Top Banner
This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Clothier, Reece A., Palmer, Jennifer L., Walker, Rodney A., & Fulton, Neale L. (2010) Definition of airworthiness categories for civil Unmanned Aircraft Systems (UAS). In Proceedings of The 27th International Congress of the Aeronautical Sciences, Acropolis Conference Centre, Nice. (In Press) This file was downloaded from: c Copyright 2010 Please consult the authors. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:
41

c Copyright 2010 Please consult the authors. Notice ...

Feb 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: c Copyright 2010 Please consult the authors. Notice ...

This is the author’s version of a work that was submitted/accepted for pub-lication in the following source:

Clothier, Reece A., Palmer, Jennifer L., Walker, Rodney A., & Fulton, NealeL. (2010) Definition of airworthiness categories for civil Unmanned AircraftSystems (UAS). In Proceedings of The 27th International Congress of theAeronautical Sciences, Acropolis Conference Centre, Nice. (In Press)

This file was downloaded from: http://eprints.qut.edu.au/32789/

c© Copyright 2010 Please consult the authors.

Notice: Changes introduced as a result of publishing processes such ascopy-editing and formatting may not be reflected in this document. For adefinitive version of this work, please refer to the published source:

Page 2: c Copyright 2010 Please consult the authors. Notice ...

   

Defini&on  Of  Airworthiness  Categories  For  Civil  Unmanned  Aircra;  Systems  

   

Reece  A.  Clothier,*  Jennifer  L.  Palmer,†    Rodney  A.  Walker,*  Neale  L.  Fulton‡  

 *Australian  Research  Centre  for  Aerospace  Automa5on  

†Defence  Science  and  Technology  Organisa5on    ‡Commonwealth  Scien5fic  and  Industrial  Research  Organisa5on  

Page 3: c Copyright 2010 Please consult the authors. Notice ...

   •  Development  of  an  airworthiness  framework  for  civil  unmanned  aircraD  –  Introduc5on  to  the  problem  and  a  proposed  method  for  systema5cally  structuring  the  regula5ons  

•  Defini5on  of  UAS  type-­‐cer5fica5on  categories  – An  ‘objec5ve’  risk-­‐based  approach  – Results  

Overview  of  Presenta&on  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 4: c Copyright 2010 Please consult the authors. Notice ...

   Development  of  an  airworthiness  framework  for  civil  UAS    

Risk-­‐based  approach  towards  the  development  of  “Part  21”  equivalent  regula?ons  for  UAS  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 5: c Copyright 2010 Please consult the authors. Notice ...

•  ICAO  Chicago  Conven5on  1944  

•  Inten5on  is  to  provide  assurance  that  an  aircraD  is  designed,  manufactured,  maintained,  and  operated  to  an  acceptable  standard  by  approved  people  so  as  not  present  an  unacceptable  level  of  risk  to  passengers,  other  aircraD,  or  to  the  people  and  property  over-­‐flown  

•  A  suitable  framework  for  regula5ons  governing  the  airworthiness  of  civil  UAS  has  yet  to  be  defined  

•  Exis5ng  regula5ons  and  standards  may  not  be  directly  applicable  to  all  types  of  UAS  and  there  opera5ons    

Introduc&on  -­‐  Airworthiness  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 6: c Copyright 2010 Please consult the authors. Notice ...

   •  As  described  by  McGeer  and  Vagners  [2]:  

 

       …with  a  manned  aircraD  you  have  to  build  to  the  same  standard  no  maFer  what  is  underneath  you,  but  among  unmanned  aircraD,  acceptable  safety  for  flights  exclusively  over  oceans  can  be  achieved  with  rather  more  rickety  machines  than  would  be  fit  to  fly  over  a  city.  

 

Challenges  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 7: c Copyright 2010 Please consult the authors. Notice ...

   •  Unique  aspects  

 

•  Diversity  

Challenges  -­‐  Diversity  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Image:  Ref.[1]  Database  of  UAS  compiled  and  maintained  by  Defence  Science  and  Technology  Organisa&on  (DSTO)  personnel.  Database  includes  military  UAS

Page 8: c Copyright 2010 Please consult the authors. Notice ...

   •  Before  we  can  go  down  the  path  of  determining  suitable  

standards  and  requirements  for  UAS,  a  suitable  basis  for  applying  them  needs  to  be  established  –  E.g.,  exis5ng  FAR/JAR  Part  23  are  applicable  but  not  to  ALL  UAS  

opera5ons  

•  We  need  an  equivalent  (in  regulatory  func5on)  to  the  FAR/JAR  Part  21  –  Specifies  the  type  categories  of  conven5onally-­‐piloted  avia5on  

and  the  applicable  cer5fica5on  categories  for  each  type  

•  How  do  we  systema5cally  and  jus5fiably  describe  the  diversity  of  UAS  and  their  opera5ons  for  the  purposes  of  airworthiness  

•  This  can  be  answered  through  another  ques5on:  

–  The  purpose  of  avia5on  safety  regula5ons  is  to  ...?    

Challenges  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 9: c Copyright 2010 Please consult the authors. Notice ...

   Risk-­‐Based  Approach  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 10: c Copyright 2010 Please consult the authors. Notice ...

   Type  Categories  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Defined  by  the  degree  of  harm  a  UAS  could  cause  to  an  area  over-­‐flown.    Note:  the  type  categories  are  defined  independent  of  the  par5cular  area  over-­‐flown  (orthogonal  to  the  axis  describing  the  opera5onal  environment)  

Page 11: c Copyright 2010 Please consult the authors. Notice ...

   Opera&onal  Environments  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Defined  by  the  poten5al  for  harm  given  a  UAS  crashing  in  the  area  (characterised  by  the  suscep5bility  of  an  area  to  a  crashing  UAS:  popula5on  density,  degree  of  sheltering,  hazardous  industry  etc).    Note:  the  categories  of  opera5onal  environment  are  defined  independent  of  the  par5cular  type  of  UAS  over-­‐flying  (orthogonal  to  the  type  category  axis)  

Page 12: c Copyright 2010 Please consult the authors. Notice ...

   Opera&onal  Scenarios  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Each  cell  of  the  matrix  defines  a  unique  opera5onal  scenario  (the  combina5on  of  a  UAS  type  and  par5cular  opera5ng  environment).  

Page 13: c Copyright 2010 Please consult the authors. Notice ...

   Assessment  of  the  Risk  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

The  level  of  risk  is  determined  for  each  cell  (opera5onal  scenario).    

Page 14: c Copyright 2010 Please consult the authors. Notice ...

   Assignment  to  Airworthiness  Categories  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Cells  of  a  similar  colour  represent  a  similar  level  of  risk  and  hence  are  subject  to  the  same  airworthiness  requirements.  

The  spectrum  of  risk  is  then  ‘mapped’  to  a  finite  and  con5guous  number  of  cer5fica5on  categories  (r).    Illustra5vely,  this  is  the  process  of  assigning  a  finite  number  of  colours  to  the  cells.    

Page 15: c Copyright 2010 Please consult the authors. Notice ...

   Risk  Matrix  Approach  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

A  single  type  category  of  UAS  can  be  cer5fied  in  a  range  of  airworthiness  categories  

Page 16: c Copyright 2010 Please consult the authors. Notice ...

•  Framework  does  not  prescribe  whether  a  safety  target  or  prescrip5ve  code  of  requirements  should  be  used  –  E.g.,  small  UAS  may  be  more  effec5vely  regulated  through  use  of  a  safety  target  approach,  larger  UAS  by  prescrip5ve  requirements  

•  Mi5ga5on  strategies  can  be  consistently  managed:  –  Controls  which  reduce  poten5al  harm,  likelihood,  or  both  harm  and  likelihood  are  characterised  as  movements  within  the  matrix  

•  Cer5fica5on  is  determined  by  the  combina5on  of  the  system  and  its  intended  opera5onal  environment  –  Not  just  the  MTOW  of  the  aircraD  

Discussion  on  Approach  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 17: c Copyright 2010 Please consult the authors. Notice ...

   •  Jus5fiable    

– Cer5fica5on  categories  are  defined  based  on  risk  •  Flexible  

– A  given  UAS  can  be  cer5fied  in  a  number  of  possible  categories  

– Chosen  category  can  be  determined  by:  available  technology,  business  case  etc.  

•  Traceable  – To  the  requirement  for  an  equivalent  level  of  safety  to  conven5onally-­‐piloted  avia5on  

Advantages  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 18: c Copyright 2010 Please consult the authors. Notice ...

   •  Necessitates  more  resolu5on  in,  and  the  clarifica5on  of,  the  defini5on  of  over-­‐flown  areas  – Need  for  new  ‘maps’  classifying  areas  overflown  

•  Can  create  high  concentra5ons  of  UAS  ac5vity  –  E.g.,  high  density  corridors  of  UAS  ac5vity  in  built  up  areas  

•  Must  be  quan5ta5ve  to  avoid  subjec5ve  interpreta5on  –  E.g.,  what  is  a  densely  populated  area  vs  sparsely  populated?  

•  More  informa5on  in  Ref.  [1]  

Disadvantages  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 19: c Copyright 2010 Please consult the authors. Notice ...

   Defini&on  of  UAS  Type  Categories  

An  objec?ve  risk-­‐based  approach  for  categorising  UAS  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Type  I   Type  II   Type  III   Type  IV   Type  n  

Direc&on  of  increasing  magnitude  of  poten&al  loss  

Page 20: c Copyright 2010 Please consult the authors. Notice ...

   •  In  accordance  with  the  proposed  framework:  

– A  category  describing  a  group  of  UAS  which  present  a  similar  level  of  harm  to  areas  over-­‐flown  

•  I.e.,  have  the  poten5al  to  cause  about  the  same  amount  of  damage  

•  Must  cover  the  complete  range  of  possible  types  of  UAS  

Type  Categories  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 21: c Copyright 2010 Please consult the authors. Notice ...

   •  Use  tradi5onal  categories  defined  for  CPA  

– Do  not  cover  the  complete  spectrum  of  UAS    – Sufficient  resolu5on  in  exis5ng  categories    – Use  MTOW,  propulsion  systems  and    number  of  seats  onboard  only  

 •  Proposed  approach  is  to  two  5ered  

1.  Use  threshold  levels  of  harm  2.  The  use  a  mathema5cal  algorithm  to  

objec5vely  “learn”  discrete  groupings  of  UAS  based  on  the  measures  of  the  poten5al  harm  

Approaches  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 22: c Copyright 2010 Please consult the authors. Notice ...

   •  Requires:  

– A  database  of  UAS    – Models  describing  the  measures  of  harm  for  each  UAS  in  the  database  

–  Threshold  levels  of  harm  – A  suitable  clustering/par55oning  algorithm  which  uses  the  risk  measures  to  divide  the  database  into  ‘similar’  groups  

•  Advantages:  –  Subjec5vi5es  can  be  iden5fied,  characterised  and  in  some  cases  removed  

–  Can  consider  complex  risk  measures  – Output  is  a  par55oning  based  on  measures  of  risk  

Proposed  Approach  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 23: c Copyright 2010 Please consult the authors. Notice ...

   •  Compiled  and  maintained  by  the  Air  Vehicles  Division,  Defence  Science  &  Technology  Organisa5on  (DSTO),  Australian  Department  of    Defence  

•  Data  on  over  1,000  civil  and  military  UAS  •  This  paper  uses  data  on  over  500  fixed  wing  aircraD    – excludes  aerial  targets  

Database  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 24: c Copyright 2010 Please consult the authors. Notice ...

   Database  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 25: c Copyright 2010 Please consult the authors. Notice ...

   •  Maximum  Takeoff  Weight  is  not  sufficient  to  characterise  the  diversity  of  UAS  and  the  risk  they  pose  to  people  and  property  on  the  ground  –  E.g.,  light-­‐weight  slow  mover  vs  light-­‐weight  fast  mover  

•  Given  an  impact  in  a  populated  region  –  is  a  par?cular  UAS  capable  of  inflic?ng  harm  to  different  types  of  people  on  the  ground?  

–  Injury  to  people  standing  in  the  open  –  Injury  to  people  sheltered  within  light  structures  –  Injury  to  people  sheltered  within  heavy  structures  

•  Simple  energy  model  is  used  (maximum  kine5c  energy)  

Measures  –  Individual  Risk  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 26: c Copyright 2010 Please consult the authors. Notice ...

   Thresholds  –  Individual  Risk  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 27: c Copyright 2010 Please consult the authors. Notice ...

   Output  –  Individual  Risk  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 28: c Copyright 2010 Please consult the authors. Notice ...

X-­‐45C  

RQ-­‐11A/B  Raven  

FQM-­‐151A  Pointer  

Brumby,  Mk3  

Black  Widow  Wasp  II  

RQ-­‐14A  Dragon  Eye  KillerBee  2  

Aerosonde  Mk  4  

ScanEagle,  A-­‐15  

RQ-­‐7A,  Shadow  200  

RQ-­‐2A/B  Pioneer  

I-­‐View  250  

Shadow  600  

Sky  Lark  IV  

Helios  

MQ-­‐5C  e-­‐Hunter  

M/RQ-­‐1B  Predator  

Heron  1  

MQ-12A Sky Warrior  

RQ-­‐3A  DarkStar  

Taranis  

RQ-­‐4B  Global  Hawk    

RQ-­‐37A    

MQ-­‐9B  Reaper  

Centurion  

CL-­‐89_Midge  

Scarab  

Sky-­‐X  Eagle  Eye  

Mobius  4  

Page 29: c Copyright 2010 Please consult the authors. Notice ...

X-­‐45C  

RQ-­‐11A/B  Raven  

FQM-­‐151A  Pointer  

Brumby,  Mk3  

Black  Widow  Wasp  II  

RQ-­‐14A  Dragon  Eye  KillerBee  2  

Aerosonde  Mk  4  

ScanEagle,  A-­‐15  

RQ-­‐7A,  Shadow  200  

RQ-­‐2A/B  Pioneer  

I-­‐View  250  

Shadow  600  

Sky  Lark  IV  

Helios  

MQ-­‐5C  e-­‐Hunter  

M/RQ-­‐1B  Predator  

Heron  1  

MQ-12A Sky Warrior  

RQ-­‐3A  DarkStar  

Taranis  

RQ-­‐4B  Global  Hawk    

RQ-­‐37A    

MQ-­‐9B  Reaper  

Centurion  

CL-­‐89_Midge  

Scarab  

Sky-­‐X  Eagle  Eye  

Mobius  4  

Insufficient  resolu&on  in  the  fourth  category.  Problem  -­‐    How  to  further  objec<vely  discriminate  between  these  UAS?  

Page 30: c Copyright 2010 Please consult the authors. Notice ...

   •  Illustra5ve  energy  model  chosen  is  very  conserva5ve  (in-­‐

frangible),  second  order  model  is  needed:  –  Momentum  and  energy  dissipa5on  

   •  Secondary  effects  are  not  considered  

–  Explosions,  collapsing  buildings,  fragmenta5on  etc  

•  Only  a  limited  number  of  categories  (4)  can  be  iden5fied  –  Large  “fourth”  category  (5  orders  of  magnitude)  which  are  ‘lethal’  to  ‘everything’  

 •  KE  on  its  own  is  not  sufficient  to  comprehensively  

characterise  the  risk  –  Does  not  consider  the  ‘group’  risk  –the  poten5al  to  injure  more  than  one  individual    

Limita&ons  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 31: c Copyright 2010 Please consult the authors. Notice ...

•  Group  risk  discriminates  between  UAS  based  on  the  poten5al  for  harm  to  mul5ple  people    

•  Simple  lethal  area  and  uniform  distribu5on  of  energy  model  is  used  

•  Problem  -­‐  How  to  ‘objec5vely’  sub-­‐divide  large  fourth  category  of  UAS  based  on  group  risk?  – Clustering  algoritm  

Measures  –  Group  Risk  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 32: c Copyright 2010 Please consult the authors. Notice ...

   •  K-­‐means  clustering  algorithm  ayempts  to  form  K  clusters  by  minimising  a  distance  metric  

•  Must  specify  K  

 

Clustering  Algorithm  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Raw  data  to  be  grouped   Two  clusters   Three  clusters  

Page 33: c Copyright 2010 Please consult the authors. Notice ...

     

Results  –  Clustering  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 34: c Copyright 2010 Please consult the authors. Notice ...

X-­‐45C  

RQ-­‐11A/B  Raven  

FQM-­‐151A  Pointer  

Brumby,  Mk3  

Black  Widow  Wasp  II  

RQ-­‐14A  Dragon  Eye  KillerBee  2  

Aerosonde  Mk  4  

ScanEagle,  A-­‐15  

RQ-­‐7A,  Shadow  200  

RQ-­‐2A/B  Pioneer  

I-­‐View  250  

Shadow  600  

Sky  Lark  IV  

Helios  

MQ-­‐5C  e-­‐Hunter  

M/RQ-­‐1B  Predator  

Heron  1  

MQ-12A Sky Warrior  

RQ-­‐3A  DarkStar  

Taranis  

RQ-­‐4B  Global  Hawk    

RQ-­‐37A    

MQ-­‐9B  Reaper  

Centurion  

CL-­‐89_Midge  

Scarab  

Sky-­‐X  Eagle  Eye  

Mobius  4  

Page 35: c Copyright 2010 Please consult the authors. Notice ...

Beech_King_Air_B200  

RV-­‐7  

MC-­‐10  Cri  Cri  

Super_Zodiac_CH601_HDS  

Grob  G102    As5r  CS-­‐Glider  

Cessna  172  

Grumman    G73  Mallard  

Bombardier    Q400-­‐Dash8  

Embraer  ERJ-­‐145ER  

Beech  Beechjet  400A  

Honda  HA-­‐420  HondaJet  

Boeing  C17A  

Boeing  737-­‐700  

FA-­‐18E_Hornet  

Sparrow  

Page 36: c Copyright 2010 Please consult the authors. Notice ...

   Summary  –  Type  Categories  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Type Category

Boundary conditions Example UAS

1 KEmax < 42 J Black Widow, Hornet 2 42 J ≤ KEmax < 1,356 J Pointer, Raven

3 1,356 J ≤ KEmax < 13,560 J ScanEagle, Aerosonde Mk4

4 13,560 J ≤ KEmax Iarea < 347 m2 Shadow 600

5 347 m2 ≤ Iarea Heron 1, Taranis, Global Hawk

Page 37: c Copyright 2010 Please consult the authors. Notice ...

•  Type  categories  are  defined  by:  – Threshold  levels  of  harm  to  individuals  – Applica5on  of  a  clustering  algorithm  using  measures  of  the  harm  to  groups  of  people  

•  Approach  iden5fied  five  type  categories  of  UAS  – Limita5ons  in  the  models  used  – Results  would  only  provide  the  basis  for  discussion  

•  Commercial,  poli5cal,  technological,  social  and  other  influencing  factors  

Discussion  –  Type  Categories  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 38: c Copyright 2010 Please consult the authors. Notice ...

•  Paper  covered:  – Defini5on  of  airworthiness  regulatory  structure  – Defini5on  of  UAS  type  categories  

•  Approach  – Risk  based  – Traceable  to  the  equivalent  level  of  safety  objec5ve  

– Systema5c  – Flexible  

Summary  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 39: c Copyright 2010 Please consult the authors. Notice ...

•  Specifying  the  opera5onal  areas  •  Quan5fying  the  equivalent  level  of  safety  objec5ve  and  mapping  to  cer5fica5on  categories  

•  Regulatory  impact  analysis  •  Extension  to  airspace  integra5on  regula5ons  

Future  Work  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 40: c Copyright 2010 Please consult the authors. Notice ...

   [1]  Clothier,  R.A.,  Palmer,  J.L.,  Walker,  R.A.,  Fulton,  N.L.  (2010)  “Defini?on  of  an  Airworthiness  Cer?fica?on  Framework  for  Civil  Unmanned  AircraD  Systems”  submiyed  to  Safety  Science.  

[2]  T.  McGeer  and  J.  Vagners.  Wide-­‐scale  use  of  long-­‐range  miniature  Aerosondes  over  the  world's  oceans.  Insitu  Group,  Bingen,  WA,  USA,  1999  

 

References/Reading  

Copyright  ©  2010  R.  Clothier  www.arcaa.aero    

Page 41: c Copyright 2010 Please consult the authors. Notice ...