Top Banner
CARBON NANOTUBE BASED ORGANIC SOLAR CELLS Arun Tej M. PhD Student EE Dept. and SCDT
26

C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Dec 23, 2015

Download

Documents

Benedict Melton
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

CARBON NANOTUBE BASED ORGANIC SOLAR CELLS

Arun Tej M.

PhD Student

EE Dept. and SCDT

Page 2: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

• Carbon Nanotubes• Properties Useful for Solar Cells• Efficiency Limiting Factors• Nanotubes in Organic Solar Cells• Results and Future Challenges

2

Aru

n T

ej M

, RE

AC

H - 2

00

8

Outline

Page 3: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

• S. Iijima - MWNT (1990), SWNT (1993)• Rolled graphene sheet with end caps• Large aspect ratios• Unique properties• Finds applications in

• Conductive plastics and adhesives• Energy storage• Efficient heat conduits• Structural composites• Biomedical devices

• Numerous electronic applications www.applied-nanotech.com

3

Aru

n T

ej M

, RE

AC

H - 2

00

8

Carbon Nanotubes

Page 4: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

4

Nanotube Field Emission Display

W.B. Choi, Samsung, APL, 1999

Page 5: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Thomas Rueckes, Nantero, 2000 5

Aru

n T

ej M

, RE

AC

H - 2

00

8

Nanotube Random Access Memory

Type of Memory

Most Important Feature

Applications

DRAM High Density Computer Operating Memory

SRAMFlash Memory

High SpeedNon-volatility

Cell Phones,Computer CachesPDAs, Cameras

MRAM High DensityHigh SpeedNon-volatility

All Uses

NRAM High DensityHigh SpeedNon-volatility

All Uses

Page 6: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

6

Nanotube Liquid Flow Sensor

A.K.Sood, IISc Bangalore, Science, 2003

Page 7: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

7

Aru

n T

ej M

, RE

AC

H - 2

00

8

5 Stage Ring Oscillator on one SWNTZ.Chen, IBM, 2006

Nanotube Integrated Circuit

Page 8: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

8

Nanotube Based Inorganic Solar Cell

W.J.Ready, Georgia Tech, JOM, 2007

Page 9: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

• High carrier mobilities (~1,20,000 cm2 V-1 s-1)

• Large surface areas (~1600 m2 g-1)

• Absorption in the IR range (Eg: 0.48 to 1.37 eV)

• Conductance - Independent of the channel length• Enormous current carrying capability – 109 A cm-2

• Semiconducting CNTs – Ideal solar cells• Mechanical strength & Chemical stability

9

Aru

n T

ej M

, RE

AC

H - 2

00

8

Nanotube Properties Useful for Solar Cells

Page 10: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Split-Gate device, Energy band diagram and I-V characteristics

10

Aru

n T

ej M

, RE

AC

H - 2

00

8

Page 11: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Combine the advantages of Organics and SWNTs 11

Aru

n T

ej M

, RE

AC

H - 2

00

8

Efficiency Improvement with SWNTs

Page 12: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

12

• Exciton dissociation sites• As electron acceptors in bulk heterojunction solar cells • Carrier transport• Thin transparent films of m-SWNTs as electrodes

Chhowalla et al, APL, 2005Wu et al, Science, 2004

Nanotubes in Organic Solar Cells

Page 13: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

13

Results (1)

Photoluminescence Quenching Higher Efficiency

Arun Tej M, S.S.K.Iyer, and B.Mazhari, IEEE INEC, 2008, Shanghai

Page 14: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

14

Results (2)

0 1 2 3 4 5 6 70

5

10

15

20

25

30

35

40

JP3HT

JSWNT (1wt%)

Cur

rent

Den

sity

(m

A/c

m2

)Forward Voltage

Negative resistanceregion showing tunneling behavior

Trap filling behaviour Tunneling behaviour

Arun Tej M, S.S.K.Iyer, and B.Mazhari, IEEE PVSC, 2008, San Diego

Page 15: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

15

0 20 40 60 80 1000.2

0.4

0.6

0.8

1.0

1.2

P3HT+SWNT (1wt%)

P3OT+SWNT (1wt%)

Op

en C

ircu

it V

olt

age

(v)

Light Intensity (mW cm-2)

High Voc of 1.15V at 1 Sun

High Open Circuit Voltages with Bulk Heterojunction Devices

Results (3)

Our WorkTo be published

Page 16: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

• Synthesis of stable organic compounds• Separate semiconducting and metallic SWCNTs• Aligned CNTs inside the semiconducting polymers

give improved charge transport

e-

e-

e-

h+

h+

16

Aru

n T

ej M

, RE

AC

H - 2

00

8e-

h+

Future REACH (1)

Page 17: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

• Add nanoparticles, quantum dots, fullerenes etc to the side walls of SWNTs

17

Aru

n T

ej M

, RE

AC

H - 2

00

8

e-

h+

h+

e-e-

h+

e-

h+

e-

Future REACH (2)

Page 18: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

“A Solar Cell with Improved Light Absorption Capacity”

S. Sundar Kumar Iyer and Arun Tej M.Patent Appln. No. 933/DEL/2006

Dt: 31st March, 2006

New device structures

18

Aru

n T

ej M

, RE

AC

H - 2

00

8

Future REACH (3)

Page 19: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Aru

n T

ej M

, RE

AC

H - 2

00

8

19

Acknowledgements

• Faculty, Staff and Students, SCDT• Prof. Ashutosh Sharma, Chemical Engineering

Page 20: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

20

Aru

n T

ej M

, RE

AC

H - 2

00

8

Page 21: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Schematic and energy diagram of a typical polymer solar cell and its operation

e-

h+

Anode Cathode Donor Acceptor

Exciton formation

Exciton diffusionExciton dissociationCarrier transport

Charge collection

21

Aru

n T

ej M

, RE

AC

H - 2

00

8

Organic Solar Cell

Page 22: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

22

Aru

n T

ej M

, RE

AC

H - 2

00

8

Page 23: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Conjugated polymers Conduction due to

sp2– hybridised carbon atoms

and (pz-pz)bonds electrons are

delocalised in nature giving high electronic polarisability

High absorption in the UV-Visible range of the solar spectrum

H.Hoppe and N.S. Sariciftci, 2004

23

Aru

n T

ej M

, RE

AC

H - 2

00

8

Page 24: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

METALLIC SWNTSMETALLIC SWNTS

24

Aru

n T

ej M

, RE

AC

H - 2

00

8

Page 25: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Conductance is independent of the channel length. 25

Aru

n T

ej M

, RE

AC

H - 2

00

8

Page 26: C ARBON N ANOTUBE B ASED O RGANIC S OLAR C ELLS Arun Tej M. PhD Student EE Dept. and SCDT.

Conductance through a barrier with transmission probability T.

Landauer Formula:

With N parallel 1D channels (subbands):

m-SWNTs: Only two subbands cross EF (N=2)

Source of R: Mismatch in the number of conduction channels in the SWNT and the macroscopic metal leads.

Th

eG

22

)(2

)(2

Fn

nF ETh

eEG

kR

Sh

e

h

eG

5.6~

1554

2*2 22

26

Aru

n T

ej M

, RE

AC

H - 2

00

8