Top Banner
8/12/2019 CAAM452Lecture4b http://slidepdf.com/reader/full/caam452lecture4b 1/44 Partial Differential Equations (Numerical Method) CAAM 452 Spring 2005 Lecture 4 1-step time-stepping methods: stability, accuracy Runge-Kutta Methods,
44

CAAM452Lecture4b

Jun 03, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 1/44

Partial Differential Equations

(Numerical Method)

CAAM 452

Spring 2005

Lecture 41-step time-stepping methods: stability, accuracy

Runge-Kutta Methods,

Page 2: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 2/44

CAAM 452 Spring 2005

Today

• Recall AB stability regions and start up issues

• Group analysis of the Leap-Frog scheme

• One-step methods

• Example Runge-Kutta methods:

 – Modified Euler

 – General family of 2nd order RK methods – Heun’s 3rd Order Method

 – The 4th Order “Runge-Kutta” method 

 – Jameson-Schmidt-Turkel

• Linear Absolute Stability Regions for the 2nd order family RK

• Global error analysis for general 1-step methods (stops slightly short ofa full convergence analysis)

• Warning on usefulness of global error estimate

• Discussion on AB v. RK

• Embedded lower order RK schemes useful for a posteriori errorestimates.

Page 3: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 3/44

Page 4: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 4/44

CAAM 452 Spring 2005

Recall:

Requirements Starting Requirements

 AB1:

 AB2:

 AB3:

1

0

1 1

03 1

2 2n n n n

u u dt  

u u

u u dt f u f u

0

1

0

n n n

u u

u u dt f u

2

1

0

1 1 2

2

0

23 16 512

n n n n n

u u dt  

u u dt  

u u

dt u u f f f    

1 solution level for start

2 solution levels for start

3 solution levels for start

Page 5: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 5/44

CAAM 452 Spring 2005

cont

• So as we take higher order version of the ABscheme we also need to provide initial values at

more and more levels.

• For a problem where we do not know the solution

at more than the initial condition we may have to:

 – Use AB1 with small dt to get the second restart level

 – Use AB2 with small dt to get the third restart level – March on using AB3 started with the three levels

achieved above.

 AB1

 AB2

 AB3

Page 6: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 6/44

CAAM 452 Spring 2005

Recall: Derivation of AB Schemes

• The AB schemes were motivated by consideringthe exactly time integrated ODE:

• Which we approximated by using a p’th order

polynomial interpolation of the function f

1

1

n

n

n n

u t u t f u t dt  

 

1

1

n

n

n n p

u t u t I f u t dt  

 

Page 7: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 7/44CAAM 452 Spring 2005

Leap Frog Scheme

• We could also have started the integral at:

•  And used the mid point rule:

• Which suggests the leap frog scheme:

1nt 

1

1

1 1

n

n

n n

u t u t f u t dt  

1 1  2n n nu t u t dtf u t  

1 1  2n n nu u dtf u

Page 8: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 8/44CAAM 452 Spring 2005

Volunteer Exercise

1) accuracy: what is the local truncation error?

2) stability: what is the manifold of absolute linear

stability (try analytically) in the nu=dt*mu plane?

2a) what is the region of absolute linear-stability?

1 1  2n n nu u dtf u

Page 9: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 9/44CAAM 452 Spring 2005

cont

3) How many starting values are required?

4) Do we have convergence?

5) What is the global order of accuracy?

6) When is this a good method?

1 1  2n n nu u dtf u

Page 10: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 10/44CAAM 452 Spring 2005

One Step Methods

• Given the difficulties inherent in starting the higher order ABschemes we are encouraged to look for one-step methodswhich only require to evaluate

• i.e.

• Euler-Forward is a one-step method:

• We will consider the one-step Runge-Kutta methods.

• For introductory details see: – “An introduction to numerical analysis”, Suli and Mayers, 12.2

(p317) and on

 – Trefethen p75-

 – Gustafsson,Kreiss and Oliger p241-

nu1n

u

1  , ;n n n nu u dt u t dt    

1  , ; :n n n n n nu u dtf u u t dt f u  

Page 11: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 11/44CAAM 452 Spring 2005

Runge-Kutta Methods

• The Runge-Kutta are a family of one-step methods.

• They consist of s stages (i.e. require s evaluations

of f)

• They will be p’th order accurate, for some p. 

• They are self starting !!!.

Page 12: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 12/44

Page 13: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 13/44CAAM 452 Spring 2005

Linear Stability Analysis

•  As before we assume that f is linear in u andindependent of time

• The scheme becomes (for some given mu):

• Which we simplify (eliminate the uhat variable):

1

1 1 1/ 2

2

n n n

n n n

dt u u f u t  

u u dtf u t  

1

1 1

ˆ

2

ˆ

n n

n n

dt u u u

u u dt u

 

 

1

1 1

ˆ

2

ˆ

n n

n n

dt u u u

u u dt u

 

 

2

12

n n n n

dt u u dt u u

    

Page 14: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 14/44CAAM 452 Spring 2005

cont

• We gather all terms on the right hand side:

• [ Note: the bracketed term is exactly the first 3

terms of the Taylor series for exp(dt*mu), more on

that later ]

• We also note for the numerical solution to be

bounded, and the scheme stable, we require:

2

1  1

2n n

dt u dt u

  

2

1 12

dt dt 

    

Page 15: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 15/44CAAM 452 Spring 2005

cont

• The stability region is the set of nu=mu*dt in the complexplane such that:

• The manifold of marginal stability can be found (as in thelinear multistep methods) by fixing the multiplier to be of unitmagnitude and looking for the corresponding values of nuwhich produce this multiplier.

• i.e. for each theta find nu such that

2

1 12

  

2

1

2

ie    

Page 16: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 16/44CAAM 452 Spring 2005

cont

• We can manually find the roots of this quadratic:

• To obtain a parameterized representation of the

manifold of marginal stability:

2

12

ie    

1 1 2 1  ie    

Page 17: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 17/44CAAM 452 Spring 2005

Plotting Stability Region for

Modified Euler

1 1 2 1  i

  

Page 18: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 18/44CAAM 452 Spring 2005

Checking Modified Euler

at the Imaginary Axis

•  As before we wish to check how much of theimaginary axis is included inside the region of

absolute stability.

• Here we plot the real part of the “+” root 

Page 19: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 19/44CAAM 452 Spring 2005

Is the Imaginary Axis in

the Stability Region ?

• We can analytically zoom in by choosingnu=i*alpha (i.e. on the imaginary axis).

• We then check the magnitude of the multiplier:

• So we know that the only point on the imaginaryaxis with multiplier magnitude bounded above by 1is the origin.

• Modified Euler is not suitable for the advectionequation.

2 2 22 2 2 4

21 1 1 12 2 2 4

i    

Page 20: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 20/44CAAM 452 Spring 2005

General 2 stage RK family

• Consider the four parameter family of RK schemesof the form:

• where we will determine the parameters

(a,b,alpha,beta) by consideration of accuracy.

• [ Euler-Forward is in this family with a=1,b=0

1

2 1

1 1 2

,

,

n n

n n

n n

k f u t  

k f u dtk t dt  

u u dt ak bk  

   

Page 21: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 21/44CAAM 452 Spring 2005

cont

• The single step operator in this case is:

1

2 1

1 1 2

1

,

,

,

where , , , ,

n n

n n

n n

n n n n

n n n n n n n n

k f u t  

k f u dtk t dt  

u u dt ak bk  

u u u t  

u t af u t bf u dtf u t t dt  

   

   

Page 22: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 22/44CAAM 452 Spring 2005

cont

• We now perform a truncation analysis, similar tothat performed for the linear multistep methods.

• We will use the following fact:

2

2

3

3

2 2 2 2

2 2

,

,

...

du f u t t 

dt 

d u d f f du f f     f u t t f  

dt dt t u dt t u

d u d f f     f  

dt dt t u

 f f f f f f f   f f f f  

t t u u t u u t u

Page 23: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 23/44CAAM 452 Spring 2005

cont (accuracy)

• We expand Phi in terms of powers of dt using thebivariate Taylor’s expansion 

• where:

 

 

3

2 22 2 2

2 2

, , , ,

2! 2!

n n n n nu t t af u t bf u dtf u t t dt  

 f  

 f f  af b dt dtf O dt  

t u

dt dtf   f f f  

dt dt f    t t u u

   

 

 

 

,n n f f u t t 

Page 24: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 24/44CAAM 452 Spring 2005

cont

• We construct the local truncation error as:

• Now we choose a,b,alpha,beta to minimize thelocal truncation error.

• Note – we use subindexing to represent partialderivatives.

 

22

2 2

2 4

,

22 3!

2 2

n n n n n

t u tt tu uu u t u

t u tt tu uu

u t dt u t dt u t t  

dt dt  dt f f ff f f f f f f f f f    

dt dtf    dt af b f dtf dtff f dt ff f O dt  

   

Page 25: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 25/44

CAAM 452 Spring 2005

cont

• Consider terms which are the same order in dt in the localtruncation error:

• Condition 1:

• Condition 2:

• Under these conditions, the truncation is order 3 so the

method is 2nd order accurate. It is not possible to further

eliminate the dt^3 terms by adjusting the parameters.

 

22

2 2

2 4

23

2

2   !

2

n tt tu uu u t u

tt 

t u

t u   tu uu

dt  f ff  

dt  f  

 f f  

dt f f f f f f f f f    

dt dtf    dt a b f dt ff    tf dtff       f O dt          

1 0a b

1 102 2

t u t u f ff b dtf dtff f b b  

Page 26: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 26/44

CAAM 452 Spring 2005

Case: No Explicit t Dependence in f  

 

2 2

3

2

,

2!

n nu t t bf u dtf udtf   f f  

b f dtf O dt  u u

    

  

22 3 2

22 3 2

,du d u f d u f f     f u t f f f  dt dt u dt u u

 

1

22

2 2 4

;

3! 22

n n n n

uu uuu uu

T u t u t dt u t dt  

dt dt dt f f f f dt b f O d  dt  f   f     f ff     t dt  f          

     

11,

2b    

It is easier to generalize to higher order RK in this case when there is no explicit time dependence in f 

S d E l R K tt

Page 27: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 27/44

CAAM 452 Spring 2005

Second Example Runge-Kutta:

Heun’s Third Order Formula 

• Traditional version • In terms of intermediatevariables:

1

,

,3 3

2 2,

3 3

13

4

n n

n n

n n

n n

a dtf u t  

a dt 

b dtf u t  

b dt c dtf u t  

u u a c

1

2 1 1/3

1 2 2 /3

3

2,ˆ ˆ

3

1, 3 ,ˆ

4

n n n

n n

n n n n n

dt u u f u t  

dt u u f u t  

u u f u t f u t  

This is a 3rd order, 3 stage single step explicit Runge-Kutta method.

Page 28: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 28/44

CAAM 452 Spring 2005

1

2

1

2 3

ˆ

3

3 3

234 3 3

23 1 1

4 3 3

1 2 3

n n

n n n

n n n n n n

n n

n

dt u u u

dt dt  u u u u

dt dt dt  u u u u u u

dt dt dt  u u

dt dt  dt u

 

 

 

 

  

 Again Let’s Check the Stability Region 

1

2 1 1/3

1 2 2 /3

3

2,ˆ ˆ

3

1

, 3 ,ˆ

4

n n n

n n

n n n n n

dt 

u u f u t  

dt u u f u t  

u u f u t f u t  

With f=mu*u reduces to a

single level recursion with avery familiar multiplier:

Page 29: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 29/44

CAAM 452 Spring 2005

Stability of Heun’s 3rd Order Method

• Each marginally stable mu*dt is such that themultiplier is of magnitude 1, i.e.

• This traces a curve in the nu=mu*dt complex plane.

• Since we are short on time we can plot this using

Matlab’s roots function… 

2 3

1 2 6

i

e

   

 

Page 30: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 30/44

CAAM 452 Spring 2005

Stability Region for RK (s=p)

rk2

rk3

rk4

Page 31: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 31/44

CAAM 452 Spring 2005

• This time we consider points on the imaginary axiswhich are close to the origin:

•  And this is bounded above by 1 if

Heun’s Method and The Imaginary Axis 

22 3

2 22 3

4 6

12 6

1

2 6

112 36

i

i i

 

  

  

 

3 1.73  

rk3

Page 32: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 32/44

CAAM 452 Spring 2005

Observation on RK linear stability

• For the s’th order, s stage RKwe see that the stability regiongrows with increasing s:

• Consequently we can take alarger time step (dt) as theorder of the RK scheme

increase.

• On the down side, we requiremore evaluations of f  

Page 33: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 33/44

CAAM 452 Spring 2005

Popular 4th Order Runge-Kutta Formula

• Four stages:

1/ 2

1/ 2

1

1

,

/ 2,

/ 2,

,

1 2 26

n n

n n

n n

n n

n n

a dtf u t  

b dtf u a t  

c dtf u b t  

d dtf u c t  

u u a b c d  

see: http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/1all.pdf   p76 for details

of minimum number of stages to achieve p’th order. 

Page 34: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 34/44

CAAM 452 Spring 2005

Imaginary Axis (again)

• With the obvious multiplier we obtain:

• For stability we require:

22 3 4

22 3 4 6 8

2

1

2 6 24

1 12 6 24 72 24

i

i i

 

  

  

6 82

2  8 i.e. 2 2 2.83

72 24

   

rk4

Page 35: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 35/44

CAAM 452 Spring 2005

Imaginary Axis Stability Summary

2.83 for the 4th Order “Runge-Kutta” method 

1.73 for Heun’s 3rd Order Method

0 for modified Euler

B di th Gl b l E i T f th

Page 36: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 36/44

CAAM 452 Spring 2005

Bounding the Global Error in Terms of the

Local Truncation Error

Theorem: Consider the general one-step method

• and we assume that Phi is Lipschitz continuouswith respect to the first argument (with constant )

• i.e. for

• Then assuming it follows that

1  , ;n n n nu u dt u t dt    

 L

0 max 0, , , , : ,

we have:

, ; , ;

u t v t D u t t t t u u C  

u t dt v t dt L u v

0  1,2,..,nu t u t C n N  

  0

0 1

1 , 0,1,..., where maxn L t t 

n n n

n N 

T u u t e n N T T  

 L

Page 37: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 37/44

CAAM 452 Spring 2005

cont

Proof: we use the definition of the local truncationerror:

to construct the error equation:

we use the Lipschitz continuity of Phi:

tidying:

  ,n n n n nT u t dt u t dt u t t  

  1 1   , ,n n n n n n n n nu t u u t u dt u t t u t T  

1 1n n n n n n nu t u u t u dtL u t u T  

1 1  1n n n n nu t u dtL u t u T  

Page 38: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 38/44

CAAM 452 Spring 2005

 proof cont

   

 

   

   

 

1 1

1 1 1

1

0 0

0

0

1

1 10

1   1

1

1 1

1 1

1

1 1max 1 max

1 1

1 1 1

n n n n n

n n n n

m nn m

n m

mm n

m

n m

m

nm nm

m m

m m nm

n   n dtL

u t u dtL u t u T  

dtL dtL u t u T T  

dtL u t u T dtL

T dtL

dtLT dtL T  

dtLT T 

dtL edtL dtL

 

 

1 0 1n L t t T e

dtL

 

Page 39: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 39/44

CAAM 452 Spring 2005

proof summary

• We now have the global error estimate:

• Broadly speaking this implies that if the local truncation erroris h^{p+1} then the error at a given time step will scale as

O(h^p):

• Convergence follows under restrictions on the ODE which

guarantee existance of a unique C1 solution and stable

choice of dt.

  1 0

1 1  1n L t t 

n n

T u t u e

dtL  

  1 1

 p

n nu t u O h

Page 40: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 40/44

CAAM 452 Spring 2005

Warning About Global Error Estimate

• It should be noted that the error estimate is ofalmost zero practical use.

• In the full convergence analysis we pick a final time

t and we will see that exponential term again.

• Convergence is guaranteed but the constant canbe extraordinarily large for finite time:

  1 0

1 1  1n L t t 

n n

T u t u e

dtL

 

01

1 L t t 

e L

 

Page 41: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 41/44

CAAM 452 Spring 2005

 A Posteriori Error Estimate

• There are examples of RK methods which haveembedded lower order schemes.

• i.e. after one full RK time step, for some versions itis possible to use a second set of coefficients to

reconstruct a lower order approximation.• Thus we can compute the difference between the

two different approximations to estimate the localtruncation error committed over the time step.

• google: runge kutta embedded

• Numerical recipes in C:

 –  http://www.library.cornell.edu/nr/bookcpdf/c16-2.pdf  

Page 42: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 42/44

Page 43: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 43/44

CAAM 452 Spring 2005

RK v. AB

• When should we use RK and when should we use AB?

rk2

rk3

rk4

Page 44: CAAM452Lecture4b

8/12/2019 CAAM452Lecture4b

http://slidepdf.com/reader/full/caam452lecture4b 44/44

Class Cancelled on 02/17/05

• There will be no class on Thursday 02/17/05

• The homework due for that class will be due the

following Thursday 02/24/05