wire doesn't act initiallyCheck for Failiure occurencce deflection

BR+

Amila

Please check the meeting minutes as at 22nd of April.

·         Tensional members to be added for all the sections (Now it is applied for only 3 sections).

·         Aravinda (Tantri) to come up with design calculations to verify the torsion capacities prior/after new additions.

·         Mr. Jayantha requested calculations for six scenarios as follows: 6m2 at top, 6m2 at the middle of each section (5 sections).

·         Design calculation for guy connections should be provided for approval (fixing mechanism).

·         Support reactions to be submitted.

·         Generic design for bases to be done based on the soil bearing capacity of 40 kN/m2.

Please submit your reports by 27th of April as per the agreed target.

Page 517: Calculation

Go to 1371 line for guy wire case

Initial tension OK

practically check

OK

Please check the meeting minutes as at 22nd of April.

Tensional members to be added for all the sections (Now it is applied for only 3 sections).

Aravinda (Tantri) to come up with design calculations to verify the torsion capacities prior/after new additions.

Mr. Jayantha requested calculations for six scenarios as follows: 6m2 at top, 6m2 at the middle of each section (5 sections).

Design calculation for guy connections should be provided for approval (fixing mechanism).

Support reactions to be submitted.

Generic design for bases to be done based on the soil bearing capacity of 40 kN/m2.

Please submit your reports by 27th of April as per the agreed target.

Page 518: Calculation

OK

OK

practically check

Aravinda (Tantri) to come up with design calculations to verify the torsion capacities prior/after new additions.

Mr. Jayantha requested calculations for six scenarios as follows: 6m2 at top, 6m2 at the middle of each section (5 sections).

Page 519: Calculation

Annex 2

For roof top Application, checking for bending failure and deflection of Base frame I Beam due to loads.

Wind Force Truning Moment = 685712.716 J

Gap between beams = 0.82 m

Force on beam for the criticle case = 836235.02 N= 85225.75 Kg= 85.23 Ton

Total Load = 85.226 Ton

Load on One Beam = 42.613 Ton

Number of points the beam is Suppoted from bottom = 2

Load on Beam 42.6 Ton

Gravitational Acc 9.812 m/s2

Analysis for Bending failure

Section Moduli 310 N/mm2 3 E+08 PaSteel Density 7,900.00 Kg/m3

Considering the critical situation arisen while lifting from lifting hooks

Length L 2.600 m Thickness t 2t0.0120 0.02400.0060

Unit length Weight 51.0 Kg/mBeam weight 132.6 Kg

Fig 3.2.6 I beam Cross section

t f

t w

H

W

t w

t f

x

R1 R 2

Page 520: Calculation

Fig 3.2.7 Free body Diagram I Beam

Shearing stress 300 N/mm2X sec Area 0.0047 m3Allowed Max S Force 1.397 E+06 N

UDL of Beam Total weight = 214 Kg

On one Beam = 107 KgNo of Segments = 40

Linear weight IntensityPer Segment = 2.68 Kgs/m

Table 3.2.4.2 Beam Property input tableMoment of Inertia of the beam Section

X from end Seg Wt/ (Kg) XsecArea H W MI Web MI Fla0 0.00 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-051 0.07 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-052 0.13 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-053 0.20 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-054 0.26 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-055 0.33 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-056 0.39 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-057 0.45 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-058 0.52 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-059 0.59 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-05

10 0.65 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0511 0.72 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0512 0.78 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0513 0.85 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0514 0.91 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0515 0.98 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0516 1.04 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0517 1.11 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0518 1.17 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0519 1.23 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0520 1.30 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0521 1.37 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0522 1.43 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0523 1.49 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0524 1.56 m 1807.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0525 1.63 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0526 1.69 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0527 1.76 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0528 1.82 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0529 1.89 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-05

Ad2 I Comp/m4

R1 R 2

Page 521: Calculation

30 1.95 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0531 2.02 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0532 2.08 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0533 2.15 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0534 2.21 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0535 2.28 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0536 2.34 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0537 2.41 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0538 2.47 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0539 2.54 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-0540 2.60 m 51.00 0.00466 0.200 0.150 2.73 E-06 2.16 E-08 1.59 E-05 3.46 E-05

14332.00 Max 0.200

Table 3.2.4.3 Bending moment at diastance x x Mx BM Allowed S Factor

0.00 m 00.00 m -4,586 107,194 23.37 Safe0.07 m -9,139 107,194 11.73 Safe0.13 m -13,657 107,194 7.85 Safe0.20 m -18,140 107,194 5.91 Safe0.26 m -22,590 107,194 4.75 Safe0.33 m -27,005 107,194 3.97 Safe0.39 m -31,386 107,194 3.42 Safe0.45 m -35,733 107,194 3.00 Safe0.52 m -40,045 107,194 2.68 Safe0.59 m -44,324 107,194 2.42 Safe0.65 m -48,568 107,194 2.21 Safe0.72 m -52,778 107,194 2.03 Safe0.78 m -56,954 107,194 1.88 Safe0.85 m -61,095 107,194 1.75 Safe0.91 m -65,202 107,194 1.64 Safe0.98 m -69,275 107,194 1.55 Safe1.04 m -73,314 107,194 1.46 Safe1.11 m -77,319 107,194 1.39 Safe1.17 m -80,169 107,194 1.34 Safe1.23 m -81,866 107,194 1.31 Safe1.30 m -82,409 107,194 1.30 Safe1.37 m -81,798 107,194 1.31 Safe1.43 m -80,032 107,194 1.34 Safe1.49 m -77,113 107,194 1.39 Safe1.56 m -73,040 107,194 1.47 Safe1.63 m -68,933 107,194 1.56 Safe1.69 m -64,792 107,194 1.65 Safe1.76 m -60,616 107,194 1.77 Safe1.82 m -56,406 107,194 1.90 Safe1.89 m -52,162 107,194 2.06 Safe1.95 m -47,883 107,194 2.24 Safe2.02 m -43,571 107,194 2.46 Safe2.08 m -39,224 107,194 2.73 Safe

Page 522: Calculation

2.15 m -34,843 107,194 3.08 Safe2.21 m -30,428 107,194 3.52 Safe2.28 m -25,978 107,194 4.13 Safe2.34 m -21,495 107,194 4.99 Safe2.41 m -16,977 107,194 6.31 Safe2.47 m -12,424 107,194 8.63 Safe2.54 m -7,838 107,194 100000.00 Safe2.60 m 0 107,194

Fig 3.2.9 Bending moment diagram

Table 3.2.4.4 Shear Force at diastance x x SF SF Allowed S Factor

0.00 m -70,560 1,396,800 10000.00 Safe0.07 m -70,033 1,396,800 19.94 Safe0.13 m -69,507 1,396,800 20.10 Safe0.20 m -68,980 1,396,800 20.25 Safe0.26 m -68,454 1,396,800 20.40 Safe0.33 m -67,927 1,396,800 20.56 Safe0.39 m -67,401 1,396,800 20.72 Safe0.45 m -66,874 1,396,800 20.89 Safe0.52 m -66,348 1,396,800 21.05 Safe0.59 m -65,821 1,396,800 21.22 Safe0.65 m -65,295 1,396,800 21.39 Safe0.72 m -64,768 1,396,800 21.57 Safe0.78 m -64,241 1,396,800 21.74 Safe0.85 m -63,715 1,396,800 21.92 Safe0.91 m -63,188 1,396,800 22.11 Safe0.98 m -62,662 1,396,800 22.29 Safe1.04 m -62,135 1,396,800 22.48 Safe1.11 m -61,609 1,396,800 22.67 Safe1.17 m -43,856 1,396,800 31.85 Safe1.23 m -26,103 1,396,800 53.51 Safe1.30 m -8,350 1,396,800 10000.00 Safe1.37 m 9,403 1,396,800 148.55 Safe1.43 m 27,156 1,396,800 51.44 Safe1.49 m 44,909 1,396,800 31.10 Safe1.56 m 62,662 1,396,800 22.29 Safe1.63 m 63,188 1,396,800 22.11 Safe1.69 m 63,715 1,396,800 21.92 Safe1.76 m 64,241 1,396,800 21.74 Safe1.82 m 64,768 1,396,800 21.57 Safe1.89 m 65,295 1,396,800 21.39 Safe

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142

-100000

-80000

-60000

-40000

-20000

0

Mx

Mx

Page 523: Calculation

1.95 m 65,821 1,396,800 21.22 Safe2.02 m 66,348 1,396,800 21.05 Safe2.08 m 66,874 1,396,800 20.89 Safe2.15 m 67,401 1,396,800 20.72 Safe2.21 m 67,927 1,396,800 20.56 Safe2.28 m 68,454 1,396,800 20.40 Safe2.34 m 68,980 1,396,800 20.25 Safe2.41 m 69,507 1,396,800 20.10 Safe2.47 m 70,033 1,396,800 19.94 Safe2.54 m 70,560 1,396,800 19.80 Safe2.60 m 0 1,396,800 10000.00 Safe

Fig 3.2.10 Shear Force diagram

Table 3.2.4.5. Deflection at diastance x

x Deflection(mm)Allowed Def S Factor0.20 m 0.00 5.20 10000.00 Safe0.26 m 0.00 5.20 1859.32 Safe0.33 m -0.01 5.20 932.27 Safe0.39 m -0.01 5.20 623.66 Safe0.45 m -0.01 5.20 469.44 Safe0.52 m -0.01 5.20 376.94 Safe0.59 m -0.02 5.20 315.29 Safe0.65 m -0.02 5.20 271.27 Safe0.72 m -0.02 5.20 238.26 Safe0.78 m -0.02 5.20 212.60 Safe0.85 m -0.03 5.20 192.07 Safe0.91 m -0.03 5.20 175.28 Safe0.98 m -0.03 5.20 161.30 Safe1.04 m -0.03 5.20 149.47 Safe1.11 m -0.04 5.20 139.34 Safe1.17 m -0.04 5.20 130.56 Safe1.23 m -0.04 5.20 122.88 Safe1.30 m -0.04 5.20 116.11 Safe1.37 m -0.05 5.20 110.50 Safe1.43 m -0.05 5.20 106.55 Safe1.49 m -0.05 5.20 10000.00 Safe1.56 m -0.05 5.20 103.65 Safe1.63 m -0.05 5.20 104.43 Safe1.69 m -0.05 5.20 106.74 Safe1.76 m -0.05 5.20 110.79 Safe

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

-80,000

-60,000

-40,000

-20,000

0

20,000

40,000

60,000

80,000

SF

Page 524: Calculation

1.82 m -0.04 5.20 116.55 Safe1.89 m -0.04 5.20 123.49 Safe1.95 m -0.04 5.20 131.39 Safe2.02 m -0.04 5.20 140.44 Safe2.08 m -0.03 5.20 150.92 Safe2.15 m -0.03 5.20 163.21 Safe2.21 m -0.03 5.20 177.79 Safe2.28 m -0.03 5.20 195.39 Safe2.34 m -0.02 5.20 217.05 Safe2.41 m -0.02 5.20 244.35 Safe2.47 m -0.02 5.20 279.81 Safe2.54 m -0.02 5.20 327.75 Safe2.60 m -0.01 5.20 396.15 Safe0.00 m -0.01 5.20 501.63 Safe0.00 m -0.01 5.20 685.55 Safe0.00 m 0.00 5.20 10000.00 Safe

Fig 3.2.11 Deflection diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

-0.060 mm

-0.040 mm

-0.020 mm

0.000 mm

V/EI / (mm)

Page 525: Calculation

Speciman Calculation for the TOP Most section

Analysis for bending of Cantilevered Beam.

Head Load = 3,351.94 N

341.69 Kg

E = 210 Gpa

L Extended = 1.00 m

I = 1.80 E-05

Max Bending Moment Allowed = 3.39 E+04

R B =

Wt tb

B A

Head Load

Page 526: Calculation

Differential Equations

= q = 0

= V = + c1

=

=2

EI V(x) =6 2

Boundry Conditions

Sh Force = R A V(L) 3 = R B= 341.69 Kg

BM = 0 V(L) 2 = 0

Tangent = 0 V(L) 1 = infinite

Deflection V(0) = 0 V(L) =

From eq'n 5

V(0) = 0 C4 = 0

From eq'n 4

EI V(x) 4

EI V(x) 3

EI V(x) 2 c1.x + c2

EI V(x) 1 + c1.x2 +c2.x +c3

+ c1.x3 +c2.x2 +c3.x +c4

V(0) 3

V(0) 2

V(0) 1

d B

5

4

3

2

1

B A

Fig 9.3. State of tower under equilibrium just before Tilting

Page 527: Calculation

= 0 C3 = 0

From eq'n 3

= 0

=

=

Form Equation 2

= R B = 341.69 Kg

= 3,351.94 N

=

2.10E+11 Pa (N/m2)

Moment of Inertia of the Flange =

= 1971875

For two flanges = 3943750

Moment of Inertia of web and Plates =

= 1143333.33333333

For three webs = 3430000

V(0) 1

V(L) 2

EI V(L) 2 c1.L +c2

c2 - c1.L

V(L) 3

EI V(L) 3 + c1

(75 x 53 )/12 + (75 x 5) x 72.5

5 x 1403 / 12

7

Neutral Axis

Page 528: Calculation

Total Moment of inertia of Lifting I beam = 7373750

= 0.00000737375

c1 = 3,351.94

From 7 c2 = - c1.L

c2 = -3351.937296

Sh Force = + c1 = 3,351.94

BM = 3,351.94 .x -3,351.94

Tangent = + c1.x2 +c2.x +c32

Deflection EI V(x) = 1,676 .x3 -3,351.94 .x2

Table 1 Deflection Parameter Table

X from end Deflection mm SF / N BM

0 0.00 m 0.00 3,352 3,352 10.13 Safe1 0.03 m 0.00 3,352 3,268 10.39 Safe2 0.05 m 0.00 3,352 3,184 10.66 Safe3 0.08 m 0.00 3,352 3,101 10.95 Safe4 0.10 m -0.01 3,352 3,017 11.25 Safe5 0.13 m -0.01 3,352 2,933 11.57 Safe6 0.15 m -0.02 3,352 2,849 11.91 Safe7 0.18 m -0.02 3,352 2,765 12.27 Safe8 0.20 m -0.03 3,352 2,682 12.66 Safe9 0.23 m -0.04 3,352 2,598 13.07 Safe

10 0.25 m -0.05 3,352 2,514 13.50 Safe11 0.28 m -0.06 3,352 2,430 13.97 Safe12 0.30 m -0.07 3,352 2,346 14.47 Safe13 0.33 m -0.08 3,352 2,263 15.00 Safe14 0.35 m -0.09 3,352 2,179 15.58 Safe15 0.38 m -0.10 3,352 2,095 16.20 Safe16 0.40 m -0.11 3,352 2,011 16.88 Safe17 0.43 m -0.13 3,352 1,927 17.61 Safe

mm 4

m 4

EI V(x) 3

EI V(x) 2

EI V(x) 1

Page 529: Calculation

18 0.45 m -0.14 3,352 1,844 18.41 Safe19 0.48 m -0.15 3,352 1,760 19.29 Safe20 0.50 m -0.17 3,352 1,676 20.25 Safe21 0.53 m -0.18 3,352 1,592 21.32 Safe22 0.55 m -0.19 3,352 1,508 22.50 Safe23 0.58 m -0.21 3,352 1,425 23.83 Safe24 0.60 m -0.22 3,352 1,341 25.32 Safe25 0.63 m -0.24 3,352 1,257 27.00 Safe26 0.65 m -0.25 3,352 1,173 28.93 Safe27 0.68 m -0.27 3,352 1,089 31.16 Safe28 0.70 m -0.28 3,352 1,006 33.75 Safe29 0.73 m -0.30 3,352 922 36.82 Safe30 0.75 m -0.31 3,352 838 40.50 Safe31 0.78 m -0.33 3,352 754 45.00 Safe32 0.80 m -0.34 3,352 670 50.63 Safe33 0.83 m -0.35 3,352 587 57.86 Safe34 0.85 m -0.37 3,352 503 67.51 Safe35 0.88 m -0.38 3,352 419 81.01 Safe36 0.90 m -0.39 3,352 335 101.26 Safe37 0.93 m -0.41 3,352 251 135.01 Safe38 0.95 m -0.42 3,352 168 202.52 Safe39 0.98 m -0.43 3,352 84 405.04 Safe40 1.00 m -0.44 3,352 0 10,000.00 Safe

Fig 3.2.3 Deflection Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

-0.50-0.45-0.40-0.35-0.30-0.25-0.20-0.15-0.10-0.050.00

Deflection /(mm)

Page 530: Calculation

Fig 3.2.4 Bending moment Diagram

Fig 3.2.5 Shear Force Diagram

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0500

1,0001,5002,0002,5003,0003,5004,000

Shear Force Diagram /( N )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Bending Moment Diagram

Page 531: Calculation

Max 0.00Min -0.44

Amax 0.443 mm 2.00

Page 532: Calculation

5 5.09E-066 5.98E-067 6.84E-068 7.66E-06

H

W

t w

t f

t w

Neutral Axis

Page 533: Calculation

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

H1 0

H2 0

H3

H4 1

H5 1 1

H6

H7 1

H8

H9 1

H10 1

H11

H12

H13 1

H14

H15

H16

H17 1 1

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

S1 0

S2 0

S3

S4 1

S5 1 1

S6

S7 1

S8

S9 1

S10 1

S11

S12

S13 1

S14

Page 534: Calculation

S15

S16

S17 1 1

Page 535: Calculation

F12 F13 F14 F15 F16 F17

1

1

V12 V13 V14 V15 V16 V17

1

Page 536: Calculation

1

Page 537: Calculation

Speciman Calculation for the TOP Most section

Analysis for bending of Cantilevered Beam.

Head Load = 6,668.23 N

679.74 Kg

E = 210 Gpa

L Extended = 1.00 m

I = 1.80 E-05

Max Bending Moment Allowed = 3.39 E+04

R B =

Wt tb

B A

Head Load

Page 538: Calculation

Differential Equations

= q = 0

= V = + c1

=

=2

EI V(x) =6 2

Boundry Conditions

Sh Force = R A V(L) 3 = R B= 679.74 Kg

BM = 0 V(L) 2 = 0

Tangent = 0 V(L) 1 = infinite

Deflection V(0) = 0 V(L) =

From eq'n 5

V(0) = 0 C4 = 0

From eq'n 4

EI V(x) 4

EI V(x) 3

EI V(x) 2 c1.x + c2

EI V(x) 1 + c1.x2 +c2.x +c3

+ c1.x3 +c2.x2 +c3.x +c4

V(0) 3

V(0) 2

V(0) 1

d B

5

4

3

2

1

B A

Fig 9.3. State of tower under equilibrium just before Tilting

Page 539: Calculation

= 0 C3 = 0

From eq'n 3

= 0

=

=

Form Equation 2

= R B = 679.74 Kg

= 6,668.23 N

=

2.10E+11 Pa (N/m2)

Moment of Inertia of the Flange =

= 1971875

For two flanges = 3943750

Moment of Inertia of web and Plates =

= 1143333.33333333

For three webs = 3430000

V(0) 1

V(L) 2

EI V(L) 2 c1.L +c2

c2 - c1.L

V(L) 3

EI V(L) 3 + c1

(75 x 53 )/12 + (75 x 5) x 72.5

5 x 1403 / 12

7

Neutral Axis

Page 540: Calculation

Total Moment of inertia of Lifting I beam = 7373750

= 0.00000737375

c1 = 6,668.23

From 7 c2 = - c1.L

c2 = -6668.233235

Sh Force = + c1 = 6,668.23

BM = 6,668.23 .x -6,668.23

Tangent = + c1.x2 +c2.x +c32

Deflection EI V(x) = 3,334 .x3 -6,668.23 .x2

Table 1 Deflection Parameter Table

X from end Deflection mm SF / N BM

0 0.00 m 0.00 6,668 6,668 5.09 Safe1 0.03 m 0.00 6,668 6,502 5.22 Safe2 0.05 m 0.00 6,668 6,335 5.36 Safe3 0.08 m -0.01 6,668 6,168 5.50 Safe4 0.10 m -0.02 6,668 6,001 5.66 Safe5 0.13 m -0.03 6,668 5,835 5.82 Safe6 0.15 m -0.04 6,668 5,668 5.99 Safe7 0.18 m -0.05 6,668 5,501 6.17 Safe8 0.20 m -0.06 6,668 5,335 6.36 Safe9 0.23 m -0.08 6,668 5,168 6.57 Safe

10 0.25 m -0.10 6,668 5,001 6.79 Safe11 0.28 m -0.12 6,668 4,834 7.02 Safe12 0.30 m -0.13 6,668 4,668 7.27 Safe13 0.33 m -0.16 6,668 4,501 7.54 Safe14 0.35 m -0.18 6,668 4,334 7.83 Safe15 0.38 m -0.20 6,668 4,168 8.14 Safe16 0.40 m -0.23 6,668 4,001 8.48 Safe17 0.43 m -0.25 6,668 3,834 8.85 Safe

mm 4

m 4

EI V(x) 3

EI V(x) 2

EI V(x) 1

Page 541: Calculation

18 0.45 m -0.28 6,668 3,668 9.25 Safe19 0.48 m -0.30 6,668 3,501 9.70 Safe20 0.50 m -0.33 6,668 3,334 10.18 Safe21 0.53 m -0.36 6,668 3,167 10.72 Safe22 0.55 m -0.39 6,668 3,001 11.31 Safe23 0.58 m -0.42 6,668 2,834 11.98 Safe24 0.60 m -0.44 6,668 2,667 12.73 Safe25 0.63 m -0.47 6,668 2,501 13.57 Safe26 0.65 m -0.50 6,668 2,334 14.54 Safe27 0.68 m -0.53 6,668 2,167 15.66 Safe28 0.70 m -0.56 6,668 2,000 16.97 Safe29 0.73 m -0.59 6,668 1,834 18.51 Safe30 0.75 m -0.62 6,668 1,667 20.36 Safe31 0.78 m -0.65 6,668 1,500 22.62 Safe32 0.80 m -0.68 6,668 1,334 25.45 Safe33 0.83 m -0.71 6,668 1,167 29.09 Safe34 0.85 m -0.73 6,668 1,000 33.93 Safe35 0.88 m -0.76 6,668 834 40.72 Safe36 0.90 m -0.79 6,668 667 50.90 Safe37 0.93 m -0.81 6,668 500 67.87 Safe38 0.95 m -0.84 6,668 333 101.80 Safe39 0.98 m -0.86 6,668 167 203.60 Safe40 1.00 m -0.88 6,668 0 10,000.00 Safe

Fig 3.2.3 Deflection Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

-1.00-0.90-0.80-0.70-0.60-0.50-0.40-0.30-0.20-0.100.00

Deflection /(mm)

Page 542: Calculation

Fig 3.2.4 Bending moment Diagram

Fig 3.2.5 Shear Force Diagram

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

01,0002,0003,0004,0005,0006,0007,0008,000

Shear Force Diagram /( N )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Bending Moment Diagram

Page 543: Calculation

Max 0.00Min -0.88

Amax 0.882 mm 2.00

Page 544: Calculation

5 5.09E-066 5.98E-067 6.84E-068 7.66E-06

H

W

t w

t f

t w

Neutral Axis

Page 545: Calculation

D Out/(m) Thickness Area Circumfrence Weld thickness

Antena Frame 0.0750 0.00508 0.00112 0.23 0.006

Top Most 0.0334 0.00455 0.00041 0.10 0.010

2nd Frm Top 0.0334 0.00455 0.00041 0.10 0.010

3rd Frm Top 0.0483 0.00508 0.00069 0.14 0.010

4th Frm Top 0.0483 0.00508 0.00069 0.14 0.010

5th Frm Top 0.0483 0.00508 0.00069 0.14 0.010

Page 546: Calculation

Factor for Porocity 0.8

Throat Thickness Throat Area SF No GasXtra Area Ne Xtra W Len Web Plate Thk Nos

0.004242640687 0.000772635114 0.692404 0.00034 0.05721 0.012 4

0.007071067812 0.000553138926 1.341304 0.00000 0.00000 0.012 16

0.007071067812 0.000553138926 1.341304 0.00000 0.00000 0.012 16

0.007071067812 0.000813225293 1.178997 0.00000 0.00000 0.012 16

0.007071067812 0.000813225293 1.178997 0.00000 0.00000 0.012 16

0.007071067812 0.000813225293 1.178997 0.00000 0.00000 0.012 16

Page 547: Calculation

Len of Tri Tri Angle Triangles

0.0023 9 9mm x 9 mm

0.0000 3 3mm x 3 mm

0.0000 3 3mm x 3 mm

0.0000 3 3mm x 3 mm

0.0000 3 3mm x 3 mm

0.0000 3 3mm x 3 mm

Page 548: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

A. 1 . Bending Strength Calculation for section number 1

i = 1

A. 1 . 1, Calculation for weight of tower Section

Relevent data taken from Table 03

Pipe Size (Di out) = #REF!

Unit weight( w pipe) = #REF!

Length of Pipe( L pipe) = #REF!

Number of Pipes (n pipes) = #REF!

Weight of Pipes (W pipes) = w pipe × L pipe × n pipes

= #REF!

Page 549: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

Relevent data taken from Table 05

Stiffner Size (D stiff) = 0.012 m

Unit weight( w stiff) = 0.89 Kg/m

Length of Stiffners( L stiff) = 6.00 m

Number of Stiffners (n stiff) = 5.5

Weight of Stiffners (W stiff) = w stiff × L stiff × n stiffs

= 29.304 Kg

Total Weight of Section (WtTr 1 ) = W pipes + W stiff

#REF!

Page 550: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

A. 1 . 2,

A. 1 . 2.1, Tower under the influence of wind thrust

A. 1 . 2.1.1, Calculation for Wind Pressure ( Ref Table 02 )

Wind velocity ( V ) = 56.12 ms-1

Wind Pressure ( P ) =

= 1.889 E+03 Pa

Strength of sections under bending moment, wind force and Self weight with a q o degree Inclination

0.6 x V 2

Page 551: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

Projected Area of the Tower Section

i) Pipes

A pipe = Di out × L pipe × n pipes

= #REF!

ii) Siffners

A stiff = D stiff × L stiff × n stiff

= 0.396 m2

Force Coefficient for Circular sections = 0.5 (AISI Standered)

A tot 1 = (A pipe + A stiff) x Force Co Eff

= #REF!

Page 552: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

Efeective area for section 1

A eff 1 = Sum A tot i

i=1

= 4.309 m2

A. 1 . 2.1.2, Calculation for Wind Force

Wind Force F wind 1 = P × A eff 1

= 8.142 E+03 N

A. 1 . 2.1.3, Calculation for Bending moment due to wind thrust

Overlap of tower Sections (OLap) = 1.4 m

Cen GR of Section (H 1 ) = 1

Sum L pipe i - ( ( n-1) x OLap )

i=1

Page 553: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

H 1 = 34.65 m

Bending moment (BM wind 1 ) = F wind i × H i

= 8.142 E+03 x 34.65

= 2.821 E+05 N

A. 1 . 2.2,

A. 1 . 2.2.1, Calculation for Maximum Premisible Bending moment of a member

Here worst case of 5 degree is considered

q = 5.0 Degrees

Bending of tower due to q o degree Inclination

Page 554: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

Height to Center Gravity of Section (H gr 1 ) = 33.05 m

Offset Due to Inclination( X offset 1 ) =

= 2.88 m

1

Wt above section Wt Abv 1 = Head Load + Sum WtTr i

i=1

= 799.362 Kg

BM incli 1 = Wt Abv i × g × X offset i

= 2.259 E+04 J

Total bending Moment BM Tot 1 = BM wind i + BM incli i

= 3.047 E+05 J

H gr i × Sin q

Page 555: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

A. 1 . 2.2.2, Calculation for Moment of Inertia of the composite section

R 1 = #REF!

r 1 = #REF!

I 1 =

4

= 4.398 E-08 m4

Parelell axis theorem may be usd to find moment of inertia of the composite section about neutral axis

Sec height h = #REF!

h1 = R

3

p(R4 - r4)

2 x h +

Page 556: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

h1 = #REF!

h2 = R

3

h2 = #REF!

a =

=

a = #REF!

= ( I + a x h12) + (2 x ( I + a x h22))

4

= 3.572 E-05 m4

h +

p(R2 - r2)

p((0.024)2 - (0.019)2)

I comp

Page 557: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

A. 1 . 2.2.3, Calculation for Maximum Premisible Bending moment of a member

Moment of Inertia I Comp 1 = 1.741 E-05 N (ref Table 07)

s = 310 N/mm2 3 E+08 Pa

Distance to extream Fib y 1 = 0.1432 m

BM Allowable 1 =

= 3.769 E+04 J

s × I Comp i

yi

Page 558: Calculation

Design By : Aravinda PereraChecked By: Athula Haputantri

A. 1 . 3, Calculation for the Safty factor of Tower section

S.F = BM Allowable i

BM Tot i

= 3.769 E+04 J

3.047 E+05 J

= 0.12

Safe

Page 559: Calculation

sagging ok

Low bedCow two arms Semi Trailergrdu goose neck

Tower center position

0.3942

Height 15

Proj guy

Page 560: Calculation
Page 561: Calculation

Tower Data

0 0 0 0Parameter GRDU RDV SMI TR TOW TR GRDU RDV SMI TR TOW TR GRDU RDV SMI TR TOW TR GRDU RDV SMI TR TOW TR

1

Chassie Length / (m) 6.00 6.00 6.50 6.50 6.00 6.00 6.70 6.50 6.00 6.00 6.70 6.00 6.00 6.00 6.70 6.00Chassie Width / (m) 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30Front Arm Pivot / (m) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Rear Arm Pivot / (m) 5.97 5.97 6.47 6.47 5.98 5.98 6.68 6.48 5.98 5.98 6.68 5.98 5.98 5.98 6.68 5.98120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

Projected Guy Wire Length / (m) 5.03 5.96 5.94 6.53 4.52 4.69 4.80 5.53 4.02 3.96 4.31 5.03 4.02 3.42 3.89 5.03Front Arm / (m) 4.00 4.93 4.09 5.50 3.50 3.67 3.26 4.50 3.00 2.95 3.46 4.00 3.00 2.42 2.60 4.00Front arm Angle / (Deg) 127 126 78 125 128 127 67 126 129 129 48 127 129 131 59 127Rear Arm / (m) 2.48 0.00 0.00 4.97 2.03 0.00 0.00 4.50 1.76 0.00 0.00 4.08 1.39 0.00 0.00 3.56Rear arm Angle / (Deg) 57 0 0 48 60 0 0 50 64 0 0 50 64 0 0 48Rented area length (Y Axis)/(m) 8.92 7.02 6.57 11.64 8.33 6.86 6.52 10.71 7.85 6.84 6.48 10.17 7.67 6.83 6.44 9.95Rented area width (X Axis)/(m) 8.71 10.32 10.29 11.32 7.83 8.13 8.32 9.58 6.96 6.86 7.47 8.71 6.96 5.93 6.74 8.71Max Inclination/(Degrees) 1.5 1.5 1.1 0.9 0.8 0.8 0.8 0.6 1.0 1.0 1.1 0.6 0.4 0.4 0.3 0.3Total System Weight / (Kg) 12582 15874 14001 8998 12317 15627 13734 8710 12079 15402 13530 8465 11859 15200 13326 8238Head Load / (Kg) 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300Cabin / (Kg) 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000Tower weight / (Kg) 974 974 974 974 751 751 751 751 547 547 547 547 343 343 343 343

Concrete Weight / (Kg) 5060 0 0 0 5060 0 0 0 5060 0 0 0 5060 0 0 0Truck Weight / (Kg) 0 7,000 0 0 0 7,000 0 0 0 7,000 0 0 0 7,000 0 0Skeltal Weight / (Kg) 0 0 3,500 950 0 0 3,000 1,000 0 0 3,000 1,000 0 0 3,000 1,000Axels Weight / (Kg) 0 0 1,400 700 0 0 1,400 700 0 0 1,400 700 0 0 1,400 700Generator Weight/ (Kg) 0 500 0 0 0 500 500 0 0 500 500 0 0 500 500 0Wt of Accessories / (Kg) 400 1,200 500 1,350 0 1,200 500 500 400 1,200 500 500 400 1,200 500 500Operational wind vel/(Kmph) 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160AISI Survival wind vel /(Kmph) 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

Guy angle with Y axis q / (Deg)

Page 562: Calculation

Tilted Height from Deck Level/ (m) 3.60 3.65 3.60 3.60 3.60 3.65 3.60 3.60 3.60 3.65 3.60 3.60 3.60 3.65 3.60 3.60

GuyedNon guyedsandno sandfixed to groundfree to fall with sand

Fig 14.3. Guide arm Arrangement

Backwards

Side Ways

Foward

YR Pivot

LR

X Platform

YCGa

YF Pivot

b

LF

YPlatform

Tower side

Cabin Side

Page 563: Calculation

SEMI TRAILER

Twr Catogory 5 Type Mis match

Height Catogor 4 40 m

#REF!

#REF!

#REF!

#REF!

#REF!

#REF!

12.69 m

0.0 Degrees

20402.506 Kg

680 Kg

#REF!

852.768 Kg

#REF!

Do not Stand Underneath while tower irection is in progress

Page 564: Calculation

(564) Design By : Aravinda PereraChecked By: Athula Haputantri

TABLE OF CONTENTS

0 . Notations and Symbols………………………………………………………………………………0

0

1 . ABSTRACT………………………………………………………………………………….. 0

0

2 . INTRODUCTION…………………………………………………………………………………..0

0

3 . ANTENNAE DETAILS…………………………………………………………………………………0

Calculation for antennae supporting frame Area…… 0

4 . DESIGN CONCEPT RELATED TO ENVIRONMENTAL LOADS……………… 0

0

5 . STRUCTURE CLASSIFICATION…………………………………………………………………0

0

6 . Tower Specifications…………………………………………………………………………………0

0

7 . Material Used for Tower Section……………………………………………………………… 0

0

8 . Wind Loads Analysis 0

0

Page 565: Calculation

(565) Design By : Aravinda PereraChecked By: Athula Haputantri

9 . Bending Strength Calculation 0

Table 9.1. Wind Velocity Variation with Height…… 0

Table 9.2. Tower Vertical Pipe Data………………………… 0

Table 9.3. Tower Vertical Pipe Data Derived from 0

Table 9.4. Section Wind force and Gravity center 0

Table 9.5. Data of Stiffeners………………………………………… 0

Table 9.6. Moment of inertia of the Composite sec 0

Table 9.7. Weight of Tower Sections………………………… 0

Table9.8. Wind Force Effect on Projected Area…… 0

Table 9.9. Bending Moment Failure Analysis………… 0

10 . Calculation for Buckling & Deflection 0

Calculation for buckling failure………………………………………………………………… 0

Table 10.1. Buckling Failure Analysis……………………… 0

Table 10.2. Buckling for bottom most sub section…………………… 0

Calculation for Lifting Cable strength……………………………………………………… 0

Calculation for Deflection & Guy wire strenth……………………………………… 0

Table 10.2. Guy wire Data………………………………………………. 0

Analysis For Guy wire behavior Under Loads 0

10.8 Bending failure of Guide Arms 0

Page 566: Calculation

(566) Design By : Aravinda PereraChecked By: Athula Haputantri

11 . Yielding Failure 0

Yielding Failure in Compression……………………………………………………………. 0

Table 11.1. Yielding Failure in Compression Analysis……………… 0

Yielding Failure in Tention 0

Table 11.2. Tower Tensile failure of the pipe on the wind flow side 0

0

12 . Failure from the pivot…………………………………………………………………………………0

Table 12.1. Analysis for Failure from the pivot 0

13 . Failure of Landing Leg Sand Shoe…………………………………………………………… 0

0

14 . STABILITY CALCULATION………………………………………………………………………0

Table 14.1. Cabin Details 0

Table 14.2. Tower Frame Details 0

Table 14.3. Guide Arms 0

Table 14.4. Base Frame Details 0

Table 14.5. Concrete Block Details 0

Table 14.6. Load Details 0

Table 14.7. Turning Moment Due to Wind Force & Inclination 0

Table 14.8. Locating the center of Gravity 0

Page 567: Calculation

(567) Design By : Aravinda PereraChecked By: Athula Haputantri

15 . Length Parameters of Guide Arms…………………………………………………………… 0

16 . Safety factor Calculation……………………………………………………………………………0

17 . Calculation for Dimensions of the Rectangular Land Area……………… 0

18 . Finalized Parameter Values relevent to tower Models and Relevent Cases 0

19 . CONCLUSIONS………………………………………………………………………………….. 0

20 . REFERENCES………………………………………………………………………………….. 0

ANNEX: BENDING CALCULATION (EACH TOWER SECTION) 0

A 1 Top Most Section 0

A 2 2nd Section From Top #REF!

A 3 3rd Section From Top #REF!

A 4 4th Section From Top #REF!

A 5 5th Section From Top #REF!

#REF!

#REF!

Page 568: Calculation

(568) Design By : Aravinda PereraChecked By: Athula Haputantri

Page 569: Calculation

(569) Design By : Aravinda PereraChecked By: Athula Haputantri

Page 570: Calculation

(570) Design By : Aravinda PereraChecked By: Athula Haputantri

TABLE OF CONTENTS

0 . Notations and Symbols………………………………………………………………………………#REF!

1 . ABSTRACT………………………………………………………………………………….. #REF!

2 . INTRODUCTION…………………………………………………………………………………..#REF!

3 . ANTENNAE DETAILS…………………………………………………………………………………0

Calculation for antennae supporting frame Area…… 0

4 . DESIGN CONCEPT RELATED TO ENVIRONMENTAL LOADS……………… #REF!

5 . STRUCTURE CLASSIFICATION…………………………………………………………………#REF!

6 . Tower Specifications…………………………………………………………………………………#REF!

7 . Material Used for Tower Section……………………………………………………………… #REF!

8 . Wind Loads Analysis #REF!

Page 571: Calculation

(571) Design By : Aravinda PereraChecked By: Athula Haputantri

9 . Bending Strength Calculation #REF!

Table 9.1. Wind Velocity Variation with Height…… #REF!

Table 9.2. Tower Vertical Pipe Data………………………… #REF!

Table 9.3. Tower Vertical Pipe Data Derived from #REF!

Table 9.4. Section Wind force and Gravity center #REF!

Table 9.5. Data of Stiffeners………………………………………… #REF!

Table 9.6. Moment of inertia of the Composite sec #REF!

Table 9.7. Weight of Tower Sections………………………… #REF!

Table9.8. Wind Force Effect on Projected Area…… #REF!

Table 9.9. Bending Moment Failure Analysis………… #REF!

10 . Calculation for Buckling & Deflection #NAME?

Calculation for buckling failure………………………………………………………………… #REF!

Table 10.1. Buckling Failure Analysis……………………… #REF!

Table 10.2. Buckling for bottom most sub section…………………… #REF!

Calculation for Lifting Cable strength……………………………………………………… #REF!

Calculation for Deflection & Guy wire strenth……………………………………… #REF!

Table 10.2. Guy wire Data………………………………………………. #REF!

Analysis For Guy wire behavior Under Loads #REF!

10.8 Bending failure of Guide Arms 0

Page 572: Calculation

(572) Design By : Aravinda PereraChecked By: Athula Haputantri

11 . Yielding Failure 0

Yielding Failure in Compression……………………………………………………………. #REF!

Table 11.1. Yielding Failure in Compression Analysis……………… #REF!

Yielding Failure in Tention #REF!

Table 11.2. Tower Tensile failure of the pipe on the wind flow side 0

0

12 . Failure from the pivot…………………………………………………………………………………0

Table 12.1. Analysis for Failure from the pivot 0

13 . Failure of Landing Leg Sand Shoe…………………………………………………………… 0

0

14 . STABILITY CALCULATION………………………………………………………………………0

Table 14.1. Cabin Details 0

Table 14.2. Tower Frame Details #REF!

Table 14.3. Guide Arms #REF!

Table 14.4. Base Frame Details #REF!

Table 14.5. Concrete Block Details #REF!

Table 14.6. Load Details 0

Table 14.7. Turning Moment Due to Wind Force & Inclination #REF!

Table 14.8. Locating the center of Gravity #REF!

Page 573: Calculation

(573) Design By : Aravinda PereraChecked By: Athula Haputantri

15 . Length Parameters of Guide Arms…………………………………………………………… 0

16 . Safety factor Calculation……………………………………………………………………………0

17 . Calculation for Dimensions of the Rectangular Land Area……………… 0

18 . Finalized Parameter Values relevent to tower Models and Relevent Cases 0

19 . CONCLUSIONS………………………………………………………………………………….. 0

20 . REFERENCES………………………………………………………………………………….. 0

ANNEX: BENDING CALCULATION (EACH TOWER SECTION) 0

A 1 Top Most Section 0

A 2 2nd Section From Top 0

A 3 3rd Section From Top 0

A 4 4th Section From Top 0

A 5 5th Section From Top 0

0

0

0

0

0

0

0

Page 574: Calculation

(574) Design By : Aravinda PereraChecked By: Athula Haputantri

#REF!

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 575: Calculation

(575) Design By : Aravinda PereraChecked By: Athula Haputantri

0

#REF!

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Page 576: Calculation

(576) Design By : Aravinda PereraChecked By: Athula Haputantri

Page 577: Calculation

(577) Design By : Aravinda PereraChecked By: Athula Haputantri

Page 578: Calculation

Y P

lat@

TW

R

X P

lat@

TW

R

Y tw

r@T

WR

Guy

Wire

Len

@T

WR

Guy

Ang

le@

TW

R

L F

ront

@T

WR

Alp

ha@

TW

R

L R

are@

TW

R

Default #REF! 1.15 0.5 #REF! 120 #REF! #REF! #REF!

Twr Catogory 1Height Catogory 4

Page 579: Calculation

Bet

a@T

WR

Y P

iv F

ront

@T

WR

Y P

iv R

ear@

TW

R

Y C

G@

TW

R

R@

TW

R

Ym

ax L

en@

TW

R

Ym

ax@

TW

R

HT

wr@

TW

R

Tw

rMod

@T

WR

#REF! #REF! #REF! #REF! #REF! #REF! 6.5 4 5

Page 580: Calculation

year 2008 feb Parameters of Tower Models

40m 30m 22m 15mGr Rd ST T TR Gr Rd ST T TR Gr Rd ST T TR Gr Rd ST T TR

Number of Sections 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2

W

eig

ht

Pa

ram

ete

rs

Head Load / (Kg) 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300Cabin / (Ton) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Truck Load / (Ton) 8 8 8 8Base Frame / (Ton) 1 1 1 1 1 1 1 1Tr With Axles / (Ton) 6 6 6 6

Concrete / (Ton) 7 7 7 7Accsesories / (Ton) 1 1 1 1Tower weight/ (Kg) 974 974 974 974 751 751 751 751 547 547 547 547 343 343 343 343

Gu

ide

Arm Front Arm Length L / (m) 3.00 5.40 3.70 6.60 1.70 2.60 2.90 4.30 0.75 1.00 1.10 2.60 - - - 1.30

30 20 30 40 15 20 20 30 0 20 0 20 - - - 0Rare Arm Length / (m) 3.00 - 2.00 6.60 1.70 - - 4.30 0.75 - - 2.60 - - - 1.30

Angle with Rare Bolster / (Deg) 30 - 30 40 15 - - 30 0 - - 20 - - - 0Chassie Length / (m) 6.0 7.0 6.9 6.0 6.0 7.0 6.9 6.0 6.0 7.0 6.9 6.0 6.0 7.0 6.9 6.0Chassie Width / (m) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3Overall Height / (m)

Operational wind vel/(Kmph) 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160AISI Survival wind vel//(Kmph) 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

Angle with Fornt Bolster a / (Deg)

Page 581: Calculation

R@

Ske

tch

1

Y R

Piv

@S

ketc

h1

Y T

wr@

Ske

tch

1

L r

are

@S

ketc

h1

X P

lat@

Ske

tch

1

Be

ta@

Ske

tch

1

Gu

y A

ng

le@

Ske

tch

1

Y P

lat@

Ske

tch

1

Y C

G@

Ske

tch

1

Y P

iv F

ron

t@S

ketc

h1

alp

ha

@S

ketc

h1

L F

ron

t@S

ketc

h1

Gu

y L

en