Top Banner
Carlos Abanades Spanish National Research Council National Coal Institute (Oviedo-Spain) Calcium Sorbent Cycling for Simultaneous CO 2 Capture and Clinker Production Fundamentals of carbonate looping cycles. The synergy between power and clinker production. Precalcination of CaCO 3 with “hot” CaO in a cement plant.
21

Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Feb 06, 2018

Download

Documents

LêHạnh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Carlos AbanadesSpanish National Research Council

National Coal Institute (Oviedo-Spain)

Calcium Sorbent Cycling for Simultaneous CO2 Capture and Clinker Production

Fundamentals of carbonate looping cycles. The synergy between power and clinker production. Precalcination of CaCO3 with “hot” CaO in a cement plant.

Page 2: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

The main CO2 capture systems

Raw material Gas, Ammonia, Steel, Cement

Reformer+ CO2 Sep

Air Separation

CO2Separation

CO2Compression& Dehydration

Power & Heat

Power & Heat

Power & Heat

Process and CO2 Sep.

N2

N2 O2

O2

H2

N2O2

CO2

CO2

CO2

CO2

Air

Post combustion

Pre combustion

Oxyfuel

Industrial Processes

Air

Air

Fuel

Gasification

Gas, Oil

Air/O2Steam

SRCCS, IPCC 2005

Pow

erG

ener

atio

n

Fuel

Fuel

Fuel

STORAGE

Page 3: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Intrinsic benefit of CCS applied to the cement industry

Avoided cost:

COST/unitofProductcapture -COST/unitofProductreference

t CO2 /UnitofProductreference - t CO2 /UnitofProductcapture

$/t CO2 avoided =

It is usually “cheaper” to avoid CO2 in processes with high specific emmisions (like cement manufacture) than in processes of low specific

emmissions

Page 4: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Heat

CalcinerT>870 C

CO2Flue gas“without” CO2

CarbonatorT=600-700C

Flue gas

CaO

CaCO3

Page 5: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

The equilibrium of CO2 on CaO

0,001

0,010

0,100

1,000

10,000

100,000

600 700 800 900 1000 1100

T (C)

P co

2, e

q, a

tm

Carbonati

on

Calcination

Page 6: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

950 Cº650 ºC

Air CO2

Gas exit

Termopar

Oven control x 2

Flow mass control

CYCLES

Air input

Page 7: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Reactivity drops at increasing number of carbonation calcination cycles

0

0.2

0.4

0.6

0.8

1

0 2 4time (min)

XCaO

cycle 1cycle 10cycle 50cycle 100

Reactivity is strong function of cycle number, temperature, CO2 partial pressure, particle size, impurities, sulphur content, texture of CaO etc.

Page 8: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Sorbent deactivation curves for high number of cycles

Residualactivity

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

cycle number

XCa

O

0

0.2

0.4

0.6

0.8

1

0 20 40

Decay in activity is only a function of cycle number and

SO2 content

(at T<950ºC)

Page 9: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

cycle number

XCa

O

0

0.2

0.4

0.6

0.8

1

0 20 40

We can work with high make up flows to ensure a large presence these type of particles

Calciner

CO2

Carbonator

Flue gas

Flue gasw/o CO2

CaOCaCO3

CaCO3CaO

Suitable raw feed to a clinker oven

Page 10: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Aplication to existing power plantsPostcombustion looping

Power Plant

Calciner oxyfuelT>900ºC

CO2

Flue gas

Flue gas no CO2

Air

Oxygen

coal

CarbonatorT>600ºC

Coal Air

New oxyfuel CFB power plant

CO2 for transport and geolog. storage

HEAT

Page 11: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Cost structure of the full capture system

New or existing complete power plant

New oxyfired CFBC complete power plant

(+ ASU +CO2 compressor)

~ 0.06 €/kWhe~ 30 €/t CO2

~ 0.04 €/kWhe

Coal A Coal B

CO2 A

CO2 (A+B)Carbonator

Cost of electricity can be around 0.05 €/kWheAvoidance cost of CO2 even below 15 €/tCO2 ( extra CO2 captured as CaCO3 )

Page 12: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Power Plant

Clinker oven

1

Synergies with a cement plant

0.46

0.1

0

Without carbonate looping With carbonate looping

ηpow = 0.46/(1+0.1)=0.42

Power Plant

Clinker oven

10.38

0.030

CaO

ηpow = 0.377/(1+0.03)= 0.37

5 net points of ef. penalty including compression to 100 bar

CaCO3

CaCO3

Clinker Clinker

Page 13: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

The capture step generates additional powerEfficiencies penalties intrinsically lowCheap and widely available CO2 sorbentSeveral options are suitable for retrofittingIt can be integrated with O2 combustionIt can/should be integrated with a cement production plantIt can be applied to any fuel

Summary of Potential Benefits

Potential for low capture costs AND very low efficiency penalties

Page 14: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

30 kW interconnected fluidized bed carbonate looping system.

(operating from 2007 at INCAR-CSIC)

Page 15: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Acknowledgements(funding projects)

European Commission C3-Capture (2006-2008), ISCC (2004-2006) del VI PM, CCCC (2003-2005) AdvHX (1999-2002) de CECA.CENIT-CO2 (ENDESA-coordinator); module 3 (contract-U Fenosa/CSIC)Contract Hunosa/CSIC for the pre-design of a 1Mwt advanced test facility forCaO looping cycles.

Page 16: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Carlos AbanadesSpanish Research Council

National Coal Institute (Oviedo)

Calcium Sorbent Cycling for Simultaneous CO2 Capture and Clinker Production

Fundamentals of carbonate looping cycles and the synergy between power and clinker production. Precalcination of CaCO3 with “hot” CaO in a cement plant.

Page 17: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Calcination of CaCO3 with high T CaO

Flue gas

CALCINERCALCINERCOMBUSTORCOMBUSTOR

Concentrated CO2

CaCO3

CaOHEATHEAT

Coal Air

CaO

Abanades, 2006 (patent appl.)Rodrírguez et al (EST, 2008)

Clinker oven

Page 18: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

950 kg

clinker

66% CaO

1117 kg CaCO3

325 kg marl, clay, shale

Fuel72 kg

Air

(491 from limestone + 172 from fuel)663 kg CO2

1000 kgcement

50 kgadditivies

Precalciner CementGrindingKiln

Fuel48 kg

Air

114 kg CO2

(a) Specific energy: 3 GJ/t cement

950 kg

clinker

66% CaO

1117 kg CaCO3

325 kg marl, clay, shale

Fuel72 kg

Air

(491 from limestone + 172 from fuel)663 kg CO2

1000 kgcement

50 kgadditivies

Precalciner CementGrindingKiln

Fuel48 kg

Air

114 kg CO2

(a) Specific energy: 3 GJ/t cement

950 kg

clinker

1117 kgCaCO3

Fuel95 kg

Air

491 kg CO2

PrecalcinerT=950 ºC

CementGrinding

1000 kg

cement

50 kgadditivies

CombustorT=1050 ºC

228 kg CO2

Kiln

325 kgmarl, clay, shale

625 kg

CaO

CaO

CaOFuel45 kg

Air

107 kg CO2

(b) Specific energy: 3.5 GJ/t cement

950 kg

clinker

1117 kgCaCO3

Fuel95 kg

Air

491 kg CO2

PrecalcinerT=950 ºC

CementGrinding

1000 kg

cement

50 kgadditivies

CombustorT=1050 ºC

228 kg CO2

Kiln

325 kgmarl, clay, shale

625 kg

CaO

CaO

CaOFuel45 kg

Air

107 kg CO2

(b) Specific energy: 3.5 GJ/t cement

M&H balances. Existing vs proposed cement plant

Page 19: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

ConcentratedCO2

Prec

alci

ner

T>90

0ºC

Fluegases

Fuel

CaO

CaCO3

Air

Com

bust

or T>

1000

ºC

HighTemperatureCaO stream

CaO, CaSO4Ashes

CompressionTransport

andstorage

ConcentratedCO2

Prec

alci

ner

T>90

0ºC

Fluegases

Fuel

CaO

CaCO3

Air

Com

bust

or T>

1000

ºC

HighTemperatureCaO stream

CaO, CaSO4Ashes

CompressionTransport

andstorage

ΔTcomb-calc

0 50 100 150 200

S/G

5

10

15

20

25

30

Hco

mb

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Page 20: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Previous publications

The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. J C Abanades. Chem. Eng. J., 90, 303-306 (2002)Novel combustion cycles incorporating capture of CO2 with CaO; J C Abanades, John E. Oakey; Diego Alvarez; Jouni Hämäläinen, 6th Greenhouse Gas Control Technologies, Kyoto-Japan, October 2002Conversion limits in the reaction of CO2 with lime; J C Abanades, D. Alvarez. Energy and Fuels, Vol 17, 2, 2003, 308-315Progress of Sulfation in Highly Sulfated Particles of Lime; J C. Abanades, E. J. Anthony, F.García-Labiano, L. Jia, Ind. Eng. Chem. Res. 2003, 42, 1840-1844In-situ capture of CO2 in a fluidized bed combustor. J.C. Abanades, E.J. Anthony, D Alvarez, D. Lu. 17th Int. Conf. on Fluidized Bed Combustion, FL-USA, ASME. May 2003. paper10A simulation study for fluidized bed combustion of petroleum coke with CO2 capture. J. Wang, E.J. Anthony, J.C. Abanades 17th Int. Conf. on Fluidized Bed Combustion, FL-USA, ASME. May 2003, paper 169.Novel CO2 control method by means of CO2 chemical looping. C. Salvador, D. Lu, E. J. Anthony and J. C. Abanades. 7th International Conference on Energy for a Clean Environment. 7-10 July Lisbon 2003.Clean and Efficient Use of Petroleum Coke for Combustion and Power Generation. J. Wang, E. J. Anthony, J.C. Abanades. Fuel 83 (2004) 1341–1348Enhancement of CaO for CO2 capture in FBC environment. C. Salvador, D. Lu, E.J. Anthony, J.C. Abanades. Chem. Eng. J. 2003, 96 (1-3) , 187-195.Capture of CO2 from Combustion Gases in a Fluidized Bed of CaO. J.C. Abanades , E. J. Anthony, D. Alvarez, D. Y. Lu, C.Salvador. AIChE J 2004 , Vol 50, No. 7, 1614-1622Investigation of the solid flow between two fluidised beds connected by an orifice. G. Grasa, J. C. Abanades, J. Oakey. Chem. Engng. Sci. 59 (2004) 5869 – 5872Sorbent cost and performance in CO2 capture systems. Juan C. Abanades, Edward S. Rubin, Edward J. Anthony. Ind. Eng. Chem. Res. 2004, (43) 3462-3466 Fluidized bed combustion systems integrating CO2 capture with CaO. J.C. Abanades, E. J. Anthony, J. Wang, J. E. Oakey. Env. Sci. & Tech. 39, 2861-2866 ( 2005)Pore size and shape effect on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles. D. Alvarez, JC Abanades, Energy and Fuels 19, 270-278 (2005)Determination of the critical product layer thickness in the reaction of CaO with CO2. D. Alvarez, JC Abanades, Ind. Eng. Chem. Res 2005, 44, 5608Novel capture processes LI. Eide, M. Anheden, A. Lyngfelt, J. C. Abanades, M. Younes, D. Clodic, A. Bill, PHM. Feron Oil & Gas Science and Technology 60(3), 497-508 (2005)Process Optimization in Postcombustion CO2-Capture by means of Repowering and Reversible Carbonation/ Calcination Cycle; Luis M. Romeo, Juan C. Abanades, Juan C. Ballesteros, Antonio Valero, Jesús M. Escosa, Antonio Giménez, Cristóbal Cortés, Jara Paño; 8th International Congress on Greenhouse Gas Control Technologies-GHGT-8, Norway 2006The kinetics of carbonation of CaO particles cycling in a CO2 capture loop; G. Grasa, J.C. Abanades8th International Congress on Greenhouse Gas Control Technologies- GHGT-8, Norway 2006CO2 capture capacity of CaO in long series of carbonation/calcination cycles; G. Grasa, J.C. Abanades, Ind. Eng. Chem. Res. 45, 8846Economics of CO2 Capture Using the Calcium Cycle with a Pressurized Fluidized Bed Combustor ; A. MacKenzie, D. L. Granatstein, E. J. Anthony, and J. C. AbanadesEnergy & Fuels 21, 2007The cost structure of a postcombustion CO2 capture system using CaO; Abanades, J.C.; Grasa, G.; Alonso, M.; Rodríguez, M.; Anthony, E.J. Enviromental Science and Technology 41(15), 5523, 2007Comparison of CaO-Based Synthetic CO2 Sorbents under Realistic Calcination Conditions ; Grasa, G.S.; González, B.; Alonso, M.; Abanades, J.C. Energy and Fuels, 2007, doi: 10.1021/ef0701687Heat requirements of a CaCO3 calciner when integrated in a CO2 capture system.; Rodríguez, N.; Alonso, M.; Grasa, G.; Abanades, J.C. ; Chemical Engineering Journal In press doi:10.1016/j.cej.2007.06.005)Reactivity of highly cycled particles of CaO in a carbonation/calcination loop ; Grasa, G.S.; Abanades, J.C.; Alonso, M.; González, B. Chemical Engineering Journal, in press: doi:10.1016/j.cej.2007.05.017Páginas, Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants; Luis M. Romeo, J. Carlos Abanades, Jesús M. Escosa, Jara Paño; Energy Conversión and Management, 2008 (in press)Sulphation of CaO particles in a carbonation/calcination loop to Capture CO2; Grasa G.; Alonso, M.; Abanades, J.C. Ind. Eng. Chem. Res., 2008 (in press)

Page 21: Calcium Sorbent Cycling for Simultaneous CO2 Capture · PDF file950 kg clinker 66% CaO 1117 kg CaCO 3 325 kg marl, clay, shale Fuel 72 kg Air (491 from limestone + 172 from fuel) 663

Carbonate looping cycles are a one of the most promising concepts to capture CO2 from a power plantThey can operate using cheap, natural limestones, but a large make up flow (and purge of CaO) is required Early oportunities for application of carbonate looping at large scale will require oxycombustion calcination and synergy with a cement plant. There is potential for even lower cost and high efficiency CaO looping concepts (no Oxycombustion required). In particular for CaCO3 precalcination.

Conclusions

There is an increasing interest worldwide for carbonate looping R&D