Top Banner
(c) 2014 joan s kessler distancemath.com 1 Integration By Parts sin( ) x x dx 2 x xe dx ln x dx cos x e x dx
25

(c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

Dec 27, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

11

Integration By Parts

sin( )x x dx

2 xx e dxln x dx

cos xe x dx

Page 2: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

2

Suppose we want to integrate this function.

Up until now we have no way of doing this.

x, and sin(x) seem totally unrelated.

If u(x) is a function and v(x) is another function we seem to have

It almost seems like the reverse of the product rule. Let’s explore the product rule.

sin( )x x dx

u v dx

Page 3: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

3

Integration By Parts

Start with the product rule:

d dv duuv u v

dx dx dx

d uv u dv v du

u dv d uv v du

u dv d uv v du

u dv d uv v du

u dv uv v du

This is the Integration by Parts formula.

Page 4: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

4

u dv uv v du

The Integration by Parts formula is a “product The Integration by Parts formula is a “product rule” for integration.rule” for integration.

u differentiates to zero (usually).

dv is easy to integrate.

Choose u in this order: LIPET

Logs, Inverse trig, Polynomial, Exponential, Trig

Page 5: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

5

Example 1:

cos x x dxpolynomial factor u x

du dx

cos dv x dx

sinv x

u dv uv v du u dv uv v du LIPETLIPET

sin cosx x x C

u v v du

sin sin x x x dx

Page 6: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

6

Example 2:

ln x dxlogarithmic factor lnu x

1du dx

x

dv dx

v x

u dv uv v du LIPET

lnx x x C

1ln x x x dx

x

u v v du

ln x dx

Page 7: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

7

This is still a product, so we need to use integration by parts againagain.

Example 3:2 xx e dx

u dv uv v du LIPET

2u x xdv e dx

2 du x dx xv e u v v du

2 2 x xx e e x dx 2 2 x xx e xe dx u x xdv e dx

du dx xv e 2 2x x xx e xe e dx

2 2 2x x xx e xe e C 2 xx e dx

Page 8: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

8

Example 4:

cos xe x dxLIPET

xu e sin dv x dx xdu e dx cosv x

u v v du sin sinx xe x x e dx

sin cos cos x x xe x e x x e dx

xu e cos dv x dx xdu e dx sinv x

sin cos cos x x xe x e x e x dx

This is the expression we started with!

uv v du

Page 9: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

9

Example 5:

cos xe x dxLIPET

u v v du

cos xe x dx 2 cos sin cosx x xe x dx e x e x

sin coscos

2

x xx e x e x

e x dx C

sin sinx xe x x e dx

xu e sin dv x dxxdu e dx cosv x

xu e cos dv x dx xdu e dx sinv x

sin cos cos x x xe x e x e x dx

sin cos cos x x xe x e x x e dx

Page 10: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

10

Example 5 :

cos xe x dx u v v du

This is called “solving for the unknown integral.”

It works when both factors integrate and differentiate forever.

cos xe x dx 2 cos sin cosx x xe x dx e x e x

sin coscos

2

x xx e x e x

e x dx C

sin sinx xe x x e dx

sin cos cos x x xe x e x e x dx

sin cos cos x x xe x e x x e dx

Page 11: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

11

More integration by Parts Ex 6.More integration by Parts Ex 6.

u v v du

2

3arcsin 3

1- 9x x x dx

x

2 -1/2arcsin 3 3 (1 9 ) x x x x dx

arcsin 3x dx Let u = arcsin3x dv = dx

v = x2

3

1 9du dx

x

2 1/ 21arcsin 3 (1 9 )

3x x x C

-18 -118

Page 12: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

12

More integration by Parts Ex. 7More integration by Parts Ex. 7

u v v du

22 2

1 1(2x)

2( 5) 2( 5)x dx

x x

22

2

1ln( 5)

2( 5) 2

xx C

x

3

2 2( 5)

xdx

x Let u = x2 du = 2x dx

2 2( 5)

xdv dx

x

2

1

2( 5)v

x

Formdu

u

Page 13: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

13

A Shortcut: Tabular Integration

Tabular integration works for integrals of the form:

f x g x dxwhere:

Differentiates to zero in several steps.

Integrates repeatedly.

u dv

Page 14: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

14

2 xx e dx de .& v rif x integ & ralsg x

2x

2x

20

xexe

xexe

2 xx e dx 2 xx e 2 xxe 2 xe C

Compare this with the same problem done the other way:

Alternate signs

Page 15: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

15

Same Example :2 xx e dx

u dv uv v du LIPET

2u x xdv e dx

2 du x dx xv e u v v du

2 2 x xx e e x dx 2 2 x xx e xe dx u x xdv e dx

du dx xv e 2 2x x xx e xe e dx

2 2 2x x xx e xe e C This is easier and quicker to do with tabular integration!

Page 16: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

16

2 2 2x x xx e xe e C

2( 2 2)xe x x C

Page 17: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

17

3 sin x x dx

3x

23x

6x

6

sin x

cos x

sin xcos x

0

sin x

3 cosx x 2 3 sinx x 6 cosx x 6sin x + C

de .& v rif x integ & ralsg x

Page 18: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

5 sinx dx5

4

3

2

sin

5 cos

20 sin

60 cos

120 sin

120 cos

0 sin

x x

x x

x x

x x

x x

x

x

5 5 4 3 2sin cos 5 sin 20 cos 60 sin 120 cos 120sinx dx x x x x x x x x x x x C

Page 19: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

19

5(3 2) xx e dx

3 2x

3

5xe5

5

xe

5

25

xe

0

5(3 2)

5

xx e 53

25

xe

5 53 7

5 25

x xxe eC + C

de .& v rif x integ & ralsg x

Page 20: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

20

5 53 7

5 25

x xxe eC

51 (15 7)

25xe x C

Page 21: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

21

Try

3 cos 2x xdx

3 2xx e dx

32 2( 2)x x dx

2 3 214 6 6 3

8xe x x x C

3 214 sin 2 6 cos 2 6 sin 2 3cos 2

8x x x x x x x C

5

222

( 2) 35 40 32315

x x x C

Page 22: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

22

3 2xx e dx3 2

2 2

2

2

2

13

21

641

681

016

x

x

x

x

x

x e

x e

x e

e

e

++

--

++

--

++

2 3 214 6 6 3

8xe x x x C

3 2 2 2 2 22 3 3 3

2 4 4 8

x x xxx x e xe x e

e C

Page 23: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

23

3 cos 2x xdx de .& v rif x integ & ralsg x

3 214 sin 2 6 cos 2 6 sin 2 3cos 2

8x x x x x x x C

3

2

cos 2

13 sin 2

21

6 cos 241

6 sin 281

0 cos 216

x x

x x

x x

x

x

3 2sin 2 3 cos 2 3 sin 2 3cos 2

2 4 4 8

x x x x x x xC ++

--

++

--

++

Page 24: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

(c) 2014 joan s kessler distancemath.com

32 2( 2)x x dx

5

222

( 2) 35 40 32315

x x x C

32 2

5

2

7

2

9

2

( 2)

22 ( 2)

5

42 ( 2)

35

80 ( 2)

315

x x

x x

x

x

++

--

++

--

Page 25: (c) 2014 joan s kessler distancemath.com 11 Integration By Parts.

Homework

Assignment

25