Top Banner
Vol. 16, No. 3/4 239 Electron Paramagnetic Resonance Investigations of the Cu 2+ ion in a Variety of Host Lattices - A Review R. M. Krishna and S. K. Gupta EPR Group, Materials Characterization Division, National Physical Laboratory, New Delhi - 110 012, INDIA Contents I. Introduction 239 II. Ground State of Cu 2+ Molecular Ion 240 III. Spin-Hamiltonian Analysis 240 IV. Spin-Hamiltonian and Bonding Parameters 241 V. Applications 242 A. Determination of Spin-Lattice Relaxation (Ti) of Host Ions 242 B. Bonding Parameters 242 C. Phase Transition Studies 243 VI. Appendix: Data Tabulation VII. Abbreviations Used VIII. Acknowledgments IX. References 243 243 243 243 I. Introduction The Cu 2+ ion with the 3d 9 configuration has been of particular interest because it represents a rela- tively simple one magnetic hole system, which can provide information regarding the electron wave- function in ligand fields of various symmetries. The electron paramagnetic reasonance (EPR) spectrum of this ion is the least complex among all other di- valent ions, because of the simple hyperfine struc- ture. The Cu 2+ ion has also been used as an im- purity probe in a variety of host lattices, since the fine structure study of Cu 2+ ion in undiluted copper Tutton salts by Bleaney et al. [46] and the obser- vation of hyperfine (hf) structure in magnetically dilute salts by Penrose [347]. The main empha- sis of the EPR studies of Cu 2+ in different host- lattices has been in the determination of site sym- metries and orientations, the study of phase transi- tions,bonding parameters and magnetic properties of the systems. Experimental results of EPR inves- tigations of Cu 2+ in single and polycrystals prior to 1988 have been reviewed earlier by Misra and Wong [293]. The extensive experimental work which has been published since then now needs compilation. The scope of this review article is concerned with the EPR experimental investigations of the cupric ion in single crystals, polycrystals as well as liquids that have appeared between 1985 and 1992. The literature survey itself is provided in the form of a table in the appendix. Every care has been taken to include all the references, and any omissions are either due to the non-availability of the article or an inadvertent oversight.
53

Bull. Magn. Reson., 16 (3-4) 239-291

Jan 11, 2017

Download

Documents

TrầnKiên
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 239

Electron Paramagnetic Resonance Investigations of theCu2+ ion in a Variety of Host Lattices - A Review

R. M. Krishna and S. K. Gupta

EPR Group, Materials Characterization Division,National Physical Laboratory, New Delhi - 110 012, INDIA

ContentsI. Introduction 239

II. Ground State of Cu2+ Molecular Ion 240

III. Spin-Hamiltonian Analysis 240

IV. Spin-Hamiltonian and Bonding Parameters 241

V. Applications 242A. Determination of Spin-Lattice Relaxation (Ti) of Host Ions 242B. Bonding Parameters 242C. Phase Transition Studies 243

VI. Appendix: Data Tabulation

VII. Abbreviations Used

VIII. Acknowledgments

IX. References

243

243

243

243

I. IntroductionThe Cu2+ ion with the 3d9 configuration has been

of particular interest because it represents a rela-tively simple one magnetic hole system, which canprovide information regarding the electron wave-function in ligand fields of various symmetries. Theelectron paramagnetic reasonance (EPR) spectrumof this ion is the least complex among all other di-valent ions, because of the simple hyperfine struc-ture. The Cu2+ ion has also been used as an im-purity probe in a variety of host lattices, since thefine structure study of Cu2+ ion in undiluted copperTutton salts by Bleaney et al. [46] and the obser-vation of hyperfine (hf) structure in magneticallydilute salts by Penrose [347]. The main empha-sis of the EPR studies of Cu2+ in different host-lattices has been in the determination of site sym-metries and orientations, the study of phase transi-

tions,bonding parameters and magnetic propertiesof the systems. Experimental results of EPR inves-tigations of Cu2+ in single and polycrystals prior to1988 have been reviewed earlier by Misra and Wong[293]. The extensive experimental work which hasbeen published since then now needs compilation.The scope of this review article is concerned withthe EPR experimental investigations of the cupricion in single crystals, polycrystals as well as liquidsthat have appeared between 1985 and 1992. Theliterature survey itself is provided in the form of atable in the appendix. Every care has been takento include all the references, and any omissions areeither due to the non-availability of the article or aninadvertent oversight.

Page 2: Bull. Magn. Reson., 16 (3-4) 239-291

240 Bulletin of Magnetic Resonance

II. Ground State of Cu2+ Molec-ular Ion

The electronic configuration of divalent copper(electron spin S = 1/2, nuclear spin I = 3/2 for eachof the 69.09% abundant 63Cu and the 30.91% abun-dant 65Cu isotope) is [Ar] 3d9. The ground state ofthis ion is the same as those of a d1 system havinga single unpaired electron. This 2D5/2 ground stateconfiguration can split further in different crystalfield environments. As shown in Figure 1, in an oc-tahedral crystal field the 2D state of this ion splitsinto two states, a doublet 2Eg and a triplet 2T2g,with 2Eg being the ground state . The separationbetween these two levels called 10Dq. When thesymmetry is tetragonal, the triplet splits into sin-glet (2B2g) and doublet (2Eg) levels for which thecorresponding atomic orbitals are dixy> and diyz>,while the 2Eg state splits into two non-degenerate2Big and 2Ajg levels with the respective atomic or-bitals dix2-y2> and di3Z2-r2> • The ordering of theselevels will depend upon whether the symmetry cor-responds to that of a tetragonal compression or anelongation. A further lowering of symmetry fromtetragonal to orthorhombic will lift the remainingdegeneracy and perhaps mix the wave-functions cor-responding to the states. A detailed discussion ofthe ground state wave-function has been presentedby Misra and Wong [293] in their earlier review ar-ticle, and we will not repeat this material here.

III. Spin-Hamiltonian AnalysisEPR spectra for a paramagnetic ion are tra-

ditionally interpreted using the conventional spin-Hamiltonian (SH), first introduced by Abragam andpryce [2]. The general description of each Hamilto-nian term is given by Bowers and Owens [54], and byBleaney and Abragam [47]. The SH which describesthe EPR of Cu2+ ion [47] is

H = / 3 e H - g S + S - A - I + I - Q - I-gNj3N-H-I — • (1)

where f3e is the Bohr magneton, S = 1/2 and I = 3/2for Cu2+. The first term represents the electronicZeeman interaction, the second term is the interac-tion of the unpaired spin with the nuclear spin, the

third term is the energy of interaction of the nuclear-quadruple moment with the electric field gradient,and the last term represents the nuclear - Zeemaninteraction between the external magnetic field andthe nuclear spin. Usually the last two terms due tonuclear Zeeman and quadruple interactions are ne-glected as their contribution is small for the Cu2+

ion. For orthorhombic symmetry the SH of Cu2+ inthe principal axis system becomes [47]

H = /3e(gzzHzSz + gxxHxSx + gyyHySy)+ A1ZS2 + BIXSX + ClySy —•+ (2)

where A = Azz; B = A C = Ayy and otherterms have their usual meaning. For axial sym-metry (gx = gy = g±; Aj. = Ax = Ay; gz = g||; andAz = AM) the SH then becomes

H =(3)

Both the g- and A-tensors are assumed to be coaxial,thus permitting the use of the perturbation resultsto get the magnetic field resonance values as givenby [241,473],

2][A|gf/K2g2= Ho - Km - [Aigi/4Hog2][A|gf/Kl)-m2)-m2/2Ho[A2g2

(4)

where m = 3/2,1/2, -1 /2 and -3 /2

Ho = hi//gA,

gfg2 - gfcos20

and '#' is the angle between the magnetic field andz- axis of the g and A tensors. Here all couplingconstants are expressed in Gauss and ' i / is the mi-crowave resonance frequency in Hertz.

EPR spectra of Cu2+ which do not depend onthe orientation of the magnetic field have been ob-served in solutions, powders, glasses and sometimesin single crystals also [352,43,3]. The lack of fielddependence arises in these cases because of the ran-dom orientations of the molecules or complexes.

Page 3: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 241

-T2g V •lyz>

4Dq"B29

Ixy-

10 Dq

-6Dq

2 2I3z-r

Freeion

Octahedralcoordination

Tetragonalelongation

Rhombicdistortion

Figure 1: Schematic energy level diagram of Cu2+ in octahedral, tetragonal and rhombic crystal fields.

There exists two limiting cases of field independentspectra for randomly oriented spin systems. Pow-ders, glasses with stationary random orientationsand viscous solutions having slowly tumbling mole-cules are at the one extreme and produce lineshapeswhich are powder patterns characteristic of the ran-domly orinted spins. Systems with rapidly tumblingmolecules such as those in non-viscous solutions orin the gaseous phase are at the other limit, withanisotropic SH terms that are averaged out to zeroby the rapid tumbling motion. The SH for such aspectrum reduces to [118,277]

orAo = (Ax Az)/3 (7)

H = /3egoH • S + AOI • S (5)

Here g0 and Ao are the isotropic g factor andhyperfine coupling constants. The isotropic andanisotropic g and A parameters are related by[277,220]

go = (g|| + 2g JJ/3 or g0 = (gx + gy + gz)/3 — (6)

Ao =

If the tumbling motion of the complex molecules isslow, then EPR spectrum for a bulk sample resultsfrom the superposition of spectra of molecules ran-domly oriented in all possible directions, and theresult is a broad powder like spectrum.

IV. Spin-Hamiltonian and Bond-ing Parameters

The spin-Hamiltonian parameters (SHP) are usedto extract information concerning the molecular ionand its surrounding environment in the host. SHPare usually evaluated from resonant field measure-ments at different orientations of a single crystal.The EPR spectra in lower symmetry systems showextrema along three mutually perpendicular princi-pal directions,the z, x and y-axes. The z- axis is de-fined as the direction of maximum spread, while thex-axis is the direction of minimum spread. From theresonant field measurements of allowed transitions(AMs = ±1, Ami = 0) along z, x and y-axes, onecan evaluate SHP using perturbation expressions

Page 4: Bull. Magn. Reson., 16 (3-4) 239-291

242 Bulletin of Magnetic Resonance

(for details see section (III)). If the SH has dominantfine structure terms, a perturbation treatment leadsto systematic deviation from the true eigenvaluesand hence from the observed spectra. The evalua-tion of the parameters in this case can be performedby diagonalizing the entire spin-Hamiltonian Matrix(SHM). Generally the least square fitting (LSF) pro-cedure employing diagonalization of a SHM is usedto evaluate the SHP. Misra [294-299] has revieweda number of techniques dealing with the LSF eval-uation of SHP, which can be readily applied to theCu2+ ion. On the other hand, from the values ofthe SHP and the optical absorption data one canget information about the interaction of the centralmolecular ion Cu2+ with its chemical environment.

The Molecular Orbital (MO) approach [268,332,254], which is more sophisticated treatment, hasbeen applied to the bonding of the divalent copperion. A large number of bonding parameters werereported in earlier papers [383,233,255]. Since dif-ferent authors make use of different expressions, thedirect comparison of MO parameters becomes verydifficult. Hence, no attempt has been made here toinclude these parameters in the experimental datatabulations found in the appendix. Some expres-sions involving MO and SH parameters are given inthe next section.

V. Applications

A. Determination of Spin-Lattice Relax-ation (Ti) of Host Ions

Spin-lattice relaxation (SLR) results from en-ergy transfer from the spin system to the lattice.The EPR technique has been used widely to studySLR. The spin-echo technique which can be used tomeasure SLR directly is limited to very low temper-ature determinations because of the relatively shortCu2+ spin-lattice relaxation times (SLRT) at hightemperatures. The SLRT of host ions is also veryshort (particularly above 77K), making it difficult tomeasure directly, but it can be estimated from theobserved linewidth (LW). The observation of EPRis often not possible in paramagnetic hosts becauseof the broadening of the EPR lines by impurity in-teractions. If the host SLR narrowing is effective,sharp line EPR spectra of impurity ions can becomeobservable [330,78,389,300]. In such cases the impu-

rity ion linewidth (AH) can be related to the hostSLRT (Ti) as follows [301,458]

Tx = (3/20) * (h/gh/?e * (8)

Here H2d = 5.1 (gh/?en)2Sh(Sh + 1), gh is the g-factor

of the host ion, Sh is the spin of the host ion, nis the number of host spins per cm3 which can becalculated from crystallographic data, and AH isthe EPR linewidth of the impurity ion. From theobserved AH of the impurity ion, one can use thisexpression to estimate the host SLRT. These studiescan make it possible to estimate the extremely fastSLRT at relatively higher temperatures.

B. Bonding Parameters

The MO parameters and electronic energy lev-els can be related to the g and A tensors as fol-lows [268,332,254] (where small overlap terms areneglected).

g2 = 2.0023 - [8Ao/AE(2Blg - 2B2g)]{a2/?2 - £09)} — (9)

gz = 2.0023 - 12f fif

(g,|-2.0023)+3/7(gx - 2.0023) ± 0.04

(10)

(11)

where p = Aoa/?i/AE(2Blg -> 2B2g), a' = (1 - a2)^-I- aS, a2cu> P2, 0\ are the MO bonding coefficients,P (tcu/?e/?N < r~3 >) is the dipolar coupling term,Ao(= —828cm"1) is the spin-orbit coupling con-stant, AE(2B\g —>2 i?2g) is the energy separationbetween the Big ground state and the B2g exciteddoublet. The parameter a2cu denotes the in-planecr-bonding coefficient, /3,2 is the in-plane 7r-bondingcoefficient and 01 is the out-of-plane 7r-bonding co-efficient. The value of a2cu indicates the covalencyof the (T-bond between copper ion and its ligands,and it has a value of 1 if the bond is totally ionic; 0.5if it is totally covalent. The value of f3\2 is affectedby the delocalization of the electron on the ligands,and is expected to decrease as the a2cu value in-creases. The values of a2cu of copper complexestypically vary from 0.80 to 0.95 [268].

Page 5: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 243

C. Phase Transition Studies

The Cu2+ probe has been widely used to studyphase transitions (PT) in a large number of hostlattices [280,452,302,378,515]. The use of impurityions in studying PT has been discussed by Muller[318] and by Owens [338]. The effects of PT on theEPR spectra are (1) a change in" the angular depen-dence of the spectra, (2) anomalous variations of LWand line shape near the PT temperature becauseLW's are sensitive to the fluctuations of the near-est neighbors, (3) observation of forbidden hf tran-sitions: the appearance of forbidden hf transitionsalong a principal axis suggests either a lowering ofthe symmetry or a tilt of its principal axes both ofwhich may be due to the structural phase transition,and (4) changes in the SLRT of the impurity ion[300]. PT can be identified very easily from discon-tinuities in the LW parameters. The LW tempera-ture dependence has been successfully used to iden-tify incommensurate co-operative Jahn-Teller (JT)PT's in R2PbCu(NO2)6, (R = K,Rb,Tl) compounds(149,493,335,373). Copper ions have also been usedto study the PT's and molecular ordering in liquidcrystals [98].

VI. Appendix: Data Tabulation

The survey of the literature between 1985 and1992 is given in tabular form in the Appendix. Thetable contains the SHP of Cu2+ ions in liquids andsingle and polycrystals. Whenever g and A- parame-ters are isotropic, only one numerical value has beenlisted for each. The g- values are dimensionless.Hyperfine splitting parameters are given in units of10~4 cm"1 unless otherwise indicated. The follow-ing abbreviations have been used in the appendix aswell as in the text. The comments column summa-rizes the highlights of the investigation presented inthe table.

VII. Abbreviations Used

absor., absorption; CaL, calculated; coeff., co-efficients; Const., constant; constd., constructed;depend., depending; diff., different; dir., direction;EPR, electron paramagnetic resonance; ESR, elec-tron spin resonance; estm., estimated; exptl., ex-perimental; GS, ground state; GSWF, ground state

wave-function; hf., hyper fine; hfs., hyperfine struc-ture; interact., interaction; JT, Jahn-Teller; JTE,Jahn-Teller effect; LNT, liquid nitrogen tempera-ture; LS, line shape; LSF, least square fitting; LT,low temperature; LW, linewidth; magn., magnetic;MO, molecular orbital; NMR, nuclear magnetic res-onance; obsd., observed; optl., optical; PT, phasetransition; reptd., reported; RT, room tempera-ture; SH, spin-Hamiltonian; shf., superhyperfine;SHM,spin-Hamiltonian matrix; SHP, spin- Hamil-tonian parameters; SLR, spin lattice relaxation;SLRT, spin lattice relaxation time; spec, spec-tra; sub., substitution; supercond., superconductor;temp., temperature; WF, wave-function; ZFR, zero-field resonance.

VIII. Acknowledgments

The authors are extremely grateful to Dr. Kris-han Lai, Head, Materials Characterization Division,National Physical Laboratory; Prof. S.V.J. Lak-shman, Formerly Vice-Chancellor, S.V.University,Tirupati; Prof. J. Lakshmana Rao, Department ofPhysics, S.V. University, Tirupati; Prof. V.P. Seth,Department of Physics, M.D. University, Rohtakand Dr. Prem Chand, Department of Physics, In-dian Institute of Technology, Kanpur for their con-stant encouragement and suggestions in preparingthe manuscript.

One of the authors (RMK) is thankful to theCouncil of Scientific and Industrial Research (CSIR)for Scientist fellowship (No. B8552). Also RMKwish to thank his wife, Madhavi, for the variousways in which she assisted in the preparation of themanuscript.

IX. References1P. Abbas, P. G. Marta, W.K. Subczynski and

W.E. Antholine, J. Phys. Chem. 94, 451 (1990).2 A. Abragam and M.H.L. Pryce, Proc. Roy. Soc.

A 205, 135 (1951).3I.S. Ahuja and S. Tripathi, Spectrochim Ada A

48, 759 (1992).4I.S. Ahuja and S. Tripathi, Spectrochim. Chim.

Ada. Pt. A 47, 637 (1991).5I.S Ahuja and S.Tripathi, Indian J. Chem. A

30, 1060 (1991).

Page 6: Bull. Magn. Reson., 16 (3-4) 239-291

244 Bulletin of Magnetic Resonance

6N. Akihiko and H. Kazumi, Jpn. J. Appl. Phys.PL 2 29, L46 (1990).

7I. Aksenov and S. Katsuaki, Jpn. J. Appl.Phys. Pt 1 31, 2352 (1992).

8N.E. Alekseevskii,LA. Garifullin, N.N. GarifYanov, B.I. Kochelaev,A.V. Mitin, V.I. Nizhanovskii, L.R. Tagirov andE.P. Khlybov, JETP Lett. (USA) 46, 367 (1987).

9N.E. Alekseevskii, LA. Garifullin,N.N. GarifYanov B.I. Kochelaev, A.V. Mitin, V.I.Nizhanovskii, L.R. Tagirov and E.P. Khlybov, Sov.Phys. JETP (USA) 67, 805 (1988).

10N.E. Alekseevskii, LA. Garifullin, N.N.GarifYanov. B.I. Kochelaev, V.I. Nizhanovskii,L.R. Tagirov and E.P. Khlybov, Sov. Phys. SolidState (USA) 30, 909 (1988).

UN.E. Alekseevskii, A.V. Mitin,V.I. Nizhankvskii.I.A. Garifullin, N.N. GarifYanov,G.G. Khaliullin, E.P. Khylbov, B.I. Kochelaev andL.R. Tagirov, / . Low Temp. Phys. 77, 87 (1989).

12G.A. Aliev, A.V. Ivanov and M.L. Rachkovskii,Dokl. Akad. Nauk. SSSR (Phys. Chem.) 318, 606(1991).

13A.A. Alybakov, V.A. Gubanova, K. Kudabaevand K. Sharsheev, Phys. Stat. Solidi (B) 146, K135(1988).

14G. Amoretti,E. Buluggiu, A. Vera, G.Calestani and F.C. Matacotta, Z. Phys. B: Con-densed Matter (Wg) 72, 17 (1988).

15D. Andrea, G. Dante, P. Luca, B.A. Laure andB. L. Claude, Phys. Lett. 175, 589 (1990).

16Y. Anjaneyulu, V.G.K.M. Pisipati, N.V.S.Rao, R.Y. Swamy and R.P. Rao, Indian J. PureAppl. Phys. 23, 349 (1985).

17Y. Anjaneyulu, N.V.S. Rao, R. PrabhakaraRao, L.N.Murthy and V.G.K.M. Pisipati, Indian J.Pure Appl. Phys. 24, 256 (1986).

18Y. Anjaneyulu, V.G.K.M. Pisipati, N.V.S.Rao. L.N. Murthy and R. P. Rao, Indian J. PureAppl. Phys. 24, 355 (1986).

19Y. Anjaneyulu, N.V.S. Rao, R. P. Rao andV.G.K.M. Pisipati, Proc. Indian Acad. Sci. Chem.Sci. 97, 177 (1986).

20A. Antoine, A. Bennani, C. F. Aissi, G. Wro-bel, G. Michel and C.V. Jacques, J. Chem. Soc.Faraday Trans. 88, 615 (1992).

21A. Antonie, A. Bennani, C.F. Aissi, G. Micheland C.V. Jacques, Chem. Mater. 4, 977 (1992).

22A. K. Antoine, G. Michel, V. J. Charles, C.R.

Acad. Sci. Ser. 7/313, 169 (1991).23A.K. Antoine, B. Rafeh, A. C. Faustin and G.

Michel, Chem. Mater. 3, 557 (1991).2 4F. Apaydin and C. Kaptanoglu, Doga: Turk

Fiz. Derg. 14, 321 (1990).25J.A. Aramburu and M. Moreno, J. Chem.

Phys. 83, 6071 (1985).26A.R.Armstrong, R. Janes, K.K. Singh and P.P.

Edwards, Bull. Mater. Sci. 14, 641 (1991).27A.M. Artyushin, L.K/ Przheval'Skaya, G.P.

Epishina and V.A. Shvets, Zh. Fiz. Khim. 64,1060 (1990).

28C.B. Azzoni, E.R. Mognaschi and G. Siragusa,J. Phys. C19, 1443 (1986).

29D.S. Babu, G.S. Sastry, M.D. Sastry, Ag. I.Dalvi J. Phys. C 18, 6111 (1985).

30R.S. Bansal, V.P. Seth and S.K. Gupta, Radi-ation Effects and Defects In Solids 116, 267 (1991).

31R. Bartucci, E. Colavita, L. Sportelli, G.Balestrino and S. Barbanera, Phys. Rev. B 37,2313 (1988).

32J. Baranowski, F. Padula, C. Goldstein, G.Kokoszka and A.R. Siedle, J. Phys. Chem. 89,1976 (1985).

33R. Bechara, A. D'Huysser, C.F. Aissi, M. Guel-ton, J.P. Bonnelle and A. Abou-Kais, Chem. Mater.2, 522 (1990).

34S. Benakki and E. Christoffel, J. Mater. Res.2, 765 (1987).

35A. Bencini, C.F. Antonio, Z. Claudia and Z.Paolo, Inorg. Chem. 26, 1445 (1987).

36A. Bencini, D. Gatteschi, J. Reedijk and C.Zanchini, Inorg. Chem. 24, 207 (1985).

37A. Bencini, D. Gatteschi, C. Zanchini, J.C.Haasnoot, R. Prins and J. Reedijk, Inorg. Chem.24, 2812 (1985).

38A. Bencini and D. Gatteschi, Mol. Phys. 54,969 (1985).

39K. Bente and D. Siebert, Phys. Stat. Solidi(A) 106, K57 (1988).

40K. Bente, E. Schwarzmann and D. Sibert,Phys. Stat. Solidi (A) 111, K93 (1989).

41N. Bontemps, P.Y. Bertin, D. Davidov, P.Monod, C. Lacour, R. Even and V.V. Moshchalkov,Physica C (Amsterdam) 185-189, 1809 (1991).

42G.I. Bersuker, V.N. Kiselev, A.N. Men andB.S. Tsukerblat, Sov. Phys. - Solid State (USA)28, 1771 (1986).

Page 7: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 245

43M.K. Bhide, M.D. Sastry and U.R.K. Rao,Phase Transitions 38, 237 (1992).

44G. R. Bhirud and T. S. Srivastava, Inorg.Chem. Ada. 179, 125 (1991).

45T.J. Bhoopathy, P. Feridoun and S. Mohan,Bull. Soc. Chim. Belg. 96, 487 (1987).

46 B. Bleaney, R.P. Penrose and B.J. Plumption,Proc. Roy. Soc. A 198, 406 (1949).

4 7B. Bleaney and A. Abragam, Electron Para-magnetic Resonance Of Transition Ions, ClarendonPress, Oxford (1970).

48S.V. Bogachev, G.A. Emel'Chenko, V.A. Ll'In,S.G. Konnilov, A.O. Kosogov, O.V. Kosogov,V.A.Tatarchenko and V.I. Tret'Yakov, JETP Lett.(USA) 47, 203 (1988).

49L.D. Bogomolova,E.G. Grechko, V.A. Zhachkin, N.A. Krasil'Nikovaand V.V. Sahkarov, J. Non-Cryst. Solids 86, 293(1986).

50L.D. Bogomolova, E.G. Grechko, V.A.Zhachkin, N.A. Krasil'Nikova, V.V. Sakharov andT.V. Semenova, Fiz. Khim. Stelka (Russ.) 13, 202(1987).

51R. P. Bonomo, A. J. D. Bilio and R. Francesco,Chem. Phys. Lett. 151, 208 (1988).

52R. P. Bonomo, A. J. D. Bilio, and A. Giuseppe,Inorg. Chem. Ada. 161, 125 (1989).

53R. P. Bonomo, R. Enrico, B. Mario and M.Antonio, Inorg. Chem. Ada. 186, 21 (1991).

54K.D. Bowers and J. Owens, Rep. Progr. Phys.18, 304 (1955).

55G.J. Bowden, P.R. Elliston, K.T. Wan, S.X.Dou, K.E. Easterling, A.J. Bourdillon, C.C. Sorrell,B.A. Cornell and F. Separovic, Aust. Phys. (Aus-tralia) 24, 164 (1987).

5 6O. Braddell, R.C. Barklie, D.H. Doff.N.H.J.Gangas and A. Mckimm, Z. Phys. Chem.(Munich) 151, 157 (1987).

57E. Buluggiu, J. Chem. Phys. 84, 1243 (1986).58I.P. Bykov, V.V. Laguta, M.D. Glinchuk, A.A.

Karmazin and P.P. Syrinkov, Sov. Phys. Solid-State(USA) 27, 1149 (1985).

59I.P. Bykov, V.V. Laguta, M.D. Glinchuk, A.A.Karmazin and P.P. Syrnikov, Fiz. Tverd. Tela. 27,1908 (1985).

60M. A. Carlos, N. O. Rangel, H. Kristopher andR.D. Willett, Inorg. Chem. 31, 1779 (1992).

61J.H. Castilho, P.T.Venegas, G.E. Barberis, C.Rettori, R.F. Jardim, S. Gama, D. Davidov and I.

Felner, Solid State Commun. 64, 1043 (1987).62M. Castillo, A. Criado, R. Guzman, J. J. Cri-

ado and B. Macias, Transition Metal. Chem. 12,225 (1987).

63O. Cesare, F. Lucio and A.V. Vishnyakov,Mendeleev Commun. 3, 88 (1992).

64A.Ceulemans, R. Debuyst, F. Dejehet, G.S.D.King, M. Vanhecke and L.G. Vanquickenborne,Bull. Magn. Reson. 11, 380 (1989).

6 5S. Chaklanobis, P. Chand and D.C. Khan, In-dian J. Cryog. 15, 115 (1990).

66P. Chand, G.C. Upreti, M. Umar and R.J.Singh, Phys. Stat. Solidi (B) 131, 357 (1985).

67P. Chand, G.C. Upreti, S.K. Misra and M.Bartkowski, J. Chem. Phys. 82, 5307 (1985).

68P. Chand and M. Umar, Phys. Stat. Solidi (B)127, 279 (1985).

69P. Chand and G.C. Upreti, Indian J. Phys.59a, 395 (1985).

70P. Chand and G.C. Upreti, Solid State Com-mun. 56, 225 (1985).

71M. N. Chary, S. R. Rao, B.A. Sastry and G.Ponticelli, Indian J. Phys. A 61, 563 (1987).

72P. Chaudhuri, M. Winter , P.C. D. V. Beatriz, B. Eckhard, T. Alfred, G. Stefan, F. Peter, N. B.Hard and W. Johannes, Inorg. Chem. 30, 2148(1991).

73A.I. Cheranev, S.P. Rozov, V.S. Mironov andL.I. Barsova, Sverkhprovodimost: Fiz. Khim. Tekh3, 1009 (1990).

74S.J. Clarke and A. Harrison, J. Phys.: Con-densed Matter 4, 6217 (1992).

75J. B. Cornelius, J. Mccracken, R.B. Clarkson,R.L. Belford and J. Peisach, J. Phys. Chem. 94,6977 (1990).

76O. Cozar and I. Ardelean, J. Non-Cryst. Solids92, 278 (1987).

77E. Crusson-Blouet, A. Aboukais, C.F. Aissiand M. Guelton, Chem. Mater. 4, 1129 (1992).

78J.M. Daniels and H.A. Farach, Can. J. Phys.38, 151 (1960).

79G. Daniella and Z. Katia, Chem. Phys. Lett.171, 167 (1990).

80J.G. Darab and R.K. Mac Crone, Phys. Chem.Glasses 32, 91 (1991).

81M. Das and A.K. Pal, Indian J. Cryog. 15, 547(1990).

82D.K. De, Phys. Rev. B 34, 4651 (1986).83D.K. De, J. Phys. C20, 5911 (1987).

Page 8: Bull. Magn. Reson., 16 (3-4) 239-291

246 Bulletin of Magnetic Resonance

84D.K. De, J. Phys. C 2 1 , 4481 (1988).8 5B. De Castro, C. F. D. Domingues and J.

Gomes, Polyhedron 10, 2541 (1991).8 6F. Dejehet, R. Debuyst, W.Y. Yi, J.P. Declercq

and B. Tinant, J. Chem. Phys. Phys-Chem. Biol.84, 107 (1987).

87C. Deyu, Y. Xu, Y. Chen, M. Zeng, C. Zhouand H. Sheng, Bopuxue Zazhi 8, 395 (1991).

8 8S. Dhanuskodi and N. Hariharan, Cryst. Latt.Def. Amorphous Mater. 11, 361 (1986).

89G. Didier, V. Daniel, D. Bruee and S. Linda,J. Mater. Chem. 1, 265 (1991).

90M. Dimitra, B. Maxime, A. J. Jacques and S.Jacques, J. Phys. Chem. 90, 1323 (1986).

91C. Dong, H. Shiying, S. Yunxia and T. W.Anbang, Gaodeng Xuexiao Huaxue Xuebao 11, 919(1990).

92L. L. Duggan and M.A. Hitchman, Aust. J.Chem. 39, 1321 (1986).

93R. Durny, J. Hautala, S. Ducharme, B. Lee,O.G. Symko, P.C. Taylor, D.J. Zheng and J.A. Xu,Phys. Rev. B 36, 2361 (1987).

94R. Edson and L. Lilian, Bull. Magn. Reson.8, 210 (1986).

95P. P. Edwards, R. Janes, R.S. Liu, P.T. Wuand C.T. Chang, Jpn. J. Appl. Phys. Pt. 2 29,L258 (1990).

96A. H. Ei- Sayed, S. Hedewy and A. Ei- Samahy,J. Phys. : Condensed Matter 1, 10515 (1989).

97E.A. Eivazov, A.F. Safarov, S.M. Atakishievand Ya. M Abasov, Phys. Stat. Solidi (A) 117,K147 (1990).

98 J. P. Fackler, J.A. Smith, J. Am. Chem. Soc.92, 5787 (1970).

" A . Fainstein, M. Tovar and Z. Fisk, J. Phys.:Condensed Matter 4, 1581 (1992).

100A. Fainstein, J. Phys.: Condens Matter 4,4989 (1992).

101H. A. Farach, E. Quagliata, T. Mzoughi, M.A. Mesa and C. P. Poole Jr., Phys. Rev. B 41, 2046(1990).

102A.M. Finkel'Shtein, V.E. Kataev, E.F.Kukovitskii and G.B. TeitePBaum, Ann. N.Y.Acad. Sci. 581, 1 (1990).

103A.M. Finkel'Stein, V.E. Kataev,E.F. Kukovitskii and G.B. Teitel'Baum, Physica C(Amsterdam) 168, 370 (1990).

104C. Friebel, Proc. Conf. Coord. Chem. 13th,371 (1991).

105P. Ganguly, K. Sheedhar, A.R. Raju, G. De-nazeau and P. Hazenmuller, J.Phys.: CondensedMatter 1, 213 (1989).

106L.A. Garifullin, N.N. Garifyanov, N.E. Alek-seevskii and S.F. Kim, Physica C (Amsterdam) 179,9 (1991).

107I.N. Geifman, I.V. Kozlova, V.I. Konovalov,T.V. Son'Ko and N.G. Furmanova, Kristallografiya35, 732 (1990).

108A.M. Gennaro, P.R. Levstein, C.A. Steren andR. Calvo, Chem. Phys. I l l , 431 (1987).

109A.M. Gennaro and R. Calvo, J. Phys.: Con-densed Matter 1, 7061 (1989).

110A.M. Gennaro and R. Calvo, J. Phys.: Con-densed Matter 2, 2873 (1990).

m J . Genossar, D. Shaltiel, V. Zerin, A.Grayevsky and B. Fisher, J. Phys.: Condensed Mat-ter, 1, 9471 (1989).

112 F. Gervais, P. Echegut, P. Simon, G. Hauretand H. Hrend, Phys. Lett. (Netherlands) 114a, 509(1986).

113S. Gharbage, J.-C. Bissey and Y. Servant,Phys. Stat. Solidi (B), 138, 655 (1986).

114M. Giordanom and D. Leporini, Mol. Phys.55, 509 (1985).

U5A.A. Gippius, V.V. Moshchalkov, Yu.A. Kok-sharov, A.N. Tikhono and B. Mill Physica C (Ams-terdam) 162-164, 253 (1989).

116A.A. Gippius, V.V. Moshchalkov, Yu. A.Koksharov, B.V. Bill, Ya. Zoubkova, S.V. Gudenkoand A.N. Mezhuev, Sverkhprovodimost: Fiz. Khim.Tekh. 4, 1705 (1991).

117G. Giugliarelli and S. Cannistraro, Chem.Phys. 98, 115 (1985).

118R.M. Golding, Applied Wave Mechanics, D.Van Nostrand Co. Ltd., London (1969).

1 1 9F. Golinska, A. Jesmanowicz, A. Lodzinskaand F. Rozploch, Ser. Fiz. (Univ. In AdamanMickiewicz Poznanio) 53, 333 (1985).

120A. B. Goodman and B. D. Mcphail, J. ChemSoc, Dalton Trans. 8, 1717 (1985).

121M.L. D. Goodgame, Y. Nishida and E.P.R.Winpenny, Bull. Chem. Soc. Jpn. 59, 344 (1986).

122N. Gopal and P.C. Srivastava, J. Inst. Chem.(India) 61, 79 (1989).

123J. Goslar and A.B. Wieckowski, J. Solid StateChem. 56, 101 (1985).

124J. Goslar, S.K. Hoffmann and M. Osman, Ser.Fiz. (Univ. In Adaman Mickiewicz Poznanio) 53,

Page 9: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 247

295 (1985).125J. Goslar and P.B. Sczaniecki, Ser. Fiz.

(Univ. In Adaman Mickiewicz Poznanio) 53, 301(1985).

126J. Goslar and A.B. Wieckowski, Seria FizykaNr (Poland) 53, 383 (1985).

127J. Goslar, P.B. Sczaniecki and M.M. Strawiak,Solid State Commun. 62, 169 (1987).

128 J. Goslar, P.B. Sczaniscki and M.M. Straw-iak, Solid State Commun. 62, 169 (1987).

129J. Goslar and S.K. Hoffmann, Fiz. Dielektr.Radiospektrosk 16, 137 (1990).

130J. Goslar, W. Hilczer, S.K. Hoffmann and M.Krupski, Phys. Stat. Solidi (B) 167, 291 (1991).

131S.P. Greiner, R.W. Kreilick and K.A. Kraft,J. Am. Chem. Soc. 114, 391 (1992).

132L.S. Grigoryan, Sov. Phys.- Solid State(USA) 29, 1622 (1987).

133V.S. Grunin, I.B. Patrina andM.V. Razumeenko, Electron Paramag. RezonansV Tvrdofaz. Soed, Sverdlovsk (Russ.) 3-6 (1989)From Ref. Zh. Khim. 1990.

134L. Guangming and G. Fuxi, Guisuanyan Xue-bao 18, 430 (1990).

135S. Gudrun, S. Reinhard, R. Friedrich and L.Rainer, Z. Chem. 30, 183 (1990).

1 3 6B. Guiru, S. Guoyin and C. Xu, Bopuxue Za-zhi 7, 69 (1990).

137S. Guoyin, C. Xu and G. Bai, Phys. Stat.Solidi (B) 158, K185 (1990).

138N. Guskos, Th. Leventouri, Ch. Trikalinosand M. Calamiotou, Phys. Stat. Solidi (B) 149,K157 (1988).

139N. Guskos, M. Calamiotov, S.M. Paraskevas,A. Koufoudakis, C. Mitros, H. Gamari-Seale, J.Kuriata, L. Sadlowski and M. Wabia, Phys. Stat.Solidi (B) 162, K101 (1990).

140N. Guskos,G.P. Triberis, W. Likodimos, A.Kondos, A. Koufoudakis, C. Mitros, H. Gamari-Seale and D. Niarchos, Phys. Stat. Solidi (B) 164,K105 (1991).

141N. Guskos, G.P. Triberis, M. Calamiotov, C.Trikalinos, A. Koufoudakis, C. Mitros, M. Gamari-Seale and D. Niarchos, Phys. Stat. Solidi (B) 163,K89 (1991).

142N. Guskos, G.P. Triberis, V. Lykodimos, W.Windsch, H. Metz, A. Koufoudakis, G.P. Mitros, H.Gamari-Seale and D. Niarchos, Phys. Stat. Solidi(B) 166, 233 (1991).

143N. Guskos, M. Calamiotou, C.A. Londos, V.Likodimos, A. Koufoudakis, C. Mitros, H. Gamari-Seale and D. Niarchos, J. Phys. Chem. Solids 53,211 (1992).

144N. Guskos, C.A. Londos, V. Lykodimos, M.Calamiotou, A. Koufoudakis, C. Mitros, H. GamariSeale and D. Niarchos, J. Phys.: Condensed Matter4, (1992) 4261

145G. P. Handreek and T. D. Smith, J. Chem.Soc. Faraday Trans. 87, 1025 (1991).

146S.P. Harish and J. Sobhanadri, Inorg. Chim.ActalO8, 147 (1985).

147S.P. Harish, Mol. Phys. (Gb) 54, 911 (1985).148M.A. Hefni, N.M. Mcconnell, F.J. Rietmeljer,

M.C.M. Gribnau and C.P. Keijzers, Mol. Phys. 57,1283 (1986).

149V. Heine and J.D.C. Mcconnell, Phys. Rev.Lett. 46, 1092 (1981); J. Phys. C 15, 2387 (1982);J. Phys. C17, 1199 (1984).

150T. Hidekazu, S. Ursula and D. S. Klaus, J.Phys. Soc. Jpn. 61, 1344 (1992).

151W. Hilczer and S,K. Hoffmann, Chem. Phys.Lett. (Netherlands) 144, 199 (1988).

152M. Hiromu, M. Fumio, H. Izumi, T. Shoji,Phys. Rev. B 43, 7871 (1991).

153M. Hiromu, M. Fumio, Y. Yasuji, S.K.H.Izumi, S. Yuh and T. Shoji, Supercond. Sci. Tech-nol. 4, S925 (1991).

154M. Hiromu, M. Fumio, Y. Yasuji, S. Kazushi,H. Izumi, S. Yuh and S. Tanaka, High Temp. Su-percond. Proc. Lt-19 Satell Conf. S295 1990 (Pub.1991).

155U. Hisashi, Nippon Kagaku Kaishi 2, 202(1990).

156M. Histed, J.A. Howard, H.A. Joly and B.Mile, Chem. Phys. Lett 17'4, 411 (1990).

157M. Histed, J.A. Howard, R. Jones and M.Tomietto, J. Phys. Chem. 96, 1141 (1992).

158M. A. Hitchman, R.G. Mcdonald and D.Reinen, Inorg. Chem. 25, 519 (1986).

159M.A. Hitchman and Kwan Linda, J. Chem.Soc. Dalton Trans. 2, 457 (1987)

160O. Hitoshi, Y. Nobuyasu, M. Mitsuhiro, A.Masaki and T. Mikio, J. Phys. Soc. Jpn. 61, 3370(1992).

161O. Hitoshi, Y. Kazuhiro, M. Takashi, N.Takao, M. Mitsuhiro, K. Yamada, E. Yasuo and H.Shoichi, J. Phys. Soc. Jpn. 61, 2921 (1992).

162S.K. Hoffmann, J. Goslar, L.S. Szczepaniak

Page 10: Bull. Magn. Reson., 16 (3-4) 239-291

248 Bulletin of Magnetic Resonance

and M. Osman, Ser. Fiz. (Univ. In Adaman Mick-iewicz Poznanio) 53, 307 (1985).

163S.K. Hoffmann, J. Goslar and L.S. Szczepa-niak, Ser. Fiz. (Univ. In Adaman MickiewiczaPoznanio) 54, 387 (1985).

164S.K. Hoffmann, K. T. Debra, E. H. William,P. Chaudhari and W. Karl, Inorg. Chem. 24, 1307(1985).

1 6 5S. K. Hoffmann, S. Maria and U. Irmina, J.Magn. Reson. 68, 490 (1986).

166S.K. Hoffmann, J. Goslar and L.S. Szczepa-niak, Phys. Stat. Solidi (B) 133, 321 (1986).

167S.K. Hoffmann, J. Goslar and O. Maher, Ada.Phys. Pol. A 70, 43 (1986).

168S.K. Hoffmann, J. Goslar and L.S. Szczepa-niak, Phys. Rev. 5 37, 7331 (1988).

169S.K. Hoffmann and M.A. Augustyniak, Ada.Phys. Pol. A 74, 651 (1988).

170S.K. Hoffmann, M. Szpakowska and I. Uruska,J. Magn. Reson. 68, 490 (1988).

m S . K . Hoffmann, Z. Zimpel, M. Augustyniak,W. Hilczer and M. Szpakowska, J. Magn. Reson.98, 1 (1992).

172J.A. Howard, B. Mile, J.R. Morton, K.F. Pre-ston and R. Sutclitte, Chem. Phys. Letts. 117, 115(1985).

173J.A. Howard, B. Mile, J.R. Morton and K.F.Preston, J. Phys. Chem. 90, 2027 (1986).

174J. S. Hwang and H. M. Sakhawat, TransitionMet. Chem. 12, 214 (1987).

175J. S. Hyde, A. Jesmanowicz, J. J. Ratke andW. E. Antholine, J. Magn. Reson. 96, 1 (1992).

176A. Igor, K. Yuki and S. Katsuaki, Jpn. J.Appl. Phys. Pt. 2 31, L1009 (1992).

177S. Ikuo, Nagoya Kogyo Daigaku Gakuho 41,109 (1989) (Pub. 1990).

178N. Iordanov, G. Gochev, O. Angelova and I.Matsichek, Polyhedron 9, 2597 (1990).

179M.B. Irene, L. Daniel, B. Eckhard, W. Heiner,J. Alfredx, R. F. J. Yves, Inorg. Chem. 30, 3180(1991).

1 8 0T. Ishii and I. Yamada J. Phys.: CondensedMatter 2, 5771 (1990).

181K. Ivan, Chem. Listy. 86, 342 (1992).182A.V. Ivanov, P.M. Solozhenkin, N.I. Kopitsya,

V.B. Klyashtornyi and F.A. Shvengler, Dokl. Akad.Nauk. SSSR (Phys. Chem.) 287, 1410 (1986).

183A.V.Ivanov, P.M.Solozhenkin, M. Z. Hamkar,V.B. Klyashtornyi and F.A. Shvengler, Koord.

Khim. 15, 1223 (1989).184A.V. Ivanov, P.M. Solozhenkin and V.B.

Klyashtornyi, Koord. Khim. 16, 1240 (1990).185A.V. Ivanov and P.M. Solazhenkin, Dokl.

Akad. Nauk SSSR 311, 392 (1990).186A.V. Ivanov, P.M. Solozhenkin and V.B.

Klyashtornyi, Dokl. Akad. Nauk. SSSR (Phys.Chem.) 319, 403 (1991).

187A.V. Ivanov, Koord. Khim. 17, 382 (1991).188A.V. Ivanov and V.B. Klyashtornyi, Zh. Ne-

org. Khim. 37, 1597 (1992).189T.A. Ivanova, A.E. Usachev and Yu. V.

Yablokov, Sov. Phys.-Solid State (USA) 29, 1608(1987).

190T.A. Ivanova, A.E. Usachev and Yu. V.Yablokov, Sov. Phys.-Solid State (USA) 30, 299(1988).

191R. Jablonski, Ser. Fiz. (Univ. In AdamanMickiewicza Poznanio) 67, 237 (1991).

192V.K. Jain, V.S. Yadav, L. Pandey and D. Ku-mar, J. Non-Cryst. Solids 93, 426 (1987).

193V.K. Jain and V. Kapoor, Ada. Phys. Pol.A 81, 579 (1992).

194A. Janossy and R. Chicault, Physica C (Am-sterdam) 192, 399 (1992).

195B. Janusz and S. Shulamith, J. Am. Chem.Soc. 113, 3303 (1991).

196B. Janusz and S. Shulamith, J. Am. Chem.Soc. 112, 5019 (1990).

197A. Ei. Jazouli, J.L. Soubeyroux, J.M. Danceand G. Le Flem, J. Solid State Chem. (USA) 65,531 (1986).

198A.Ei. Jazouli, M. Alami, R. Brochu, J.M.Dance, G. Le Flem and P. Hagenmuller, J. SolidState Chem. (USA) 71, 444 (1987).

199D. Jean -Michel, V. J. Jacques and P. Josik,J. Non-Cryst Solids 86, 88 (1986).

200C. Juarez-Garcia, M.P. Hendrich, T.R. Hol-man, L. Rue and E. Munck, J. Am. Chem. Soc.113, 518 (1991).

201C. Juarez-Garcia, M.P. Hendrich, T.R. Hol-man, L. Rue and E. Munck, J. Am. Chem. Soc.113, 518 (1991).

202 J. Julia and J. T. Boguslowa, Bull. Pol. Acad.Sci. Chem. 36, 443 (1989).

203K. Kaczmarska, E. Kwapulinska and A. Szy-tula, J. Less-Common. Met. 153, 229 (1989).

204K. Kaczmarska and E. Kwapulinska, J. Magn.Magn. Mater. 89, L267 (1990).

Page 11: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 249

205K. M. Kadish, B.G. Maiya and C. Araullo-Mcadamas J. Phys. Chem. 95, 427 (1991).

206K. Kanoda., T. Takahashi, T. Kawagoe, T.Mizoguchi, S. Kagoshima and M. Hasumi, Jpn. J.Appl. Phys. Pt.l Regul. Pap. Short Notes (Jpn)26, 2018 (1987).

207R. Karim, H. How, A. Widom and C. Vittoria,IEEE Trans. Magn. 26, 1439 (1990).

208R. Karim, R. Seed, H. How, A. Widom, C.Vittoria, G. Balestrino and P. Paroli, J. Appl. Phys.67, 5064 (1990).

209V. Kataev, G.Winkel, D. Khomskii. D.Wohlleben, W. Crump, K.F. Tebbe and J. Hahn,Solid State Commun. 83, 435 (1992).

2 1 0S. Kazushi, K. Ryusuke, Y. Akagi, H.Taniguchi, Y. Nakajima and S. Kataska, Jpn. J.Appl. Phys. Pt. 1 (Supp. 26-3, Proc. Ind. Conf.Low Temp. Phys. 18th (1987) Pt. 3) 26, 2119(1987).

211L. H. Keun, Bull. Korean Chem. Soc. 12,499 (1991).

212R.M. Khachturyan, A.K. Petrosyan and E.G.Sharoyan, Sov. Phys. Solid-State (USA), 27, 1626(1985).

2 1 3P. V. Khadikar, S. M. Ali, N. Spare and B.Pol, Ada. Chim. Hung. 125, 757 (1988).

214G.V. Kharlamov, V.N. Romannikov and V.F.Anvfrienko, Kinet. Katal31, 1276 (1990).

2 1 5T. Kimihito, F. Nobuo, N. Shigemitsu, Jpn.J. Appl. Phys. Pt.2 29, L2187 (1990).

2 1 6T. Kimihito, Jpn. J. Appl. Phys. Pt. 1 29,656 (1990).

217T. Kimihito, F. Nobuo and N. Shigemitsu,Jpn. J. Appl. Phys. Pt. 1 29, 868 (1990).

2 1 8T. Kimihito, F. Nobuo and N. Shigemitsu,Jpn. J. Appl. Phys. Pt. 2 29, L757 (1990).

219R. Kirmse, K. Koehler, O. R. Maria, W. Di-etzsch, E. Hoyer and G. Zwanenburg, Inorg. Chem.29, 4073 (1990).

220D. Kivelson, J. Chem. Phys. 33, 1094 (1960).221M. A. Klonkowski and C. W. Schlaepfer, J.

Non.Cryst. Solids 149, 189 (1992).222T. Kobayashi, H. Katsuda, Y. Sakabe, K. Iwai

and S. Kanba, Phase Transit. (UK) 12, 215 (1988).2 2 3T. Kobayashi, H. Katsuda, K. Hayashi, M.

Tokumoto and H. Ihara, Jpn. J. Appl. Phys. Pt. 2Lett. (Jpn) 27, 670 (1988).

224K. Koga, M. Suzuki and H. Yasuoka, Synth.Met. 12, 467 (1985).

225J. Kohout, J. Mrozinski and M. Hvastijova, Z.Phys. Chem. (Leipzig) 270, 975 (1989).

226K. Kojima, K. Ohbayashi. M. Udagawa andT. Hihara, Jpn. J. Appl. Phys. Pt.2 26, L766(1987).

227Y. A. Koksharov, V.V. Moshchalkov, A.A.Gippius, B.V. Bill, J. Zoubkova, S.V. Gudenko andA.N. Mezhuev, Physica C (Amsterdam) 185-189,1151 (1991).

228M. Korkmaz, B. Aktas and G. Raoult J. Phys.Chem. Solids 46, 1031 (1985).

229A.A. Koshta, Yu. N. Shvachko, A.A. Ro-manyukha, O.Z. Kzusainov and V.V. Ustinov, Bull.Magn. Reson. 12, 89 (1990).

230I. Kouacik, J. Kozisek, J. Hanusik, H.Langfelderova, V.K. Voronkova, L.V. Mosina andY. V. Yablokov, J. Coord. Chem. 26, 45 (1992).

231C. B. Krishna and M.V. Rajasekharan, Phys.Rev. 5 42, 7794(1990).

232C. B. Krishna, M.V. Rajasekharan, J.L. Bott,S. Atwood and B.L. Ramakrishna, Inorg. Chem.31, 2843 (1992).

233R.M. Krishna, J.L. Rao, P. Chand and S.V.J.Lakshman, Phys. Stat. Solidi (B) 151, 615 (1989).

234R. M. Krishna, J. L. Rao and S.V.J. Laksh-man, Spectrochim Ada. A 48, 245 (1992).

235R.M. Krishna, J.L. Rao, V.V. Bhaskar andS.V.J. Lakshman, Phys. Stat. Solidi (B) 171, 227(1992).

236V. M. Krishna, N.V.S. Rao and V.G.K.M.Pisipati, Indian J. Pure Appl. Phys. 24, 358 (1986).

237V. M. Krishna, N.V. Rao and V.G.K.M. Pisi-pati, Indian. J. Pure Appl. Phys. 26, 330 (1988).

238N. Kunio, T. H. Oshige So, W. N. Y. Mariand O. Heijiro, Bull. Chem. Soc. Jpn. 59, 2589(1986).

239P. Kuppusamy and P.T. Manoharam, J. In-dian Chem. Soc. 63, 95 (1986).

240J. Kuriata, L. Sadlowski, E. Lipinski, W.Stawarczyk and N. Guskos, Ada. Phys. PolonicaA 73, 543 (1988).

241 H.A. Kuska and M.T. Rogers, Spectros-copy In Inorganic Chemistry, Vol.11, Academic Press(1971).

2 4 2S. Laly and P. Geetha, Thermochim. Ada.168, 43 (1990).

243M. Lalia-Kantouri and H. Manolis, Polyhe-dron 11, 789 (1992).

Page 12: Bull. Magn. Reson., 16 (3-4) 239-291

250 Bulletin of Magnetic Resonance

2 4 4B. M. Laure, J. Yves, A. Bencini, D. Gatteschiand K. Olivier, Inorg. Chem. 24, 263 (1985)

245A.V. Lazuta, Physica C (Amsterdam) 181,127 (1991).

246M. Leluk, B. Jezowska-Trzebuiatowska and J.Jezierska, Polyhedron 10, 1653 (1991).

247D.L. Leslie-Pelecky and J.A. Cowen, Phys.Rev. £ 4 6 , 9254 (1992).

248P.R. Levstein, C.A. Steren, A.M. Gennaro andR. Caivo, Chem. Phys. 120, 449 (1988).

249P.R. Levstein, C. Rafael, E.E. Castellano,O.E. Piro and B.E. Rivero, Inorg. Chem. 29, 3918(1990).

250Q. Lin, Bopuxue Zazhi 6, 201 (1989).251D.M. Lindsay, G.A. Thomson and Wang

Youqi, J. Phys. Chem. 91, 2630 (1987).2 5 2B. Lingjun and C. Rongti, Jiegou Huaxue

(China) 4, 275 (1985).253D. Liqun, Z. Ke and Y. Xu, Chin. Sci. Bull.

34, 523 (1989).254D.R. Lovenz and J.R. Wasson, J. Inorg. Nucl.

Chem. 37, 2297 (1975).255S.R.W. Louro and G, Bemiki, J. Magn. Re-

son. 28, 427 (1977).2 5 6J.T. Lue, Phys. Rev. B 38, 4592 (1988).257S.N. Lukin, Fiz. Tverd. Tela. (Leningrad)

31, 244 (1989).258S.N. Lukin, Fiz. Tverd. Tela (Leningrad) 33,

47 (1991).259D.L. Lyfar, D.P. Moiseev, A.A. Motuz, S.M.

Ryabchenko and S.K. Tolpygo, Sov. J. Low Temp.Phys. (USA) 13, 876 (1987).

2 6 0B. Madhu, B.A. Sastry, S.M. Asadullah, G.Ponticelli and G. Puggioni, Indian J. Phys. A 62,539 (1988).

2 6 1B. Madhu, B.A. Sastry, G. Ponticelli and R.Pinna, Indian J. Phys. A 63, 404 (1989).

2 6 2B. Madhu, B.A. Sastry, G. Ponticelli andG.Puggioni, J. Phys. Soc. Jpn. 59, 3487 (1990).

2 6 3B. Madhu, B.A. Sastry, G. Ponticelli and G.Puggioni, J. Phys. Soc. Jpn. 59, 3483 (1990).

264K. Madhukar, B. Madhu, B.A. Sastry, G. Pon-ticelli and G. Puggioni, Indian J. Phys. A 62, 544(1988).

265V.M. Maevskii, N.I. Vitrikhovskii, E.V. Moz-dor and A.B. Roitsin, Poverkhnost (Russ.) 11, 73(1986).

266Z. Maggie and L. Kevan, J. Phys. Chem. 96,8989 (1992).

267G. Magne, H. Bill and D. Lovy, Solid StateComrnun. 53, 661 (1985).

268A.K. Maki and B.R. Mcgarvey, J. Chem.Phys. 29, 31 (1958).

2 6 9B. Marceline and L. Kevan, J. Phys. Chem.96, 9992 (1992).

270V. Marian, M. Milan, P. Peter, V. Fedor andM. Milan, Chem. Phys. Lett. 174, 591 (1990).

271V. Marian, M. Milan, M. Harry, R.F. Biltonand P. Peter, Chem. Phys. Lett. 183, 372 (1991).

272K. Martti, M. R. Sundberg, M. Milan and M.Jerzy, Inorg. Chim. Ada. 162, 39 (1989).

273J. Martinek and B. Susla, Ser. Fiz. (Univ.InAdaman Mickiewicza Poznanio) 67, 299 (1991).

274A. Masanori and H. Toshikazu, J. Phys. Soc.Jpn. 56, 1178 (1987).

275I. Masaki, A. Tetsuo, I. Motomichi, G. Herib-erto, M.B. Inove and D.V.I. Nakamura, Koord.Khim. 17, 382 (1991).

276G. Mauro, M. Stefania, G. Dante and Z. Clau-dia, Chem. Mater. 3, 752 (1991).

277H.M. Mcconnell, J. Chem. Phys. 25, 709(1956).

278W.R. Mckinnon, J.R. Morton, K.F. Prestonand L.S. Selwyn, Solid State Commun. 65, 855(1988)

279B.D. Mcphail and B. A. Goodman, J. Chem.Res. Synop. 9, 276 (1985).

2 8 0F. Mehran, K.W.H. Stevens, M.W. Shafer andW.J. Fitzpatrck, Phys. Rev. B 32, 7083 (1985).

2 8 1F. Mehran, S.E. Barnes, T.R. Mcguire, W.J.Gallagher, R.L. Sandstrom, T.R. Dinger and D.A.Chance, Phys. Rev. B 36, 740 (1987).

2 8 2F. Mehran, S.E. Barnes, T.R. Mcguire, T.R.Dinger, D.L. Kaiser and F. Holtzberg, Solid StateCommun. 66, 299 (1988).

2 8 3F. Mehran, S.E. Barnes, E.A. Giess and T.R.Mcguire, Solid State Commun. 67, 55 (1988).

2 8 4F. Mehran. S.E. Barnes, G.V. Chan-drashekhr, T.R. Mcguire and M.W. Shafer, SolidState Commun. 67, 1187 (1988).

2 8 5F. Mehran, T.R. Mcguire, J.F. Bringley andB.A. Scott, Phys. Rev. B 43, 11411 (1991).

286V.F. Meshcheryakov and V.A. Murashov, Zh.Eksp. Teor. Fiz. 101, 241 (1992).

287G. Michel, W. Michel, C D . Buchecker, S. J.Pierre and B.Gerald, Inorg. Chem. Ada. 167, 157(1990).

288G. Michel, W. Michel, C D . Buchecker, S. J.

Page 13: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 251

Pierre and B. Gerald, Inorg. Chim. Ada. 167, 161(1990).

289J. Minge, S. Waplak and W. Wojtowicz, Ser.Fiz. (Univ. In Adaman Mickiewicza Poznanio) 54,407 (1985).

290E. Minner and H. Bill, Chem. Phys. Lett.175, 231 (1990).

291B.N. Misra and R. Kripal, Ada. Phys. Pol.76a, 869 (1989).

292B.N. Misra and R. Kripal, J. Khim. Phys.Phys.-Chim Biol. 86, 2191 (1989).

2 9 3S. K. Misra and C. Wang, Magn. Reson. Rev.14, 157 (1990).

294S.K. Misra, Physica B 121, 193 (1983).295S.K. Misra, Physica B+C124, 53 (1984).296S.K. Misra, J. Magn. Reson. 23, 403 (1976).297S.K. Misra, Magn. Reson. Rev. 10, 285

(1986); Magn. Reson. Rev. 12, 191 (1987).298S.K. Misra, Physica B 151, 433 (1988).299S.K. Misra, Arab. J. Sci. Engg. 13, 255

(1988).3 0 0S. K. Misra and J. Sun, Phys. Rev. B 44,

11862 (1991).301S.K. Misra and U. Orhun, Phys. Rev. B 39,

2856 (1989).3 0 2S. K. Misra and K. Kumar, J. Chem. Phys.

84, 2514 (1986).303S.K. Misra and K. Mojtaba, J. Chem Phys.

83, 1490 (1985).304S.K. Misra and K. Kumar, Physica (B+C)

138, 171 (1986).305S.K. Misra and C. Wang, Phys. Stat. Solidi

(B) 154, 259 (1989).306S.K. Misra and L.E. Misiak, Solid State Com-

mun. 72, 117 (1989).307S.K. Misra and C. Wang, J. Phys.: Condensed

Matter 1, 771 (1989).308S.K. Misra and C. Wang, Phys. Rev. B 41, 1

(1990).309S.K. Misra, X . Li and C. Wang, J. Phys.:

Condensed Matter 3, 8479 (1991).310S.K. Misra, K. Mojtaba and S. Z. Korczak,

Physica B 182, 186 (1992).3US.K. Misra and J. Felsteiner, Phys. Rev. B

46, 11033 (1992).312M. Mitsuhird, U. Chiaki, O. Akihiro, D.

Muneyuki and Y. Kazua J. Phys. Soc. Jpn. 54,4767 (1985).

313 T. Mori, H. Inokuchi, A. Kobayashi, R. Katoand H. Kobayashi, Phys. Rev. B 38, 5913 (1988).

314J.R. Morton, K.F. Preston and Y. Le Page, J.Magn. Reson. 66, 118 (1986).

315V.C. Mouli and G.S. Sastry, Pramana, (India)26, 435 (1986).

316V. C. Mouli and G. S. Sastry, Indian J. PureAppl. Phys. 27, 101 (1989).

317 V. C. Mouli, R. S. Sunder and G. S. Reddy,Indian J. Pure Appl. Phys. 28, 478 (1990).

318K.A. Muller, The Study Of Structural PhaseTransitions Using Paramagnetic Resonance, LectureI-III,Geilo (Norway), 1971.

319V.I. Murav'Ev, Sov. Phys. -Solid State(USA) 28, 704 (1986).

320V.I. Murav'Ev, J. Struct. Chem. (USA) 27,390 (1986).

321A.A. Muradyan, T.A. Garibyan, K.G.Gazaryan and M.G. Arutyunyan, Sverkhprovodi-most: Fiz. Khim. Tekh. 4, 1716 (1991).

322A.A. Muradyan, T.A. Garibyan and M.G.Arutyunyan, Kind. Katal. 33, 605 (1992).

323H. Murrieta, G. Aguilar, J. Ramirez, T.Akachi, R.A. Escudero and J. Rubio, J. Phys. C21, 4999 (1988).

324K. Murthy, G. Dhanaraj, H.L. Bhat and S.V.Bhat, Mol. Phys. 65, 181 (1988).

325K. Murthy, K.B.R. Varma, S.V. Bhat andC.N.R. Rao, Mod. Phys. Lett. B (Singapore) 2,1259 (1988).

326K. Nagata, K. Saito, Y. Egawa, R. Liang andT. Nakamura, J. Magn. Magn. Mater. 90-91, 649(1990).

327Y. N. Naidu, J. L. Rao and S.V.J. Lakshman,Phys. Stat. Solidi (B) 169, K109 (1992).

3 2 8F. Nakamura, K.Senoh, T. Tamura, S.Nakada, A.Shimizij, Y. Ochiai, Y. Narahara, Adv.Supercond. 2, 551-4 (1989) Prof. Int. Synp. Super-cond. 2nd (Pub. 1990).

3 2 9F. Nakamura, K. Senoh, T. Tamura, Y. Ochiaiand Y. Narahara, Physica C (Amsterdam) 162-164,1287 (1989).

330M. Narayana and G. S. Sastry, J. Magn.Magn. Mater. 8, 142 (1978).

3 3 1S. Nazir, Gomal Univ. J. Res. 9, 1 (1989)(Pub. 1990).

332R. Neimann and D. Kivelson, Ibid. 35, 149,156,162(1962).

Page 14: Bull. Magn. Reson., 16 (3-4) 239-291

252 Bulletin of Magnetic Resonance

333E.I. Neimark and I.M. Zaritskii, Sverkh-provodimost. Fiz. Khim. Tekh. 2, 63 (1989).

334P. Nevenka, N. L. Vesna and S. Vladinial, Z.Anorg. All. G. Chem. 613, 132 (1992).

335Y. NOda, M. Mori and Y. Yamada, J. Phys.Soc. Jpn. 45, 954 (1978); J. Phys. Soc. Jpn. 48,1288 (1980); Solid State Commun. 19, 1071 (1976);Solid State Commun. 23, 247 (1977).

336p Ns ei r ) j Pietrzak, R. Krzyminiewski, Z.Kruczynski and M. Januszczyk, Ser. Fiz. (Univ.In Adaman Mickiewicza Poznanio) 67, 247 (1991).

337A. Ozarowski and D. Reinen, Inorg. Chem.25, 1704 (1986).

3380p j Owens In Magnetic Resonance Of PhaseTransitions, Ed. F.J. Owens, C.P. Poole, Jr.and H.A. Farach, Academic Press, Inc., New York(1979).

3 3 9F. J. Owens and Z. Iqbal, Solid State Commun.68, 523 (1988).

3 4 0F. J. Owens, J. Supercond. 2, 409 (1989).341I. Onyszkiewicz, M. Koralewski, P. Czarnecki,

R. Micnas and S. Robaszkiewicz, Physica (B+C)147, 166 (1988).

342 G.K. Padam, G.L. Malhotra and S.K. Gupta,Solar Energy Materials 22, 303 (1991).

3 4 3B. K. Pandeya and N. R. Patel, Indian J.Biochem. Biophys. 29, 245 (1992).

3 4 4B. R. Patyal, B. L. Scott and R. D. Willett,Phys. Rev. B 41, 1657 (1990).

345W.B. Paul, S.E. Wang and L.G. Rowan, Phys.Rev. 5 33, 585 (1986).

346P. Pelikan, M. Valko, I. Kovacik , M. Mazurand A. Stasko, Chem. Pap. 44, 477 (1990).

347 R.P. Penrose, Nature 163, 992 (1949).348V.G.K.M. Pisipati, N.V.S. Rao, S. Padmaja,

Y. Anjaneyulu and R. Prabhakara Rao, Magn. Re-son. Chem. 24, 954 (1986).

349G. Plesch, O. Svajlenova, C. Friebel and J.Kratsmarsmogrovic, Proc. Conf. Coord. Chem.12th, 289 (1989).

350L.D. Popov, G.I. Bondarenko, A.A. Shvetsand L.N. Etmetchenko, Zh. Obshch. Khim. 61,300 (1991).

3 5 1B. Prabhakar, K. L. Reddy and P. Lingaiah,Indian J. Chemistry 27a, 217 (1988).

352B.S. Prabhananda, Indian J. Pure Appl.Phys. 18, 823 (1980).

353B.S. Prabhananda, Pramana 34, 491 (1990).

3 5 4B. Prabhakar, P. Lingaiah and K. LaxmaReddy, Polyhedron 9, 805 (1990).

355C. J. Pyng, S. K. Jiunn, C. J. Li, Y. Wang, L.G. Hsiang and S. K. Pyeng, J. Chin. Chem. Soc.(Taipei) 38, 549 (1991).

356C. Rafael and C.G.P. Mario, J. Phys.: Con-dens Matter 2, 9113 (1990).

357K. Rajakrishna, K.G. Mallikarjun and R. S.Naidu, Asian J. Chem. 3, 408 (1991).

358Y. V. Rakitin, R.D. Kasumov, G.V. Panovaand G.M. Larin, Koord. Khim. (Russ.) 12, 1188(1986).

3 5 9B. Rakvin, M. Pozek and A. Dulcic, SpringerSer. Solid-State Sci. 99, 239 (1990).

3 6 0B. Rakvin, M. Pozek and A. Dulcic, PhysicaC (Amsterdam) 170, 166 (1990).

361B.L. Ramakrishna, E.W. Ong and Z. Iqbal,Solid State Commun. 68, 775 (1988).

362M.V. Ramana, P.S. Lakshmi, Syed Rahman,K. Sivakumar and G.S. Sastry, Mater. Sci. Engg.B 10, 25 (1991).

363A. S. Rao, J. L. Rao and S.V.J. Lakshman, J.Phys. Chem. Solids 53, 1221 (1992).

364J. L. Rao, R. M. Krishna and S.V.J. Laksh-man, Solid State Commun. 66, 1185 (1988).

365J. L. Rao, R. M. Krishna and S.V.J. Laksh-man, J. Phys. Chem. Solids 51 , 323 (1990).

366S.N. Rao, P. Sivaprasad, Y.P. Reddy and P.S.Rao, Radi. Effe. Defects. Solids 124, 239 (1992).

367K. Ravi and L. Kevan, J. Phys. Chem. 93,1654 (1989).

308R.K. Ray and G. B. Kauffman, Inorg. Chem.Ada. 174, 237 (1990).

369R.K. Ray and G. B. Kauffman, Inorg. Chim.Ada 173, 207 (1990).

370B.J. Reddy, P. Sreeramulu, K. Ramesh andY.P. Reddy, An. Asoc. Quim. Argent 76, 297(1988).

371K. L. Reddy, S. Shrihari and P. Lingaiah, In-dian J. Chem. 24a, 318 (1985).

372K.M. Reddy, A.S. Jacob and B.J. Reddy, Fer-roelectr. Lett. Sect. 6, 103 (1986).

373D. Reinen and Friebel, Struct. Bonding(Berlin) 37, 1 (1979).

374D. Reinen, M. Atanasov, G. St. Nikolov andF. Steffens, Inorg. Chem. 27, 1678 (1988).

375M. J. Riley, M. A. Hitchman and D. Reinen,Chem. Phys. 102, 11 (1986).

Page 15: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 253

376M. J. Riley, M.A. Hitchman, D. Reinen andS.Gabricle, Inorg. Chem. 27, 1924 (1988).

377L. C. Robert, L. Shuang and L.K. Thomson,Inorg. Chem. 29, 85 (1990).

378A. Rockenbauer, M. Gyor and T. Szabo-Planka, J. Chem. Phys. 86, 976 (1987).

379A. Rockenbauer, M. Gyor, G. Speier and Z.Tyeklar, Inorg. Chem. 26, 3293 (1987).

380A. Rockenbauer, Ser. Fiz. (Univ. In AdamanMickiewicza Poznanio) 67, 99 (1991).

381A. Rockenbauer, A. Janossy, L. Korecz and S.Pekker, J. Magn. Reson. 97, 540 (1992).

382A.A. Romanyukha, Yu.N.Shvachko,. V. Yu.Irkhin, M.I. Katsnclson, A.A. Koshta and V.V. Usti-nov, Physica C (Amsterdam) 171, 276 (1990).

383R.K. Roy and G. B. Kauffman, Inorg. Chim.Ada 174, 257 (1990).

384R.S. Rubins and D.K. De, J. Chem. Phys.83, 4400 (1985).

385R.S. Rubins, T.D. Black and J. Barak, J.Chem. Phys. 85, 3770 (1986).

386R.S. Rubins and J. E. Drumheller, J. Chem.Phys. 86, 6660 (1987).

387K.A. Sablina and A.M. Vorotinov, Solid StateCommun. 76, 453 (1990).

388R. Samanta and A.K. Pal, Indian J. Cryog.15, 529 (1990).

389B.A. Sastry and G.S. Sastry, Physica 74, 151(1974).

390B.A. Sastry, B. Balaiah, R.Subramaniam, G.Ponticelli, M. Massacesi and G. Devoto, Indian J.Pure and Appl. Phys. 23, 320 (1985).

391 B.A. Sastry, B. Balaiah, R. Subramanian, G.Ponticelli, G. Devoto and M.M Massacessi, IndianJ. Pure Appl. Phys. 23, 279 (1985).

392B.A. Sastry, B. Balaiah, K.V.G. Reddy, B.Madhu, S.M. Massacesi and G. Devoto, Spec-trochim. Acta. A, 41 , 675 (1985).

393B.A. Sastry, K.V.G. Reddy, B. Balaiah, B.Madhu and G. Ponticelli, Indian J. Pure & Appl.Phys. 24, 258 (1986).

394B.A. Sastry, B. Balaiah, K.V.G. Reddy, B.Madhu, G. Ponticelli, M. Massacessi and G. Pug-gioni, Indian J. Pure Appl. Phys. 24, 460 (1986).

395B.A. Sastry, B. Balaiah, K.V.G. Reddy, B.Madhu and S. Md. Asadullah Indian J. Phys. A61, 173 (1987).

396B.A. Sastry, B. Balaih, K.V.G. Reddy, B.Madhu, G. Ponticelli, G. Devoto and M. Massacesi,

Indian J. Phys. A 61, 221 (1987).397B.A. Sastry, B. Madhu and K, Madhu Kar,

Indian J. Phys. A 62, 463 (1988).398M.D. Sastry, A.G.I. Dalvi, Y. Babu, R.M.

Kadam, J.V. Yakhmi and R.M. Iyer, Nature (UK)330, 49 (1987).

399M.D. Sastry, K.S. Ajayakumar, R.M. Kadamand G.M. Phatak, Physica C (Amsterdam) 170, 41(1990).

400K. Satoshi, Y. Hiroshi and I. Masamoto, Bull.Chem. Soc. Jpn. 63, 3414 (1990).

401N. Satyanarayana, Mol. Phys. 55, 111 (1985).402N. Satyanarayana, J. Phys. Chem. Solids 47,

55 (1986).4 0 3F. Scheerlinck, I. Francois, L.V. Bockstal, P.

Janssen, G. P. De, F. Herlach and J. Witters, Phys-ica B (Amsterdam) 177, 101 (1992).

404G.E. Selyutin, A.A. Shklyaen and A.M.Shulga, Izv. Akad. Nauk. SSSR, Ser. Khim. 6,1331 (1985).

405G.E. Selyutin, Izv. Akad. Nauk SSSR, Ser.Khim. 6, 1447 (1989).

406K. W. Seong, K. Y. Inn and C. S. Nak, Bull.Korean Chem. Soc. 11, 85 (1990).

407D. Shaltiel, S.E. Barnes, H. Bill, M. Francois,H. Hagemann, J.Jegondaz, D. Lovy, P. Monod, M.Peter Et Al Physica C (Amsterdam) 161, 13 (1989).

408X. Shangda and H. Bihui, Bopuxue Zaxhi 7,215 (1990).

409 K.B.N. Sharma,L.R. Moorthy,B.J. Reddyand S. Vedanand, Phys. Lett. (Netherlands) 132a,293 (1988).

410G.T. Sheng and Y. J. Tsu, Solid State Com-mun. 78, 123 (1991).

4 1 1S. Siddiqui and R.E. Shepherd, Inorg. Chem.25, 3869 (1986).

412H. Shiying, Y. Yuangeng, Y. Xiaozeng, B.Zhenwei and D. Anbang, Huaxue Wuli Xuebao 2,53 (1989).

413K.N. Shrivastava, J. Phys. C20, L789 (1987).4 1 4S. Shulamith, Nato Asi Ser., Ser. B 174, 881

(1988).415A.K. Siddhanta and B.D, Bhattacharyya, In-

dian J. Cryog. 15, 520 (1990).416R. Sikdar and A.K. Pal, Phys. Stat. Solidi

(A) 89, 243 (1985).417 P. Sivaprasad, K. Ramesh and Y.P. Reddy,

Phys. Stat. Solidi (B) 118, K103 (1990).

Page 16: Bull. Magn. Reson., 16 (3-4) 239-291

254 Bulletin of Magnetic Resonance

418P. Sivaprasad, K. Ramesh and Y.P. Reddy, J.Phys.: Condensed Matter 2, 5595 (1990).

419J. Sivy, G. Plesch, J. Kratsmar-Smogrovic, O.Svajlenova and V. Kettmann, Proc. Conf. Coord.Chem. 12th, 349 (1989).

420G. Slimane, F. M. Otman, B. J. Claude andS. Yves, Physica (B+C) 114, 200 (1987).

421V. Somasekharam, and Y.P. Reddy, Czech. J.Phys. Sect. B (Czechoslovakia) 36, 1074 (1986).

422V. Somasekharam, P.S. Prasad and Y.P.Reddy, Phys. Scr. (Sweeden) 33, 169 (1986).

423Y. Songliu, J. Sizho, C. Zhojia, C. Ning, Z.Jiaqi and G. Weiyan, Diwen Wuli Xuebao 12, 279(1990).

424Y. Songliu, J. Sizhao and C. Zhaojia, DiwenWuli Xuebao 12, 284 (1990).

425N. Sreehari and P.T. Manoharan, Mol. Phys.63, 1077 (1988).

4 2 6B. Sreedhar, J. L. Rao and S.V.J. Lakshman,J. Non-Cryst Solids 124, 216 (1990).

427 D. Srinivas, M.V.B.L.N. Swamy and S. Sub-ramanian, Mol. Phys. 57, 55 (1986).

428J. Stankowski, P.K. Kahol, N.S. Dalai and J.S.Moodera, Phys. Rev. B 36, 7126 (1987).

429J. Stankowski, W. Kempinski and Z. Trybula,Ada. Phys. Pol. A 80, 571 (1991).

430J. Stankowski, W. Kempinski and Z. Trybula,Ser. Fix. (Univ. In Adaman Mickiewicza Poz-nanio) 67, 85 (1991).

431J. Stankowski, W. Hilczer, J. Baszynski, B.Czyzak and L. Szczepamska, Solid State Commun.77, 125 (1991).

432D. T. Stefaan and R. A. Schoonheydt, Zeolites11, 155 (1991).

433C.A. Steren, A.M. Gennaro, P.R. Levstein andR.J. Calvo, J. Phys.: Condensed Matter 1, 637(1989).

434C.A. Steven, R. Calvo, E.E. Castellano, M.S.Fabiane, and O.E. Piro, Physica B 164, 323 (1990).

435K.W.H. Stevens, Czech. J. Phys. 41, 819(1991).

436M. Strasak and Z. Durcova, J. Coord. Chem.22, 99 (1990).

4 3 7P. Subramanian and N. Hariharan, Phys.Stat. Solidi (B) 135, 731 (1986).

438K. Sugawara and S. Tanaka, Mod. Phys. Lett.5 6,879 (1992).

439K. Sugawara, D.J. Baar, Y. Shiohara and S.Tanaka, Mod. Phys. Lett. B 5, 779 (1991).

440M. Suhara and T. Kobayashi, J. Phys. Chem.Solids 53, 27 (1992).

441M. M. Suleman, C.A. Hogarth and K.A.K.Lott, J. Mater Sci. Lett. 8, 1344 (1989).

442N.M. Suleimanov, V.E. Kataev, E.F. Kukovit-skii, H. Drulis and G. Chodzynski, Sverkhprovodi-most: Fiz. Khim. Tekh. 3, 608 (1990).

443N.M. Suleimanov, H. Drulis, A.D. Shengelayaand G.W. Chadzynski, Sverkhprovodimost: Fiz.Khim. Tekh. 4, 1925 (1991).

444C.S. Sunandana and K.S. Rao, Phys. Stat.Solidi (B) 90, 681 (1985).

445C.S. Sunandana, Phys. Stat Solidi (A) 101,37 (1987).

446C.S. Sunandana, Mater. Res. Bull. 25, 403(1990).

447W.V. Sweeney, K. D. Lavhllee and K. David,Inorg. Chem. Acta 99, L9 (1985).

448A. Syamal, Indian J. Chem. Soc. 64, 719(1987).

449A. Syamal, Rev. Roum. Chim. 34, 1887(1989).

450N. Takeuchi, K. Inabe, S. Nakamura and M.Adachi, J. Soc. Mater. Sci. Jpn. 34, 100 (1985).

451I. Takekazu, K. Keiichi, K. Kazushi and T.Toshihiro, Physica C (Amsterdam) 185-189, 1201(1991).

452H. Tanaka, K. Ito and K. Nagata, J. Phys.Soc. Jpn. 54, 4345 (1985).

453R. H. Theodore, A. A. Kevin, P. A. Oren,P. H. Michael, C.Juarez-Garcia, M. Eckard and Q.Lawrence Jr., Angew Chem. 102, 933 (1990).

454C. Tien, J.S. Karra and G. Kemmerer Phys.Rev. 5 37, 9564 (1988).

455D.V. Tolkachev, A.A. Khodak, S.P.Solodovnikov , N.N. Bubnov and M.I. Kabachnik,Izv. Akad. Nauk. SSSR, Ser. Khim. 12, 2756(1990).

456M. Ugoloey, V.L. Shestakov and A.K.Potapovich, J. Appl. Spectrosc. (USA) 43, 868(1985).

457M. M. Ugrankar and S. B. Prabhananda,Transition Metal Chem. (London) 15, 361 (1990).

458G.C. Upreti and R.S. Saraswat, Magn. Reson.Rev. 7, 215 (1982).

459M. Valko, P. Pelikan, S. Biskupic and M.Mazur, Chem. Pap. 44, 805 (1990).

460L. Van Robbroeck, A. Bouwen and D. Schoe-maker, Phys. Stat. Solidi (B) 132, 565 (1985).

Page 17: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 255

461L. Van Robbroeck, E. Goovaerts and D.Schoemaker, Phys. Stat. Solidi (B) 132, 179(1985).

4 62J. V. Tol, J.H. V. D. Waals, Chem. Phys.Lett. 194, 288 (1992).

463R.J. Van Zee and W. Jr. Waltner, Chem.Phys. Lett. 162, 437 (1989).

464A.G. Vedeshwar, H.D. Bist, S.K. Agarwal andA.V. Narlikar, Physica C (Amsterdam) 162-164,11573 (1989).

465J.K. Verma, O. Kumar and S.D. Roy, Curr.Science 57, 1236 (1988).

466D.C. Vier, S. Schultz, C. Rettori, D. Rao, S.B.Oseroff, M. Thova, Z. Fisk and S.W. Cheong, J.Appl. Phys. 69, 4872 (1991).

467G.P. Vishnevskaya, R. Sh. Safin, V.B.Kargman, V.D. Kopylova, N.I. Yurchenko and E.N.Frolova, Zh. Fiz. Khim. 65, 1023 (1991).

468M. Vithal, R. Jagannathan and C.S. Sunan-dana, Spectrochim Ada. Pt. A 41 , 861 (1985).

469L. Vittorio and L. Kevan, J. Phys. Chem. 96,3391 (1992).

470V.K. Voronkova, L.V. Mosina, Yu. V.Yablokov, I. Kovacik and H. Langfelderova, Proc.Conf. Coord. Chem. 13th, 338 (1991).

471V.K. Voronkova, L.V. Mosina, Yu. V.Yablokov, M.A. Yampol'Skaya, G.S. Matuzenko,Yu. A. Simonov, B. Ya. Kuyavskaya, N.V. Ger-beleu and V.K. Bel'Skii, J. Struct. Chem. (USA),27, 562 (1986).

472J. Walczak, H. Debinski, B. Muraszko, J.Kuriata and L. Sadlowski, Phys. Stat. Solidi (A)97, 291 (1986).

473W.G. Waller and M.T. Rogers, J. Magn. Re-son. 18, 39 (1975).

474C. Wang, Avail. NLC. From Diss. Abstr. Int.B 5 1 , 1346 (1990).

475D.M. Wang, I. Kovacik, E.J. Reijerse and D.Boere, J. Chem. Phys. 97, 3897 (1992).

4 7 6S. Waplak, S. V. Hugo and J.E. Drumheller,Phys. Rev. B 32, 48 (1985).

4 7 7S. Waplak, V.H.Schmidt and J.E. Drumheller, Phys. Rev. B 34,6532 (1986).

478S.H. Wasfi, A.L.Rheingold, G.F. Kokoszkaand A.S. Goldstein, Inorg. Chem. 26, 2934 (1987).

479A. Weselucha-Birczynska, S.K. Hoffmann, K.Dyrek and M. Labanowska, J. Mol. Struct. 219,85 (1990).

480H. Wojakowska, R. Krzyminiewski R and M.Januszczyk, Mater. Sci. 14, 127 (1988).

481W. Wojtowicz and J. Minge, Ada. Phys. Pol.A 70, 715 (1986).

482K. Wolfgang and M. Michael, J. Chem. Soc.Faraday Trans. 87, 3185 (1991).

483M. Wolfgang, V. Fritz, W. K. Peter and A.Issam, Z. Chem. 30, 297 (1990).

484J. Wqlczak, B. Muraszko, H. Debinski and J.Kuriata, Seria Fizyka NR (Poland) 53, 283 (1985).

485G. Wrzeszcz, A. Lodzinska and R. Franciszek,Pol. J. Chem. 65, 785 (1991).

486G. Wuebbeler and O.F. Schimer, Phys. Stat.Solidi (B) 174, K21 (1992).

487Y. V. Yablokov, S. J. Kratsmar, V.K.Voronkora, L.V. Mosina, O. Svajlenova and M. Zem-licka, Zh. Neorg. Khim. 31, 707 (1986).

488A. Yadav and V.P. Seth, Phys. Chem.Glasses 27, 182 (1986).

489A. Yadav and V.P. Seth, J. Mater. Science22, 239 (1987).

490A. Yadav, V.P. Seth and S.K. Gupta, J. Non-Cryst. Solids 101, 7 (1988).

491B.P. Yadava, B.P. Shukla and B. Singh, Proc.Natl. Acad. Sci. (India) Sect. A 60, 33 (1990).

492B.P. Yadava and B. Singh, Proc. Natl. Acad.Sci. (India) Sect. A 61 , 293 (1991).

493y Yamada In Electron-Phonon Interactionand Phase Transitions, Ed. By T. Riste, Plenum,New York, 1977.

494J. J. Yeoul and C. S. Ho, Sae Mulli. 30, 197(1990).

495L. Yomg, T. Kunihiko, I. Kazuhiko and A.Nagao, Bull. Chem. Soc. Jpn. 61, 4067 (1988).

496J.T. Yu and K.H. Lii, Solid State Commun.65, 1379 (1988).

497J.T. Yu, J. G.Hwang, T. C. Chu and K.H. Lii,Solid State Commun. 70, 167 (1989).

498R. Yu. Abdulsabirou, R. Sh. Zhdanov, Ya.S.Irygzon, S.L. Korableva, I.N. Kurkin, L.L. Sedov,I.V. Yasonov and B. Lippold, Sverkhprovodimost:Fiz. Khim. Tekh. 2, 52 (1989).

4 9 9C. Yu, C. Lai, S.A. Marshall, D.R. Yoder-Short, Y.N. Zhang, Phys. Stat. ,Solidi (B) 157,379 (1990).

5 0 0S. Yuan, Y. Wang, S. Jin, Y. Yu, X. Xiong andG. Han, Supercond. Sci. Technol. 3, 204 (1990).

501I. Yuichiro and S. Koji, J. Phys. Soc. Jpn.61, 3067 (1992).

Page 18: Bull. Magn. Reson., 16 (3-4) 239-291

256

502J. Yves, L. Franasco and K. Olivier, Inorg.Chem. 29, 3048 (1990).

503V.N. Zaitsev, P.M. Solozhenkin, A.L Semikop-nyi, D.N. Vovk and E.A. Bokai, Ukr. Khim. Zh.(Russ. Ed) 56, 348 (1990).

504M. Zamadics, X. Chen and L. Kevan, 3. Phys.Chem. 96, 5488 (1992).

505M.M. Zaripov and V.A. Ulanov, Sov. Phys.-Solid State (USA) 30, 896 (1988).

506C.E. Zaspel, J. Appl. Phys. 67, 6011 (1990).507Z. Wang and W. Tang, Fenzi Cuihua 3, 230

(1989).508K. Zhao and L. Yichao, Yingyong Huaxue 7,

45 (1990).509M.G. Zhao, X.N. Zhao and X.L. Zheng, Z.

Phys. B: Condensed Matter (Wg) 73, 1 (1988).510M.G. Zhao and Q.L. Yan, Phys. Rev. B 39,

862 (1989).511Y.Y. Zhou, Phys. Stat. Solidi (B) 147, 273

(1988).512Y.Y. Zhou, Phys. Stat. Solidi (B) 142, 229

(1987).513Z. Zimpel and S.K. Hoffmann, Physica B

(Amsterdam) 172, 499 (1991).514M. A. Zoruddu, M.I. Pilo, S. Renato, P. Re-

becca and B. Riccardo, Inorg. Chem. Ada 184,185 (1991).

515G. Zwanenburg, J.J.M. Michiels and E. DeBoer, Phys. Rev. B 42, 7783 (1990).

Bulletin of Magnetic Resonano

Page 19: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 257

Table 1: Appendix: Data TabulationS.No Host Lattice Site Spin-Hamiltonian Parameters

§Z gx gy A z A x

Comments Ref,

1. AgCl

2. AgCl

3. AgCl

4. AGeO3(A=Fe,Mn,Cu)

5. (2-aminomethylquinoline),s-aminomethylquinoline:Cu(II)

6. Antipyrine and its derivatives

7. Ampholyte ANKB-50:Cu2+-Ni2+

8. AsCdCl3

9. (04As)CuCl3

10. BaCuC-2Y2Cu2Os

11. BaCuO2

12. BaCuC-2Y2Cu2OsY2BaCuO5Al2CuO4

13. Ba2Cu2O5

14. [Ba(HCOO)2]

15. [Ba(NH2SO3)2]

16. B15C5-65Cu(II)

III

III

2.302 2.067 2.067 115 41.5 41.5

1.930 2.170 2.170

2.09

2.20 2.12 2.082.112.22 2.09 2.092.22

2.362 2.076 2.071 -151 72.385 2.083 2.047 -90 37

1182

site thermally un- [460]stable at 135K, induced thedecay of Cu2+ site.

Cu2+ centres produced by UV [461]illumination at 50K.

Cu2+ superhyperfine struc. [345]EPR spectra were observedwith four Cl ligands.

Below 22K, ESR signal obsd. [387]and above 22K disappeared.

The Cu ions forms square - [503]planar complexes with 2-amineligands.

SHP and MO coeff. of solu- [485]tions reported. Bondinglengths depends more on typeof complex than on solvent.

Formation of chelating ex- [467]changer characterized by ESR.

At T < 235K the Cu2+ ions [28]tetrahedrally coordinated.

ZFR, SHP. [136]

2.269 2.048 2.058 170G 20G 24G

2.030 2.408 2.296 10.39 5.00 3.002.036 2.389 2.287 10.54 5.64 2.92

Due to exceptional spin-spin [55]dipolar brodening absence ofEPR signal observed.

EPR study for diff. cupric [496]compounds presented.

LW increases and intensity [497]decreases at LT.

YBCO showed no detectable [446]ESR signal either above orbelow Tc.

Sub. for Ba2+ sites and [66]Cu2+ enter Inst. sites.

Cu2+ ions enter the lattice [316]interstitially.

GS wavefunction is of the [495]form 3dz2.

Page 20: Bull. Magn. Reson., 16 (3-4) 239-291

258 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parameters Comments Ref.gx gy

<20 32 Cu2+ is reduced to Cu+ underheat treatments.

17. /?" - alumina

18. BiCaSrCu2Ox

19.

20. BiCaSrCuO

21. Bi-Ca-Sr-CuOBi(Pb)-Ca-Sr-Cu-OTl-Ca-Ba-Cu-OTlo.sPbo.5(Cao.8Ao.2)Sr2Cu20y

22. BiCaSrCuO

23. Bi2CuO4

24. Biguanide derivatives:Cu(II)

25. Binuclear Copper complexes

26. Bi(Pb)-Sr-Ca-CuO

27. Bi(Pb)-Sr-Ca-Cu-OCa2CuO3

28. Bis [cinchoniniumtetrachloro-Cu(II)]-3H2O

29. Bis(Glycine) CaCl2-4H2O

30. Bis(metronidazole)CuCl2H2O

31. Bis(2-hydroxylphenyl-Ketoxime) Cu(II)

32. Bis(N-Methyl Salicylaldiminato)-Cuo.49Nio.s1

33. Bis(N-CH3-2-amino-l-clycIo-pentenedithiocarboxylato)Cu(II)

2.385 2.097 2.072 91

2.24 2.056 At below Tc on intense EPR [509]line observed.

EPR intensity reduces to [325]zero above Tc transition.

2.244 2.054 2.054

2.26 2.04 2.04

Isotropic and unisotropic g [339]tensors observed.

ESR silence and related [95]discussed. No evidence of Cu2+

ESR signals close to thefree spin region.

SHP were evaluated. [191]

LW explained by dipole [161]interaction and anisotropicexchange interaction.

SHP and MO coeff.estimated. [449]

Results showed the intensi- [238]ties of group A complexes ismore compared to group B coppercomplexes.

LW and EPR line intesity [6]varies with temp, isotropic andanisotropic line observed belowand above 40K.

ESR angular variation spec. [216]exhibits uniaxial anisotropy.Clear ESR signal observed.

EPR study indicate effective [479]weakening of the exchange intera-ction bet. non-equivalent Cu(II)complexes.

78 51 Cu2+ ions sub. for Ca2+ [437]sites; MO coeff. calculated.

Single EPR line without ex- [480]plicit hfs obtained at RT.

SHP evaluated by EHMO [253]technique.

2.220 2.05 2.05 187G 81G 81G System undergoes PT near [388]below 100K.

Covalency and SHP evaluated. [406]

III

2.2.

2.2.

221

0403

2

22

.05

.26

.27

2.05

2.262.27

2.269 2.027 2.091 104

Page 21: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 259

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy As, Ax

Comments Ref.

I BiPbSrCaCuO

35. Bis(2-hydroxyphenylketoxime)Cu(II)

36. Bis(2,4-dimethylpyridine)Cu(II)

37. BiSrCaCu2Ov

38. Bi2Sr2CaCu2Oy

Bi2-xPbxSr2Ca2CuOy

39. Bi2(Sr,Ca)3Cu2Oy

40. Bi2Sr2CaCu2O8

41. Bi2Sr2CaCu2O8 + x

42. Bi-Sr-Ca-Cu-O films

43. Blue Copper Protein azurin

44. BSA-Cu(II)(l:l)BSA-Cu(II)(2:l)

45. Butyl titanate polymers:Copper carboxylate

46. CAeruloplasmin

2.268 2.050 2.050 191 10

I [2.24 -2.78]II 2.003

2.227

2.12.1

2.26 2.07 2.07 160G2.17 2.02 2.07 212G2.17 2.02 2.02 211G

2.203 2.050 2.050 -76 -10"3

10

EPR spectra behaves diff. [500]below and above 104K due to diff.supercond. phases.

Hf and shf spectra observed.SHP and bonding parametersestimated.

[87]

The measured g-factor values [170]indicate a pure Ix2-y2> ground-state.

Two types of EPR signals [423]exist, one is temperature depend-ence and other one is temp, inde-pendent.

EPR signal near 3300G ori- [424]ginate from the 85 K phase.

The anisotropy of resonance [217]field observed.

Single EPR signal observed [451]in both samples, g-factorindicating the dominance ofCu 2 + spins.

No ESR signal detected due [273]to absence of cuprate impurities.

ESR LW increases with thick- [438]ness of films.

S-band EPR spectrum of blue [175]copper protein azurin explainedby pseudomodulation.

Two distinct EPR features [343]observed. SHP reported for diff.pH values of diff. complexes.

ESR study indicates rate ofelectron transfer from Cu(II)titanate to substrate molecule isfaster.

10~3 SHP analysed interms ofsample MO theory and Cu(II)present in plasma of humanblood is discussed.

[155]

[240]

47. CaBaAlF 2.320 2.055 2.055 130G 25-30G Glasses. [199]

Page 22: Bull. Magn. Reson., 16 (3-4) 239-291

260 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

48. Ca(C4H3O4)2 5H2O 2.033 2.289 2.289 109 26 26 Cu2 +-in a compressed octa-hedral position. GS wave-function is of the form

[317]

49. CaCd(CH3COO)4-6H20

50. CaCd(CH3COO)4-6H2O

51. CaCd(CH3COO)4-6H2O

52. CaCd(CH3COO)4-6H2O

53. CaCd(CD3COO)4-6D2O

54. Cadmium tartrate-5H2O

2.3547 2.0646

55. CaF2

56. Cao.sTi2(P04)3

57. CdK2(SO4)2-6H2O

58. Cd(NH4)2(SO4)2-6H2O

59. Cd(NH4)2(SO4)2-6H2O

60. Cesium trichlorocuprate

61. C2Hs(CH3)2NMnCl4

62. Chalcanthite

63. CH2C12

CH2C12 + acetoneCH2C12 + Br2CH2C12 + h + acetone

2.0646 420MHz

29MHz

2.365 2.054 2.054

2.441 2.283 2.02

0.410 0.030GHz GHz

2.802 2.103 2.147 76

2.370 2.060 2.060

97

2.374 2.197 2.128 282.4GHz

79.9GHz

29MHz

0.030GHz

97

137GHz

Structural PT at 130 + IK [302]obsd.; SHP reported over therange 300-5.4K.

New 2nd order PT observed [69]at 128K due to molecular re-arrangements between Ca 2 + [70]and Cd2"1" sites in acetate groups.Calculated EPR results indi- [511]cates Cu 2 + ions sub. forCd 2 + sites.

PT observed at 132 ± 0.5K. [310]Impurity ions play importantrole in occurrence of PT.

SHP evaluated by LSF; weakforbidden-hf lines obsd., Cu2+

lattice sites identified astwo magnetically inequiva-lent.

EPR signal arises due toimpurity phases.

Ground state WF is of theform dix2-y2>. Below 823K JTdistortion obsd.

Cu2+ sub. for Cd2+ sitesMO Coeff.

[228]

2.355 2.172 2.054 101G 25.6G 54.77G Sub. for Cd 2 + sites. Groundstate wavefunction constr.

2.3613 2.0522 2.1721 0.333GHz

0.151GHz

0.074GHz

2.172 2.052.170 2.0452.160 2.0452.160 2.045

2.05 2082.045 1032.045 1102.045 110

15

14

90

14

Pseudo JTE observed.

SHP reported.

EPR LW study with temp, andcone, impurity ion reported.

SHP and vibrational para-meters discussed.

SHP reported for other sol-vents and data attributed tothe ground state d i x 2 - y 2 > .

[505]

[197]

[402]

[401]

[308]

[150]

[454]

[370]

[404]

Page 23: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 261

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy A2 Ax

Comments Ref.

64. [(-C6H4NH-)(C104)o.4H20][(-C6H4NH-C6H4NH-)1-x -

(-C6H4NC6H4=N-)xO.4H2Ojn[(-C6H4NH-)(C104)o.40.6H20]n

65. (C59H61O8N6FeCu3)n(PP6)2n

66. Cis-Cu(NH2CH2COO)2-H2O

67. (Co(l-3-diaminopropane)3]CuCls-3H2O

68. Cobalt Fluorosilicatehexahydrate

69. Cs 2 C 2 O 4 H 2 O

70. CsCuCl3

71. CsH2PO4

72. CsH2PO4

73. Cu+, Ag+, and Au+

74. [Cu(acpc)2][Cu(L-alao)2][Cu(DL-alao)2(H2O)][Cu(DL-ProO)2(H2O)2][Cu(glyo)2 H2O]

75. CuAl6(PO4)4(OH)8-4H2O

2.0027

2.00362.0027

2.24

2.216 2.103 2.073

2.225

2.130

i) EPR signal intensity [275]thermally activated temp.depend.ii) EPR signal is temp.independent for otherperchlorates. If itadsorbed oxygen thensignal temp, dependent.

The structure of the com- [179]pound confirmed by EPRand Mossbauer studies.

Single crystal EPR results [168]assigned to orthorhombicsymmetry. Temp,dependence exchangecoupling estimated.

ESR LW changes from [346]axial to orthorhombicsymmetry.

The LW continuously in- [81]crease with decreasingtemp.

Cu 2 + enter at interstitial [193]sites. SHP reported at RT.

PT at 420K; temp,dependence EPR spec,over the range120 - 560K.

[453]

Temp, dependence EPR [477]spectra exhibited.

2.2575 2.1866 2.1866 30G 27G 27G SHP, ZFR [476]

2.0023

2.2102.2532.2552.2632.277

2.0068

2.0712.0372.0412.0462.068

2.0068

2.0382.0572.0682.0812.061

3363MHz

3363.5MHz

2.305 2.112 2.034

3363.5 The SHP interpreted in [463]MHz terms of orbital

characteristics.

Bond lengths, bonding [159]parameters reported,electronic dataalso presented.

GS wavefunction con- [409]structed for Cu2 + ions asdlx2-y2> •

76. Copper-amino acid CORRIGENDUM [110]

Page 24: Bull. Magn. Reson., 16 (3-4) 239-291

262 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

Two angular variation [356]of gyromagnetic factormeasured by ESR insingle crystals of severalcomplexes. ESR show a single,exchange collapsed line.

Structural changes of [221]Gel samples indicated byCu(II) EPR spectra.

SHP of solutions and powder [18]samples reported. MO coeff.evaluated.

77. Copper-amino acidcomplexes

78.

79.

80.

81.

Cu(5A4-2AA)2(NO3)2+7xTCu(AA)2(NO3)2+2xTCu(A)5(NO3)2+5xT

Cu(AA)2Cu(OX)2

Cu(AA)(OX)Cu(AA)(5,7Cl-OX)Cu(AA)(5,7Br-OX)Cu(AA)(5,7I-OX)Cu(AA)(5,7NO2-OX)

Cu(AA)2Cu(SA)2

Cu(Cl-SA)2Cu(2Br-SA)2Cu(2I-SA)2Cu(2NO2-SA)2Cu(Acetyl-SA)2

Cu(AA)(SA)Cu(AA)(Cl-SA)Cu(AA)(2I-SA)Cu(AA)(NO2-SA)Cu(AA)(Thio-SA)Cu(AA)(Acetyl-SA)Cu(AA)(2NO2-SA)

CuAc2Im2

Cu2Ac4(CH3-lIm)4-6H2OCu2AC4(CH3-lIm)4-6H2O(Powder)

2.2032.2802.126

2.2912.2442.2422.2342.2422.2422.238

2.2912.2842.2802.2922.2922.3002.2802.2892.2992.2952.2962.2952.2762.300

2.2632.3102.304

2.023

2.0612.0752.0422.0542.0602.0542.059

2.0612.0542.0512.0572.0552.0612.0602.0642.0602.0512.0522.0512.0562.069

2.062.0722.078

2.023

2.0612.0752.0422.0542.0602.0542.059

2.0612.0542.0512.0572.0552.0612.0602.0642.0602.0512.0522.0512.0592.069

2.062.0722.078

202178207

159167144162159162177

159142150147147141153149149149146140149144

190172

15253225302714

1519221920182511141819111917

3113

15253225302714

1519221920182511141819111917

3113

82. Some Aliphatic PolyamineCu(II) compounds

83. CuAlS2 2.32

84. CuAlS2 [2.05-2.31]

85. Cu(3-AMI)4(C1O4)2 2.278

Cu(3-AMI)4(NO3)2 2.274

20

2.064 2.181

2.051 2.166

16.5mT15.03mT

4.98mT5.23mT

11.04mT11.23mT

SHP and MO coeff. estimated [19]and assinged to an axialsymmetry.

The EPR pattern does not [125]show any feature characteri-stic for the triplet para-magnetic state.

ESR LW varies with solvents. [236]The exptl. & cal. LW for diff.solutions were reported.

A symmetrical line shape has [176]been observed.

ESR spectra appears depen- [7]ding on annealing atmosphere.

Ground state WF observed [391]with admixture of dix2-y2> andand dz2- Rhombic symmetryobserved in both complexes.

Page 25: Bull. Magn. Reson., 16 (3-4) 239-291

Vol 16, No. 3/4 263

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

-867[Cu(AMH)2] (QH)2

[Cu(AMH)2] Cl2

[Cu(AP'UH)2] (OH)2[Cu(AP'UH)2] Cl2

(Cu(AMEUH)] Cl2

[Cu(AEEUH)2] Cl2

87. [Cu(bPt)(CF3SO3)(H2O)]2

88. Cu(benzac)2- pyridine

89. Cu(II) biguanide complexes

90. Cu(II)-bis (amino-acid)complexes

91. Cu(BP3CA)Cl2H2O

92. Cu5(BTA)6(RNC)4

93. Cu(C11H12ON2)6(C104)2

94. Copper Complex in theslow motion regime

95. Cu2 + complexes

96. Some binary and ternaryCu(II) compounds.

97. Bi- and tricyclicCu(II) chelates

98. Binary and ternaryCu(II) compounds

99. Some Cu(II) complexes

100. Some Cu(II) complexes

101. Cu compounds

2.1712.1772.1752.1792.1732.181

2.232

2.302

2.0562.0622.0582.0542.0582.065

2.055

2.067

2.0562.0622.0582.0542.0582.065

2.051

2.062

210205202202203205

-492MHz

212524172425

- 2 5MHz

212524172425

- 2 5MHz

SHF reported for dm. solvents.MO coeff. also reported.

ZFR dominant.

Results of ESEEM and CWEPRreported.

[36!

[37]

[75]

SHP and MO coeff. reported. [368]

Solutions SHP reported. [120]

2.256 2.046

2.06 2.19

2.066

2.19 0G 77G 77G

GS wavefunction is of theform of admixture of Ix2-y2>and 3z2-r2.

g and A values are found tobe nearly independent of temp.

2.3416 2.0376 2.0360 0.3656 0.870 0.0473 SHP were made up to liquidGHz GHz GHz helium temp.

A fast compututional methodfor stimulating EPR linesha-pes presented.

EPR of Cu2+ in frozen solu-tions is presented by atheoretical method.

SHP data presented both atRT and LNT.

Structural studies of che-lates conformed by ESR.

SHP of solution spectra andLW studies presented.

SHP of diff. complexes reptd

SHP of polycrystalline ESRexhibit axial symmetry as wellas rhombic symmetry dependingon the ligand environment.Covalency parameter evaluated.

Relationship between the [250]correlation and structure ofCu containing compoundsexamined.

[231]

[32]

[303]

[114]

[117]

[17]

[358]

[348]

[45]

[237]

Page 26: Bull. Magn. Reson., 16 (3-4) 239-291

264 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

ESR LW against temp, plotted; [353]Dynamics of solvent-solutioninteraction.

102. Cu(II) complexes insolutions

103. Cu(II)-Collagen complex

104. Octacoordinated coppercomplexes

105. Cu(II) complexes withorganic liquids

2.19 2.04 2.04

106.

107.

108.

109.

110.

Cu(II) in squareplanar lattices

Copper Calcium Acetate-6H20

Cu(2-CA)o.5S04Cu(3-CA)2SO4Cu(4-CA)3SO4Cu(2-CP)2SO4Cu(3-CP)2SO4Cu(4-CP)2SO4(CA = Cyanoaniline)(CP = Cyanopyridine)

Cu(2-CA)0.5SO4Cu(2-CA)2SO4Cu(4-CA)3SO4Cu(3-CP)2SO4Cu(2-CP)2SO4

Cu(4-CP)2SO4(CA = Cyanoaniline)(CP = Cyanopyridine)

CuCe oxide

2.370

2.4042.4072.3982.3932.3362.402

2.2682.2672.2842.2602.2192.267

2.070

2.0572.0482.0512.0362.0812.052

2.0792.0602.0632.0452.0602.079

2.070

2.0572.0482.0512.0362.0812.052

2.0792.0602.0632.0452.0602.079

13mT

133G113G113G126G146G120G

1.6mT

18.3G20.8G18.3G26.6G6.95G19.9G

1.6ml

18.3G20.8G18.3G26.6G6.95G19.9G

111. Copper Cerium oxide

J T energy reported usingEPR measurements.

EPR and structural para-meters presented.

Structure of complexesdiscussed with the help ofESR data.

ZFR

J values presented at diff.temp, using ID, 3D models.

ESR data indicate thepresence of unpaired elec-tron in the dix2-y2> orbitalof the Cu(II) ion. SHP ofpowder samples and bondingparameters also reported.

SHP reported for both solu-tion powder complexes.

SHP measurements weremade both at X- andQ-band frequencies.

Well resolved EPR spectrumof Cu2 + observed inperpendicular components.

[415]

[129]

[104]

[435]

[416]

[432]

[5]

[21]

[22]

112.

113.

114.

CuCe Oxide

Cu(CioH2oN8)Cl2Ni(CioH2oN8)Cl2

Cu(C8H8O2N)8Cu(C8H8O3N)2Cu(C9H1 0O3N)2Cu(C1iH8O2N)2

AlA2K

2.20792.12332.2079

2.2482.2492.2542.146

2.04032.04032.0403

2.0612.0612.0602.073

2.04032.04032.043

2.0612.0612.0602.073

170G82G85G

150.91148.74141.62135.23

27G40G13.5G

8.807.907.178.06

27G40G13.5G

8.807.907.178.06

Two nearly equivalent Cu 2 +

ions separated by an oxygenion appears.

SHP reported.

Interaction of solvent withEPR spectra presented.MO coeff.

[20]

[64]

[357]

Page 27: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 265

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

115. CuCi8Hi6N4Cl2

116.

117.

118.

119.

120.

Cu(CH3CO2)2(2,6Me2Py)2

[Cu(cit)](Cu(l-mal)]Cu/[Zn(l-mal)(H2O)2]H2O[CuMg(cit)2H_2]4-[CuZn(cit)2H_2]4-[CuPd(cit)2H_2]4~

Cu(2-BOP)Cl2

Cu(3-BOP)Cl2Cu(4-BOP)Cl2Cu(2-BOP)2Br2Cu(3-BOP)2Br2Cu(4-BOP)2Br2

[Cu(Li)2)[Cu(LiH)2]Cl2[Cu(L2)a][Cu(L3)2][Cu(L4)2][Cu(L5)2][Cu(L5H)2]Cl2

Cu(ClO4)2-5ANTCu(ClO4)2-6ANTCu(ClO4 2-2AMFH2O

2.248

2.3682.3742.425

2.2972.2972.325

2.2622.2472.2452.2082.1152.108

2.1702.1762.1732.1742.1732.1732.168

2.43112.43112.3241

2.061

2.0802.0802.089

2.0622.0622.068

2.0662.0512.0502.041--

2.0592.0612.0572.0612.0632.0612.058

2.06862.06862.0671

2.061

2.0802.0802.089

2.0622.0622.068

2.1352.0802.0802.041--

2.0592.0612.0572.0612.0632.0612.058

2.09572.09572.0893

23.6mT

142140 -120

173173161

208207209204203203210

131317

3.5mT

101010

121207

23222420191925

3.5mT

101010

121207

23222420191925

121. CuCl2 - Graphite

122. I/CuCl2

II/Cu(NO3)2

123. (CuCl 2 Ll ) 2(CuCl2-L2)2

124. CuCl2-2PyCuBr2-2Py

125. Cu(CN) | -

Cu(CO)3

Ag(CN)^

Ag(CO)3

126. Cu(CO)3

2.183 2.075 2.075 163G2.200 2.049 2.049 200G

20G53G

2.142.18

2.042.04

2.042.04

20G53G

Non equivalent Cu(II) sites [130]obsd.; Exchange integralexplained LW of EPR.

Anisotropy of LW obsd. due [171]to isotropic exchange inter-action.

The Cu(II) ion coordination [52]environment in hetrodinuclearspecies is different from theCu(II) monocitrate species.

EPR data indicate the pres- [3]ence of unpaired electron indix2-y2> orbital of Cu(II) ionin an axial symmetry.

SHP of powder as well as [383]solution spectra presented.MO coeff. reported.

2.0004

2.0010

1.9987

2.0009

2.0010

2.0049

2.0029

2.0035

2.0009

2.0036

2.0049

2.0029

2.0035

2.0009

2.0021

262MHz225MHz168MHz1586MHz

225MHz

74MHz0MHz89.5MHz1586MHz

0

74MHz0MHz89.5MHz1586MHz

0

Information concerning the [119]structure of title compoundpresented.

EPR study reported on Cu(II) [224]Mn(II) ions.

Liquid crystalline phases [90]and solid polycrystals char-acterized by its EPR pattern.

EPR and magnetic suscepti- [377]bility data presened.

EPR spectrum always reduced [336]to Lorentzian singlet.

Ag(CO)3 is unique.beingpyramidal where the otherthree are planar.

[173]

Isotropic interaction incre-ases with increasing temp.

[172]

Page 28: Bull. Magn. Reson., 16 (3-4) 239-291

266 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments

127. [Cu3(C2SCH2OH)2]2C1O4

128.

129. Cu(2,5-DimethylBenzoxazole) (0104)2

130. Cu(2,5-dimethyl-benzoxazole) 2 Br2

131. Cu(tn)2(SCN)2[Cu(tn)2NCS]B0[Cu(tn)2NCS]C104

132. [Cu(dach)2] C1O4)2[Cu(dach)Br] C1O4[Cu(dach)Br2]

133. (Cu2(dien)2Cl2](C104)2

135. Cu(II) dimers

136. [Cu(dap)2]BF4

137. [Cu(dpt)en](B04)2

138. Cu(dtc)2Cu(Hy)2Cu(Sal)2Cu(dtc)(Hy)Cu(dtc)(Sal)

2.073 2.121 2.117

2.056 2.150 2.104

2.26

Nearly rhombic distortion [502]spectra observed.

E P R LW narrowing observed [97]with increasing temp, and g-factordecreases with anion S-Sesubstitution.

2.380

2.2122.2222.274

2.0762.0972.102

2.084

2.0722.0692.050

2.074

2.0722.0692.050

115G

167.4172.0155.3

91.472.574.2

7.5G

10.58.225

5.5G

10.58.225

Isotropic spin rotationalmechanism is responsible forthe residual LW.

EPR study showed complexespossesses distorted octahe-dral units.

Molecular motion is respon-sible for anisotropic andnon-diffusional in the comlexes.

SHP reported for the titledcompound with various solvents.

[390]

[392]

[71]

[174]

134. [Cu(den)NCS)]NO3[Cu(den)NCS]B04

Cu(den)2(NO3)2Cu(den)2(C104)2

Cu(Pn)2(NCS)2Cu(Pn)2Br2

2.2322.2432.2462.2312.2032.2145

2.0322.0702.0542.0582.0722.053

2.0322.0702.0542.0582.0722.053

-185G-167G-175G-170G-190G-192G

- 2 9 G- 2 3 G- 2 5 G- 1 0 G- 2 9 G- 2 6 G

-29G- 2 3 G- 2 5 G-10G-29G- 2 6 G

III

2

22

.2506

.1985

.2020

2.0450

2.09112.0911

2.0768

2.01112.0111

467MHz

127.8133.1

94MHz

29.229.2

138MHz

9.49.4

2.04802.10742.12012.07582.0767

78G87.5G59.5G82.5G71.4G

Exchange coupling parameter [151]estimated.

SHP reported for solutions [264]as well as powder samples.Covalency parameter discussed.

Temp, dependence ESR study [177]indicates the crystal hastrigonal bipyramidal coor-dination.

The pseudotetrahedral sturc- [288]ture of solution changes withcrystalline nature.

Two inequivalent molecules [262]observed. The geometry aroundCu(II) ions changes due to JTdistortion.

LW are temp, dependent and [457]isotropic go estimated fromthe E P R spectra in solutions.

Page 29: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 267

S.No Host Lattice

139. [Cu(dap)2]V!+BF4

Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

[Cu(cat.30)]2+BF4

Powder

140. Cu(II)-diglycine complexes

141. (Cu2(dien)2Cl2](C104)2

142. [Cu(2,5-DMC)2]2[Cu(2,5-DMC)2](4,7-DMP)[Cu(2,5-DMC)2](2,9-DMP)

143. [Cu(dmc)2(2,9-dmphen)]H2O[Cu(dmc)2(phen)]H2O[Cu(dmc)2(4,7-dmphen)]

144. [Cu2(3-Et-pyr)4(dmf)2]

145. [Cu(ethylenedibiguanide)][Cu(ethylenedibiguanide)][Cu(trimethylenedibiguanide)][Cu(piperazinedibiguanide)][Cu (m-phenylenedibiguanide) ][Cu(phenylbiguanide)2]Cl2

146. Cu(EDtc)2- L

Cu(EDtc)2- L'

147. Cu(Edtc)2-L

Cu(Edtc)2-L'

148. Cu2 [F2(dmpz)2(mpz)4](BF4)2Cu2 [F2(mpz)2(dmpz)4](BF4)2

149. Cu(4F3NA)2Cl2-2H20

Cu(4F3NA)2Br2

Cu(4F3NA)2 (SCN)2 -3H2O

150. [Cu-F-hect]

[Cu-OH-hect]

151. Cu(II)-Fe(III) complexes

1IIIII

2.2772.2772.2822.2812.283

2.0742.0702.0762.0782.088

2.0742.0702.0762.0782.088

2.214 2.046 2.057

2.402.282.02

2.022.2762.276

2.092.062.31

2.312.062.06

2.092.062.17

2.172.062.06

71.4G

2.30 2.05 2.05

EPR shows the solution existpseudotetrahedral structurebecause of rapid electrontransfer kinetics.

SHP.

LW of the EPR lines strongdependent and increase line-arly with temp.

Resolved EPR spectra obsd.at 125K. SHP presented atRT also.

Environment effect of threecompounds were discussed.

SHP discussed in terms ofknown binuclear structure.

2.082.192.172.182.162.16

2.102

2.104

2.102

2.104

2.052.052.052.052.05

2.028

2.030

2.028

2.030

2.052.052.052.052.05

2.028

2.030

2.028

2.030

208220182169188

155/166G150/161G

155/166G150161G

3233363535

38G

37G

38G

37G

3233363535

38G

37G

38G

37G

The observations of ninenitrogen Shf lines on thehigh field indicate thepresence of four equivalentnitrogen atoms around Cu(II)ion.

Structure of paramagneticcentres discussed. SHPreported for various dithio-carbomate complexes.

The structural orderingdescribed by ESR. SHP reporfor various complexes.

[287]

[279]

[164]

[514]

[201]

[121]

[448]

[183]

2.038 2.288 2.0981.978 2.320 2.055

IIIIIII

AB

2.3942.3462.3472.3882.355

2.402.262.26

2

22

222

.087

.087

.078

.06

.07

.07

2

22

222

.077

.077

.078

.06

.07

.07

120G125G120G120G140G

1185050

7G

5.5G13G

5G

4.5G13G

[187]

Good agreement found between [148]exptl. and cal. values. GS isof the form dix2_y2>.

The solvent effect on LW. [396]The GS wave function andMO coeff. evaluated.

Three types of Gu(II) sites [469]observed.

EPR study reported for [453]Cu(II)-Fe(III) complexes.

Page 30: Bull. Magn. Reson., 16 (3-4) 239-291

268 Bulletin of Magnetic Resonance

S.No

152.

153.

154.

155.

Host Lattice Site

CuPu2-2 MeOHPowderSolution I

II

[Cu(Gly)A]+[Cu(Pro)A]+[Cu(Phe)A]+[Cu(Try)A]+[Cu(His)A]+

[Cu(Hm)A]+

[Cu(GlyGly)A][Cu(GlyPro)A]+[Cu(GlyLeu)A][Cu(GlyTry)A]

Cu(Gly Ala) (bipy) -4H2OCu(GlyAla)(Phen)-3H2OCu(Gly Phe)(bipy)-4H2OCu(GlyPhe)(phen)-3H2OCu(GlyTyr)(bipy)-4H2OCu(GlyTyr)(phen)-3H2OCu(GlyTyr)(dmph)-4H2OCu(GlyGly)(bipy)-3H2OCu(GlyGly)(phen)-3H2OCu(GlyGly)(dmph)-4H2O

Copper Glutamate

2.3422.3882.355

2.2462.2822.2642.2652.2862.2862.2572.2922.2062.204

2.2262.2252.2362.2312.2322.2322.2202.2432.2432.230

2.339

Spin-Hamiltonian Parametersgx

2.0832.0822.082

2.0732.0732.0612.0482.0622.0702.0442.0732.0452.043

2.0782.0862.0582.0782.0642.0612.0852.0582.0572.084

2.043

gy

2.0832.0822.112

2.0732.0732.0612.0482.0622.0702.0442.0732.0452.043

2.0782.0862.0582.0782.0642.0612.0852.0582.0572.084

2.083

Az

133147

191168180176169170178153167169

164169172177175172171157162170

410MHz

Ax

<20<20

6610191015226615

52MHz

Ay

<20136

6610191015226615

37MHz

Comments

Magn. susceptibility, x-rayoptical absorption reportedand SHP data presented forvarious solvents of complex.

ESR parameters used tocompute MO coeff.

The complexes have distortedsquare pyramidal geometryaround Cu(II) ion.MO coeff. evaluated.

ENDOR and EI-EPR studiesreported.

Ref.

[504]

[436]

[44]

[334]

156. Cu(HCOO)2-4H2O

157. (Cu-heme-SL2)

158. CuH-[Al]-ZSM-5

CuH-[Al]-ZSM-5

CuH-[Ga]-ZSM-5

159. CuH-Chab.CuH-SAPO-34

2.362 2.071 2.166 The transition temps, inhigh magn. fields areestimated.

III

IIIIII_

2.1802.176

2.3022.3172.3022.3172.308

2.0552.053

2.0632.0642.0632.0642.062

2.0552.053

2.0462.0292.0462.0292.048

176G177G

174172174172172

26G33G

2021202119

26G33G

1113111310

Motional effects werediscussed.

SHP and LW estimated toidentify the exchange sitesin Zeolites.

[312]

[1]

[145]

2.364 2.075 2.075 1512.381 2.073 2.073 143

160. Cu [H2NCH(CH3)2CHCO2]2H2O

2.254 2.061 2.061

SHP for Cu(II) cation invarious samples reported.Using ESR and ESEMtechniques location and coor-dination of Cu(II)ions determined.

Two magn. inequivalentCu(II) ions observed in thelattice caused by theexchange interact.

[266]

[434]

161. CuI-CuO-WO3(MoO3) Glasses. [134]

Page 31: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 269

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax Ay

Comments Ref.

162. CuInSe2

163. [CuL2(SQ)][CuLSQ]

164. CuL2L'2 (BPh4)2PowderSolution

AB

III

165. Cu(II)-L-Phenylalamine

166. Cu(L-Leu)2

167. Cu(II)-L-Serine

168. CuL4:MeOH:CHCl3

CuL2:Me0H:CHCl3

169. Cu2LCu2L(OH)Cu2L(OH)2

170. CunL2

171. Cu(L-Leucine)

172. Cu(L-Met)2

173. Cu(L-PHE)2

174. Cu(L-Phe)2

175. [Cu(MHBQ)2]

2.00302.1642

2.00502.0046

2.2683 2.0800 2.0500 165G 10G2.2730 - - 173G 12G2.2720 2.0040 2.0940 170G 9G

2.265 2.072 2.072

2.263 2.058 2.058 1722.266 2.058 2.058 168

2.262 2.058 2.058

2.263 2.073 2.073

2.266 2.075 2.075

Isotropic EPR signals obsd. [342]

The spin densities on the [379]Cu and P were found to varyoppositely, which could beexpected from the electronaffinity.

10G Square planar geometry with [261]12G N-coodinated ligands obsd.9G

LW variation and isotropic [291]SHP, go and A values reported.

Exchange interaction were [433]discussed between Cu(II) pairs.

Spin rotational relaxation [292]mechanisms discussed; isotropicg and A values reported.

2.281 2.053 2.053 174 132.273 2.053 2.053 174

2.002.002.00

13 ESR data computed to cal.complex stability constants.SHP reported for varioussolvents.

[455]

18.7

2.24 2.05 2.07 195G

Structure of binuclear [400]Cu(II) complexes confirmedby EPR.

18.7 Both complexes EPR study [12]assigned to distorted squareplanar coordination.

Anisotropy g-factor depends [100]on temp, and external field.

Two magn. non-equivalent [248]Cu(II) ions in the latticecaused by exchange interaction.

Two magn. non-equivalent [108]Cu(II) sites due to theexchange interaction obsd.

Spin dynamics explained by [109]exchange interaction ofCu2+ pairs.

Based on Magnetic, IR, elec- [351]tronic, PMR and ESR data thecomplex structure assigned.

Page 32: Bull. Magn. Reson., 16 (3-4) 239-291

270 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy A2 Ax

Comments Ref.

176. Cu88-xMni2T:

177. Cu(MCMQ)2Cu(PCMQ)2

Cu(MHBQ)2Cu(PHBQ)2

Cu(MFQ)2(CH3COO)2Cu(PFQ)2(CH3COO)2Cu(MAQ)2(CH3COO)2Cu(PAQ)2(CH3COO)2Cu(MUQ)2(CH3COO)2

Cu(PUQ)2(CH3COO)2Cu(MTUQ)2(CH3COO)2Cu(PTUQ)2(CH3COO)2

178. Cu(MDtc)2Am

Cu(MDtc)2MAmCu(MDtc)2DeAm

Cu(MDtc) 2 Py

179. Cu(MDtc) 2 Am

Cu(EDtc) 2AmCu(MDtc)2-Py

Cu(EDtc)2-2Py

2.142.132.242.232.202.182.232.222.202.212.202.21

2.00

2.002.00

2.00

2.00

2.0042.00

2.003

2.032.032.062.052.052.042.052.042.052.052.052.05

2.111

2.1092.117

2.118

2.111

2.1312.181

2.114

2.032.032.062.052.052.042.052.042.052.052.052.05

2.102

2.0912.091

2.060

2.102

2.0942.060

2.064

173142

167173143173

~26 /28G~24G~24 /26G~22G

26/28G28G~22G

23.4/25G

7468

87569980

95/102G102G98/105G122/131G

95/102G108G122/131G122/130G

7468

87569980

84.6/90.3G85G8 1 /87G54G

84.6/90.3G86G54G

58/63.8G

180. Cu-methoxonitrophenolates

181. [Cui_xMg x(HCO2)2]-4H2O[CU l_xZnx(HCO2)2].4H2O

182. (Cuo.89Mn0.n)/copperspin glasses

183. [Cu(MPQ)2(CH3COO)2]

[Cu(PPQ)2(CH3COO)2]

[Cu(HMP)2]

[Cu(HPQ)2]

184. [Cu(II)(N-CH3TPP)CF3SO3],[Cu(N-CH2C6H4NO2HTPP)]

[2.36 - 2.12][2.36 - 2.12]

2.25

2.28

2.23

2.20

2.2132.220

2.06

2.07

2.06

2.05

2.0552.065

2.06

2.07

2.06

2.05

2.0552.065

3200MHz3300MHz3900MHz3700MHz

149G142G

600MHz200MHz300MHz700MHz

__

600MHz200MHz300MHz700MHz

__

EPR LW explained by inverse [96]susceptibility.

Based on the data,the Cu 2 + [354]complexes assigned totetragonal or squareplanar geometry.

SHP were detected. [186]

SHP of solution reported. [188]

Exchange interaction para- [471]meter estm.

ESR LW at particular temp. [74]decrease with increasingdopant concentration.

Increasing anisotropy as [247]spin-glass layer thickness isdecreased is briefly discussed.

Ground state is of the form [371]

ofdix 2 - y2>. MO coeff. estd.

Solutions. Nitrogen effect [447]on superhyperfine structure.

Page 33: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 271

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

185. Cu(II)N-acetyl glycinate-H2OCu(II)N-acetyl methioninateCu(II)N-acetyl alaninateCu(II)N-acetyl valinateCu(II)N-acetyl glutamateCu(II)CyanoacetateCu(II)Thiodipropionate

186. Cu(II)-N-aryl glycinate

187. Cu(NO3)2- 2.5H2OPowder

188. 6 3Cu3 in N2 matrix

189. Cu2(2-NO2C6H4COO)4(DMSO)2

190. 6 3Cu/Ni(Et2-dtph)2

63Cu/Ni(PrS-dtph)2

191. Cu(II)-n-amine complexes

192. Cu/Nafion/CDsCN

193. CuNaY Zeolite(Faujasite)

194. Cu(4%)Nafion/CH3CN(soaked once)Cu(100%)Nafion/CH3CN(soaked once)Cu(4%)Nafion/CH3CN(soaked twice)Cu(4%)Nafion/CH3CN(soaked once)Cu(4%)Nafion/CD3CN(soaked twice)

195. Cu(NA)2Cl2Cu(NICA)2Cl2Cu(INA)2Cl2Cu(NA)2Br2Cu(NICA)2Br2Cu(INA)2Br2Cu(NA)3(SCN)2

2.1492.1582.4282.4412.2652.3852.289

2.3652.400

2.0802.0502.0902.0862.1042.1202.106

2.1022.07

2.0802.0502.0902.0862.1042.1202.106

2.0682.07

SHP of powder as well assolutions were measured.Ground state wave functionis of the form dix 2-y 2>-

[146]

1.9769 2.0042 1.9905

2.412 2.089 2.089

III

222

.1082

.1080

.1066

2.02300.02232.0226

2.02590.02552.0246

145145.6150

27.728.526.6

29.930.528.4

I 2.3931 2.074 2.074 129.7GII 2.4201 2.074 2.074 119.2G

LNT EPR study reported. [252]

Automatic fitting procedure [113]were used for calculating theg-factors and LW.

The hf interaction is nearly [251]isotropic. GS is of the form2AI-

Optical, IR and Magnetic [272]properties reported.

X-ray data reported and [178]confirmed by EPR.

Bonding nature of the [508]amino groups presented.

After cycle of soaked and [196]drying all four equivalentligands replaced by fourN2 ligands.

The differences in EPR [126]results observed are attri-buted to migration of Cu(II)ions in aluminosilicate.

2.3335 2.0720 2.0720 159 11 11 ESR parameters studied at [195]different band frequencies.

2.3480 2.0794 2.0794 158 11 11

2.3472 2.0749 2.0749 160 12 12

2.3720 2.0830 2.0830 146 5 5

2.4100 2.0770 2.0770 137 7 7

SHP reported for variouscomplexes at room andlower temp, and GS is ofthe form diX2-y2>or dxv.

2.2332.2272.2522.1422.1522.1422.159

2.0632.0802.051---_

2.0632.0802.051

--

Page 34: Bull. Magn. Reson., 16 (3-4) 239-291

272 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersg* gx gy As Ax

Comments Ref.

Cu(NICA)2(SCN)2Cu(INA)2(SCN)2Cu(NICA)2SO4Cu(INA)2SO4

196. [Cu(NCN)]2+c

[Cu(NSN)]2+d

[Cu(NSN-Me)]2+d

[Cu(NCN)2]2+c]

12+d[Cu(NSN):[Cu(NSN-Me)]2+d

197. Cu(II) - Ni(II) pairs

198. [Cu(NH3)4]SeO4[Cu(H2O)3(CH3NH2)]SeO4[Cu(H2O)3(C3HsNH2)]SeO4[Cu(H2O)3(C3H7NH2)]SeO4[Cu(H2O)3(C5HiiNH2)]SeO4[Cu(H2O)3(C5H5NH2)]SeO4[Cu(H2O)3(C9H7N)]SeO4[Cu(C2H8N2)2]SeO4[Cu(C3H10N2)2]SeO4[Cu(H20)2(CioH8N2)]Se04[Cu(NH3)4]WO4[Cu(C2H8N2)]WO4[Cu(C3Hi0N2)]WO4

199. Cu(NH3)3Cl4

200. Cu(NN)2X2

201. Cu(II) with N,N-dialkylamino acids

202. (CuO)x(V205)o.55-x(Te02)0.45

203. x(CuO-V2O5)(l-x)(Na2OP2O5)

204. xCuO(l-x) [2P2O5-Na2O]

205. Copper Oxide

206. C11O4CuO2S2CuO2Se2

207. Cu4OCl6(TPPO4)

208. [(L')Cu(u-OH)2Cu(L')](C1O4)2

2.1522.1492.1592.155

2.3232.3332.3352.3062.2642.262

----

2.0742.0782.0752.0632.0532.052

----

2.0742.0782.0752.0632.0532.052

161132136165183183

121517182222

121517182222

2.322.322.302.312.332.322.332.302.322.322.322.292.31

2.082.112.062.102.092.092.112.092.162.142.122.052.12

12 12 SHP reported for diff.ligand [53]environments. Optical data

17 also reported.

Method to calculate the g [38]and A tensors discussed.

The g-signals are very sharp [122]and the values are temp,independent. NMR data andmagnetic data also reported.

2.206 2.070 2.066

2.426 2.089 2.089 119

2.359 2.079 2.079 122G2.264 2.076 2.076 108G2.259 2.076 2.076 109G

SHP parameters estimated by [135]CNDO/2 technique.

GS is of the form dix2-y2> • [232]

ESR spectra influenced by [131]solvent and substituent diff.

Glasses.

Glasses.

[444]

[489]

21 21 GS is of the form 3dxy. [76]

ZFR observed at and under [408]the critical temp.(Tc).

Covalency bonding increases [350]in order CuO4 < CuO2S2< CuO2Se2.

Magn. dipole-dipole coupling [385]const, calculated.

2.250 2.06 2.06 ZFR. [337]

Page 35: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 273

S.No Host Lattice Site Spin-Hamiltonian Parametersg* gy Az Ax

Comments Ref.

209. Cu4OX6L4

210.

2.10

Cu(OX)2Cu(OX)(SA)Cu(OX)(Ace-SA)Cu(OX)(Cl-SA)Cu(OX)(2Br-SA)Cu(OX)(2I-SA)Cu(OX)(2NO2-SA)Cu(OX)(Thio-SA)

2.1962.1672.1602.2682.1862.1682.2042.168

2.0472.0502.0522.0592.0452.0632.0882.065

2.0472.0502.0522.0592.0452.0632.0552.065

162.8

211. Cu(II)Polyamine andImidazole complexes

212. Cu(PPO)4(ClO4)2-H2OZn(Cu) (PPO)! (C1O4) 2 -4H2O(Zn:Cu = 100:1)

213. [Cu2(Phen)2(C2O4)(NO3)2]

214. Cu(PhP)2Cl2Powder

215. Cu(l-Phenylpyrazole)2Cl2

216. Cu[P(OMe)3]3

Cu(Pme3)3

Cu(CO)3

217. Cu(PBTT)2Cl2Cu(PTT)2Cl2Cu(PFTC)2Cl2Cu(DPBTB)4Cl2Cu(PBTB)2Cl2Cu(PBTT-H)2Cu(PFTC-H)2Cu(DPBTB-H)2Cu(PBTB-H)2

218. 63CuPF3

63Cu13CO

2.371 2.101 2.080 1462.335 2.0897 2.0795 127.5 9.69 7.73

III

2.285

2.0682.3202.206

2.060

2.206

2

2

.068

.206

2.068 2.206 2.206

2.0025

2.0023

2.0010

2.39922.40562.29912.22052.36002.40372.34262.23172.2572

2.0030

2.0016

2.0029

2.06332.06492.03822.01912.03422.05782.04172.01282.0246

2.0030

2.0016

2.0029

2.06332.06332.03822.01912.03422.05782.04172.01282.0246

280MHz293MHz225MHz

62.2G60.0G80.0G72.5G74.0G60G79.17G79.2G70G

40MHz34MHz

10G20G15G12.5G19.6G15G11.25G15G19.1G

40MHz34MHz

10G20G15G12.5G19.6G15G11.25G15G19.1G

1.999

1.9966

Symmetric and skew-symmet- [57]ric parts discussed with thehelp of ZFR.

Powder data presented. [16]

Resolved at LNT.

Resolved at LNT and RT.

Resolved at LNT.MO coeff. For all complexesLNT data also presented.

SHP were presented diff. [411]solution spectra. Axial EPRspectra exist in all thecomplexes.

The metal-ligand length in [395]the z, x - directions inZn(II) complexes are morelonger and the bond lengthin Y-dir. is more shorterthan the correspondingbond-lengths in Cu(II).

ZFR; X-ray data presented. [35]

EPR signals became single [127]line at LT.

At 77K EPR signal due tomagnetically ineuivalentCu2+ complexes collapsedinto single line.

Cu ions undergoes sp2

hybridization with p-ligandsdonating their lone-pairelectrons.

[128]

[156]

ESR signals caused by some [491]defect in the crystal.

Magnetic properties andSHP reported. GS is ofthe form 2Ai.

[157]

Page 36: Bull. Magn. Reson., 16 (3-4) 239-291

274 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy A2 Ax

Comments Ref.Av

219. CU2PMO11VO4O2IH2O

220. Cu(PTT)2Cl2

221. Cu(PU)5(ClO4)2

The distance between two [77]C u 2 + ions estimated.

EPR spectra not resolved due [492]to parallel and perpendicularsignals.Ferromagnetic nature of [470]interaction exist betweenCu(2+) and cation.

222.

223.

224.

225.

226.

227.

228.

229

Cu(pyb)Cl2Cu(pyi)Cl2Cu(pyim)Cl2

Cu(PZ)2Cl2

Cu(PZ)4Br2

Cu(PZ)4(ClO4)2

Cu(RCO)2L2 Sis2

Cu2REP(u-OH)(C104)2Cu2REP(u-Cl)Cl2

Cu(I) sulphide

[Cu2(Sal-/3-al)2H2O]H2O

Cu(2+) on silicon surface

[Cu(S2CNHCHRCO2H)2]

2.05

2.3492.2952.307

2.3002.268

2.15

2.61

2.30

2.294

2.232.202.12

2.0772.0692.090

2.0632.050

2.04

2.053

2.072.10

2.0772.0692.090

2.0632.050

2.05

2.053

120G150G158G

170191

166

40G33G25G

<310

40G33G25G

<310

EPR and magnetic data pres-ented for solutions and solids.

SHP of solution and powder.The bond strengths and equ-atorial strengths reported.

Two diff. EPR spectra ofmononuclear complexes obsd.in liquid and solid solutions.

No EPR signal in 1st complexfor Cu 2 + ions.

On cooling g-factor varieswith a function of temp.

Magn. susceptibility andbond lengths reported; ZFRpresented.

EPR study reported onsilicon surface with Cu 2 + .

ESR data confirm that stru-

[85]

[394]

[165]

[355]

[472]

[487]

[265]

[62](R = Me.Et)

230. Cu(SHA)2-2H2O

231. Cu(Sal)2-4H2OCu(Sal)2(2-pycar)2

Cu(Sal)2(3-pycar)2

232. Cu(II)-semiquinonatocomplexes

233. Cu(salgly) L(H2O)X

234. Cu(Sal)2-4H2OCu(Sal)2(2-pycar)2Cu(Sal)2(3-pycar)2

cture of complexes square-planar.

2.15 2.06 2.06 84.19 74.83 74.83 The observed g-values indi-cating covalency in the sequenceCu(II) > VO(II) > Mn(II) > Fe.

[213]

Formation of different [459]symmetries of the complexes werediscussed.

ZFR. [15]

2.310 2.065 2.0652.304 2.075 2.0752.310 2.060 2.060

The complexes show moderate [349]antimicrobial activity againstFungi.

[270]154.170

1 12.910.2

12.910.2

SHP usedcoefficient

for estimate MO

Page 37: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 275

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

235. Cu(Sal-enNH2)ClO4Cu(Sal-enNH2)NO3Cu(Sal-pnNH2)ClO4Cu(Sal-pnNH2)NO3

Cu(5-NO2Sal-enNH2)NO3-H2OCu(5-NO2Sal-PnNH2)NO3-H2O

236. Cu(Saox)2

Cu(apox)2Cu(mpox)2

Cu(ppox)2

Cu(bpox)2Cu(opox)2

2.2512.2512.2732.2732.2502.276

2.1792.1852.189

2.190

2.0602.0452.0422.0582.0452.052

2.0602.0452.0422.0582.0452.052

186188172172189174

237. CuSO4-5H2O

238. CuSO4-5H2O

239. [Cu2(tembma)2(bat)](NO3)3

240. [Cu2(t-Buty.py)4(N3)2](C1O4)2

241. Cu(Tl)(EDTC)2Cu(Tl)(MDTC)2Cu(Tl)(BDTC)2Cu(Ni)(EDTC)2

242. Cu-(Thalocyanine)0.2

243. Cu(II)with triedentatesalicylaldimines

244. Cu(II) trimers

245. CuThO2

246. Copper ThoriumOxides

247. CuTl2(EDtc)4

0t

2.130 2.063 2.190

2.240 2.070 2.030

2.0862.0872.0872.087

2.0252.0262.0252.023

2.0252.0262.0252.023

157157157157

41414144

41414144

2.088 2.023 2.023

2.090 2.024 2.024

2.089 2.027 2.027

155/165G150/160G148/158

39.4/42.2G40.9/43.8G41/44G

39.442.2G40.9/43.8G41/44G

ESR spectra show the depo-limerization of the dimersby the polar solvents. SHPfor diff. solvents reported.

SHP, IR and optical datareported for several solutions.

[246]

[243]

Investigation of dehydrationprocesses.

The Cu2+ ions are magneti-cally equivalent. Angulardependence EPR LW discussed.

ZFR.

Two magnetically distinctsites observed. ZFR.

GS is of the form ofdiX2-y2> or d/x y > .

[484]

[420]

[36]

[244]

[182]

Indirect exchange inter- [132]ation between Cu2+ ions showedby EPR.

The role of OH groups on [202]the structure of adductsanalysed.

EPR LW changes with temp. [506]The result of symmetricanisotropic exchange.

SHP reported. [33]

ESR parameters change with [21]temp, due to two non-equivalentCu2+ ions.

Depending on temp, and [184]preparation conditions Cu-Tlcomplex formed.

Page 38: Bull. Magn. Reson., 16 (3-4) 239-291

276 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

248. [Cu(trien)en]BO4

[Cu(trien)en](ClO4)2

249. [Cu(trien)(enMe4)](Bh4)2[Cu(trien)(enEt2)](BPh4)2

250. Cu-tylacetonate;Cu-phthalocyanine

251. CuX2(4-picdine)2

255. Diaqua (15-Crown-5-Ether)Zn(II) Nitrate

256. Dicyanoquinonedimino-Cu2+

257. Diopfase

258. ErBaCu3O7-sHoBa2Cu3O7_s

259. EuBa2Cu3O7_s

260. Eu2CuO4

261. [Fe(III)Cu(II)(BPMP)Cl2](BPhy)2

262. FeSi6-6H2O

263. Iron Silicate Zeolite

264. Garnet

2.222

2.180

2.19372.1898

2.058

2.058

2.09162.0565

2.058

2.058

2.05162.0465

504MHz

188.7188.4

33.428.7

19.19.5

252.

253.

254.

CuX2(H20)2CuX2(Py)

Cuo.5Zr2(P04)3

6 3Cu/Zn(AP)2(NO3)2

2.3012.318

2.3919

2.0052.042

2.1009

2.0052.042

2.081

2.242.24

2.48

2.052.05

2.01

2.052.05

2.01

2.28 2.03 2.03

2.380

2.27 2.07 2.07 176G

For both the complexes GS is [393]of the form diX2-y2> • SHP ofsolutions and powders reptd.

Bonding parameters estimated [263]SHP reported for diff. sol-vents and systems attributedto distorted compressed tetra-hedral symmetry.

By correlating EPR and optl. [320]data covalency parameters cal.

At lower temp. diff. symme- [225]tries appeared.

ZFR. [271]

J T distortion below 793K. [198]

-21.4 - 1 0 d- orbital coeff. and GS-WF [427]constd.; Cu2 + sub. for Zn2 +.

SHP reported. [86]

Localized Cu 2 + spin present [313]independently of conductionelectrons.

SHP and crystal field para- [372]meters reported.

A non-resonant absorption [215]peak observed below Tc of 93K.

Significant diff. observed [143]between EPR signal of Cu2 + intetragonal and orthorhombicphase.

Unusual ESR signal in single [466]crystal observed and disappearsabove ~215K.

Unusual line broadening [200]observed by ESR and Moessbauer.

The exchange parameter (J) [384]=(0.30 ± 0.003)cm-1 at 4.2K.

Introduction of Cu 2 + ions [214]leads to reduction of ESRsignal.

Cu 2 + ions orbital study in [42]octahedral surroundings.

Page 39: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4277

S.No Host Lattice Site Spin-Hamiltonian Parametersgz gx gy Az Ax Ay

Comments Ref.

265. GdBa2Cu3Oy

266. GdBa 2 Cu 3 0 y

267. GdBa2Cu3O7_s

268. GdBa2Cu3O7_s

269. Gd2CuO4

270. [(Gd0.sEuo.5)2Cu04]

271. Gdo.sReo.sBa2Cu307_,

272. GdT2Ge2(T=Co,Ni,Cu)

273. GdT2Sn2

274. Gd y Yi_ y Ba 2 Cu 3 O 6 + x

275. (Gly)2CaCl2-4H2O

276. (Gly)2CaCl2-4H2O

277. (gly)3Ca(NO3)2

278. HxLa18Sr0.2CuO4

2.021

2.07

Exchange interactions dis- [328]cussed between metal ions.

Intensity and LW of EPR [329]varies with temperature.

EPR spectrum intensity [141]increases with decreasing temp.

Lowering the g-anisotropy [430]by the orientation providesat LT.

The mechanism of supercond.discussed. Low field EPRsignal observed at 260K.

[399]

2.01

ESR show anomalous aniso- [99]tropy for temp, below T ~ 280Kof the Cu2+ ions.

Cu2+ LW and LS were almost [142]independent.

EPR LW and g-shift depend on [203]number of d-electrons.

1.989

Thermal broadening of LWincreases with decreasingd-electrons.

LW vartion with temp, andZFR observed.

SHP reported.

2.308 2.115 2.034 -73 40.1 113.4 GS-WF is of the formala dx2—y2— b dz2 >.

2.274 2.049 2.081 127 50 20 MO coeff. evaluated.

Two types of Cu2+ centresformed like single ion andcluster ions.

279. hnap-bac. eahnap-bac. pyhnap-bachnap-acac. deahnap-bac

280. hnap.acachnap.bachnap.Ind.hb.benH

2.2192.1762.2452.2892.2522.2432.2522.3252.297

2.0542.0612.0562.0532.0552.0552.0552.0722.071

2.0542.0612.0562.0532.0552.0552.0552.0722.071

192149182179186186186148158

16102118211921

16102118211921

The study of adducts andtheir influence on the structof the Cu complexes in thesolutions reported.

SHP reported for varioussolvent solutions and repor-ted data evidence ofCu(II) complexes.

[204]

[407]

[163]

[166]

[169]

[443]

[124]

[162]

Page 40: Bull. Magn. Reson., 16 (3-4) 239-291

278 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

281. Hydrated Monopyrazine-Zinc sulphate - Ammoniumsulphate, Magnesium acetate

282. K-(BEDT-TTF)2Cu[N(CN)2]BrK-(BEDT-TTF)2Cu(N(CN)2]I

283. K2Cd(SO4)2-6H2O

284. K2C2O4H2O

285. K3Cu(CN)4

286. KCuF3

287. KHCO3

288. Ko.73Lio.27Tao.3

289. KMgClSO4- 3H2O

290. KNH4SO4Powder

291. K2PdCl4; K2PdBr4; CdCl2

292. K2ptCu(NO2)4

293. K2SeO4

I

II

2.0058 2.0020 2.00202.0058 2.0020 2.0020

2.3330 2.0721 2.0663

2.2952.292

EPR and optical data [4741reported.

The temperature and [209]angular dependence ofthe parameters of theresonance line analysed.

Ground state of C u 2 + ion [512]is of the form admixtureof d-orbital.

[309]

2.2403 2.0647 2.0525

2.0004 2.0049 2.0049

0.4832GHz

0.260MHz0.262MHz

0.0486GHz

0

0.074MHz

0.0504GHz

0

0.074MHz

EPR showed four magneti-cally inequivalent Cu2+

sites, consisting two pairsof physically equivalentsites. Pseudostatic anddynamic JTE appearsbelow above 172K.

Two paramagnetic Cu2+

centers observed in t -irradiated samples EPRspectra.

Temp, behaviour of thefield discussed.

[314]

[180]

2.2342 2.0452 2.0452 576.6 85.9 85.9MHz MHz MHz

2.330 2.030 2.242 63.05 47.41 47.24

2.0732.073

2.0982.101

122G 34G 65G

IIIIII

2.0952.1192.100

2.2.2.

121103107

2.1212.1032.107

58.69166.6

71.375.654.1

71.375.654.1

2.034 2.389 2.148 23.2 118.7 45.9

Resolved hfs observed and [410]LW relatively narrow. EPRdata assigned to axialsymmetry.

Cu2+ EPR and x-ray data [107]reported.

Dynamic JTE observed. [88]Cu2+ sub. Mg2+ sites.

Cu2+ ions enter at K+ sites. [327]GS is of the form dix2-y2> •MO coeff. estimated.

Theoretical expressions [25]were presented for g, hf,shf parameters of d9 squareplanar complex.

Structure and orientation [92]of Cu(II) complex discussedand g and A terms areinterpreted in terms of GSwave-function parameters.

The splitting of resonance [515]lines depends on ml; para-magnetic centre obsd.

Page 41: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 279

S.No Host Lattice Site Spin-Hamiltonian Parametersgz gx gy Az Ax

Comments Ref.

294. K2SO4 - ZnSO4

295. K2SO4-Na2SO4-ZnSO4

296.

297.

298.

KTaO3

KTaO3

K2ZnF4

III

2.2382.194

2.0452.045

299. K2ZnF4

300. K2ZnF4

301.

302. La4Ba2Cu2Oio

303.

304.

305. La2CuO4Lai.8Sro.2Cu04-yYo.2Ba0.8Cu04-y

306. La2CuO4

Y2BaCuO5

YBa2Cu3O7-sBi2Sr2CaCu2O8 + s

307. La2CuO4

308. LaCuO3- s

309. La2CuO4

III

2.014 2.381

1.987 2.3952.531 2.123

Glasses. SHP reported.

Glasses.

2.045 172 172 172 Angular dependence EPR2.045 193 <30 <30 spectra were observed.

SHP.

Paramagnetic propertiesinterpreted by consideringCuF4F2 clusters.

2.381 72.2 42.3 42.3 The metal and ligand hfsplittings discussed.

2.3952.123

2.037 2.133 2.133

2.123 2.037 2.037

2.233 2.099 2.041

2.65 1.91 1.91

The results interpreted pre-dominantly d*2 GS with smalladmixture of dix 2-y 2> due tovibronic coupling.

ESR shows ferromagnetictransition at 5K. The GS isof the form 3diz2_r2>.

GS dix2-y2> and ferromagneticexchange interaction appearswith decreasing temp.

The compound shows a ferro-magnetic transition at around 5K.

[488]

[192]

[58]

[59]

[319]

[158]

[375]

[152]

[153]

[154]

EPR spectra of Cu2 + observed [144]attributed to axial symmetrywith dix2-y2> GS.

Results indicate main part [259]of Cu ions in spinless Cu + state.

The energy levels and g- [333]factors of Cu2 + ion calcu-lated with 'O' ligand field.Theory compared withexptl. data.

The hydrogen effect on EPR [442]and Magn. susceptibilitystudied.

GS wavefunction of the form [285]dlx2-y2>-

EPR signal not obsd. upto [245]570K, because the presence ofsmall number of holes in CuO2plane due to the oxygen nonstoi-chiometry.

Page 42: Bull. Magn. Reson., 16 (3-4) 239-291

280 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

310. La2CuO4 + s

311. [L2Cu2Cu(dmg)2Br]ClO4-CH3OH

312. Laponite Clay:Cupric Ion

313. Lai.82Sro.i8(Cui-.xZnx)04

314. Lai_xSrxCui_yZnyO4

315. Lithium hydraziniumsulphate

316. LiKSO4Li(NH4)SO4LiNaSO4

317. LiKSO4

318. LiTaO3

319. Ln2Cu2O5(Ln = Rare-earth ions)

320. Macrocyclic complexes

321. MCuCl3

(M=K, Cs, Rb, NH4)

322. (2-Methylimidazole)(N-Salicylidenesly-cinato)Cu(II)

323. Mg(CH3COO)2-4H2O

324. Magnesium PotassiumPhosphate hexahydrate

325. MgNa2(SO4)2-4H20 I

II

2.12

2.247 2.068 2.068

2.36 2.060 2.060 145

2.1

2.4307 2.083 2.083 116 14 14

Strong Cu 2 + EPR signal obsd. [486]if the quenching of the samplefast at LT.

The study indicate square- [72]pyramidal geometry around Cu2 +

ions with GS dix 2-y 2>-

The system consists poten- [367]tial catalytic significance.

Significance this result [102]verifying diverse microscopicmechanism of high-Tc supercond.

Common feature of all spec. [103]was a signal with an isotropic gandLW.

Cu 2 + ions entered lattice [315]interstitially. Charge compen.achieved by release of protons.

Room temp, dynamic isotropic [324]JT spectra, there J T systemssimilar to each other.

III

2.400

2.3962.197

2.320

2.3738

2.181

2.0502.167

2.075

2.0960

2.044

2.0992.167

2.018

2.0960

9.4mT

70

108

2.4mT

56

27

8.2mT

50

27

The ground state is predomi-nantly d i x 2 - y 2 > .

Static and dynamic JTEobserved.

No ESR signal observed bet.77K and 550K except Lu2Cu2O5.

Superhyperfine interactionspectra observed.

Temp, dependence LW, EPRspectra, g values.

Cu(II) environment approx.square planar coordination.

Optical and MO coeff. data,presented.

[13]

[212]

[115]

[94]

[147]

[419]

[305]

CoNa2(SO4)2-4H2O

SHP and MO coeff.evaluated. [366]Cu2 + ions assigned to tetra-gonal symmetry.

2.3991 2.1979 2.0299 0.4430 0.2513 0.2060 Two physically equivalent [300]GHz GHz GHz magnetically inequivalent sites

2.3991 2.1979 2.0299 0.4202 0.2427 0.1986 obsd. in each sample. SLRT ofGHz GHz GHz Co 2 + estimated.

2.4023 2.1926 2.0256 0.3678 0.2363 0.1679GHz GHz GHZ

Page 43: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 281

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

326. MgNH4PO4-6H2O

327. MgO

328. MgTl2(SO4)2-6H2O

329. M'2M"(SO4)2-6H2O(M' = Rb, M" = Mg)Powder

330. Mononuclear Cu(II)compounds

331. N-(4-alkoxysalicylideme)-4'-alkylanilines complexes

332. NaCl

333. NaF

334. NaF

335. NaF : Cu

336. NaioFe4Cu4Wi807oH6-29H20

337. NaNH4SO4-2H2OPowder

338. NaY-Zeolite

339. Na2Zn(SO4)2-4H2O

340. Na2Zn(SO4)2-4H2O

341. (n-Bu4N)2[Cu(dsit)2]

342. [N(CH3)4]2CuCl4

III

2.074 2.427 2.142 27 76

2.076 59.8

2.395 2.094 2.094 106 34

2.3739 2.0270 2.1182 100 57

GS is of the form dix2-y2> •electronic absorption datareported.

Well resolved EPR spectraof Cu2+ and Cu3 + ions obsd.

34

0

.2+

2.458 2.105 2.105

[2.0-2.5]

2.5665 2.093 2.093

Powder. Cu ions sub. Mg

MO coeff., EPR spectrumattributed to D2h symmetry.

Structural investigationsreported.

SHP reported.

Charge carrier trappedcentres detected by EPR.

JT effect observed at LT.

g and A values varies withtemperature.

226 240 240 Cu+ ion conversions into Cu°MHz MHz MHz and Cu2+ has been investigated

2.327 2.116 2.099 81 18 27 The observed EPR spectrumconsisted of broad linecentered and weak second line.

2.3452.359

2.408

22

2

.144

.144

.088

2.702.208

2.088

2.0195 2.145 2.3922.2740 - 2.088

2.019 2.100 2.075

2.080

123G 38G 50G Cu2+ ions sub. Na+ sites.Mo coeff. evaluated.

14.6 1.5 1.5 EPR study used for identi-fying Cu2+ complexes insingle crystal.

Cu2+ ions enter sub. intoZn2+ ions. SHP reported.

70.4 24.9 55.6 The amount of Ix2-y2> pre-37.5 - 82.5 sent in the GS decreases as

one goes to LT.

[417]

[405]

[364]

{421]

[181]

[276]

[450]

[267]

1462]

[290]

[478]

[365]

[123]

[24]

[397]

42 152 53 Two magnetically non-equiv- [219]alent anions esr spectra obsd.

EPR LW decrease with temp.; [112]LW of Cu2+ ions anomalouslylarge.

Page 44: Bull. Magn. Reson., 16 (3-4) 239-291

282 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy A z _ A x

Comments Ref.

343. [N(CH3)4]2CuCl4

344. NdBa2Cu3O7_s

345. Nd1.8sCeo.x5CuO4.-v

346. [NEt4]2Cu(mnt)2

[NEt4]2Ni(mnt)2

347. NH4CI

348. [NH3)5CoImCu(dien)ImCo(NH3)s](ClO4)6-4H2O

349. (NH4)3H(SO4)2

350. (NH4)3H(SO4)2

351. NH4I

352. (NH4)3UF8

353. (NH4)2(Zn(NH3)2(CrO4)2]

(NH4)2[Cd(NH3)2(CrO4)2]

354. N,N'-hexamethylene-bis-(2,5-dihy droxyacetophe-noneiminato)Cu(II)N,N'-tetramethylene-bis-(2,5-dihydroxyacetophe-noneiminato) Cu (II)N,N'-ethylene-bis-(2,5-dihydroxyacetophe-noneiminato)Cu(II)

355. Oxyfluoroborate

356. Paramagnetic centresin crystals

2.267 2.085 2.124

2.52

IIIIII

2.0862.085

2.0452.00952.021

2.0192.022

2.2562.2092.223

2.0212.026

2.2562.2092.223

162

15177.971

39

792557

39

792557

2.320

2.424

2.002

2.080

2.090

2.272

2.080

2.079

2.272

96

10.93mT

0.0117GHz

20

5.74mT

0.0057GHz

20

1.79mT

0.0057GHz

2.018

2.017

2.234

2.234

2.214

2.219

14.78mT15.77mT

PT observed at 298K aniso- [440]tropy LW at LT explained bydipole-dipole interactionbetween Cu2+ pairs.

ESR spectra of samples were [139]explained in terms of crystalfield splitting.

CESR signal obsd. intensity [269]and g-factor of signal varieswith temp.

Axial EPR spectra observed [239]in both cases.

Temp, dependence EPR spectra [376]observed and interpreted withdynamic vibronic coupling.

The bonding between Cu(II) [91]and ligands is covalent. SHPreported.

PT, dynamic JTE. EPR study. [29]

Cu2+ ion sub. NH4 ion and [481]coordinates six oxygen atomsfrom six nearest sulphate ions.PT discussed.

PT. Ground state wave- [67]function is of the formdi3z2_r2> at LNT.

Cu2+ EPR spectrum exhibits [43]isotropic quartet.

EPR spectra showed unusual [475]temp, dependence between roomto liquid helium temp.

2.162 2.058 2.058 127

2.223 2.050 2.050 127

2.236 2.040 2.050 120

13

13

12

13

13

12

SHP. MO coeff. of diff.solvents reported.

[465]

Glasses. Anisotropic hfsobserved.

[362]

Intensity properties of EPR [513]line shape discussed.

Page 45: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 283

S.No Host Lattice Site Spin-Hamiltonian Parametersg* gy Az Ax Ay

Comments Ref.

357. t ' -Pb3V2O8

358. Ph4AsCuCl4

359. Ph3As(OH)2[CuBr4]

360. Pillared Clay

361. [(PipdH)2CuBr4]

362. Polyacrylamide

363. Polyacrylamide gels

2.333 2.076 2.076

2.269 2.037 2.192

2.2749 2.0788 2.0446

2.045 2.290 2.063

GdBa 2 Cu 3 0 y

365. { U - ( P U ) 2 [ C U 2 ( P U ) 8 ] } ( C 1 O 4 ) 4

2.1452.2702.240

366.

367.

368.

369.

R2BaCuO5

(R=rare earth metals)

R 2 BaCu0 5(R=Rare Earth)

RBa 2 Cu 3 O 7 - s(R=Rare earth)

Rb2CdCl4 III

2.216

2.0302.030

2.070

2.3552.133

2.

2.2.

110

133355

50.2 74.850.2 <18

370. Rb2CdCl4

371. Rb2Cd(SO4)2-6H2O

74.8

1.980 1.985 1.985

2.010 2.423 2.132 61 105

EPR study indicates the [445]axial g values at 298K and 473K.At 373K the EPR spectrumbecame isotropic.

Good agreement obsd. between [137]exptl. and cal. values. Exchangeparameter J calculated.

EPR and electronic spectra [60]led to the postulation of thepresence of planar cations.

SHP reported. [56]

EPR indicates its behaviour [344]as a linear chain propagationalong a-axis.

SHP. [414]

SHP reported for various [27]polyacrylamide gels.

ESR spectra studied at LT. [140]Below 20K g-factors and LW changesdrastically with temp.; Above20K no change in g-factors.

SHP, x-ray, magnetic suscep- [230]tibility parameters estimated.

Cu2 + EPR signal silent at [227]room temp, but observed withnon magnetic R 3 + ions only.

SHP and crystal field para- [116]meters were determined.

SHP reported for rare earth [311]ions. The data explained onthe basis of dipolar interaction.

The crystal matrix struc- [189]ture distorted by PT. EPRstudy showed exchange coupledordering between Cu 2 + -Cu 2 + .

Structural changes on spe- [190]ctra of CuCl6 centers.

The EPR spectra described [418]as D2h site symmetry for Cu 2 +

Page 46: Bull. Magn. Reson., 16 (3-4) 239-291

284 Bulletin of Magnetic Resonance

Site Spin-Hamiltonian Parameters Commentsgz gx gy As Ax Av

S.No Host Lattice Ref.

Two equivalent Cu centres [482]within one molecule give riseto diff. isotope combinations.

Glasses. [426]MO coeff. & SHP reported.

Glasses. The SHP of Cu 2 + ions [363]indicate strong tetragonaldis-tortion MO coeff. evaluated.

52 0 EPR spectrum interpreted to [422]rhombic symmetry. MO coeff.presented.

SHP reported at diff. temp. [80]and chemical and structual cha-nges discussed.

Paramagnetic Cu2 + used as [456]probe for investigating hy-drate conversions in samples.

EPR spectrum consists of [501]seven hf lines associated witha pair of identical Cu ions.

372. [(R'R2P)2Cu(adcoR")CuPR 2 R' ) 2 ] +

373. R 2 SO 4 B 2 O 3 ZnSO 4(R=Li,Na,K and Cs)

374. R2SO4-B2O3-CdSO4(R=Li, Na, K or Cs)

375. Rb2Zn(SO4)2-6H2O

376. Silica Sol.Gels III

377. Silicotungstic heteropoly acid

378. Sr0.6oCao.4oCu02

379. Sr (CH 3 COO) 2 l /2H 2 O

380. SrC4H2O4-4H2OMg(C4H3O4)2- 6H2O

381. Sr(HCOO)2- 2H2OPowder

382. Sr2CuO3Cao.5Sri.5Cu03Cai.5Sro.5Cu03Ca2CuO3Ba 2 CuO 3 + x

383. SrCuO2

Sr2CuO3

384. SrCuO2

385. 65TeO2-(35-x)CuO-xCuCl2

2.3654 2.0270 2.1114 99

2.532.47

137158

2.18 71G

2.3721 2.0643 2.0643 386 0MHz

2.294 2.072 2.072 1072.357 2.148 2.039 143 63

2.399 2.100 2.077 119 252.410 2.106 2.079 120

2.0782.0722.077

2.035 2.114 2.114

2.02.0

0 The EPR data indicate Cu2 + [304]ions incorporated at a site,characterized by a three foldsymmetry.

MO coeff. reported by corre- [30]38 lating optical and EPR data.

15 Eight coordination hostcation sites provided forCu 2 + impurity.

[68]

Compounds containing Cu-O [26]chains found ESR silent atroom and at LNT.

The effect of the water on [160]the samples discussed.

EPR study explained by the [63]formation of defects of twoneighbouring Cu2 + ions.

No hfs observed due to Cu2 + [441]

386. TetramethylammoniumManganese Chloride

A symmetry appears in the [331]ESR LS at RT but at LT theline is more symmetry.

Page 47: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 285

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

387. Thiosemicarbazonecomplexes

388.

389. Tl2Mg(SO4)2-6H2O

390. Tl2Ni(SO4)2-6H2O

391. Tl2Zn(SO4)2-6H2O

392. [(TMpyP)H2]4+

[(TMpyP)M]4+(M=VO2 + ,Cu2 + ,Zn2 + )

393. trans-bis(a - picoline)-bis (4,4,4 - trifluoro-1-(2-thenoyl)butanedione - l,3)Cu(II)

2.25

2.350

2.219

2.065

2.20

2.125

2.065

2.20

2.125

116

22G

50

18G

2.348

2.162

2.185 2.087 70

2.346 2.079 2.075 -154

394. Trans-bis(L-2-amino-butyrato)Cu(II)Trans-bis(DL-2-amino-butyrato)Cu(II)

2.257

2.257

2.056

2.054

2.056

2.054

395. Triammonium hydrogendisulphate

396. Tridentate Hydroxy- [2.194-2.325]napthoyl hydrazone

397. WO3 2.415

398. 60 XF4-5LaF3-20BaF2-15NaF (X=Zr,Hf)

399. Yo.2Bao.8CuOx 2.193

400. YBa2Cu3O7 2.161

401. YBa2Cu3O7-x 2.176

[212-148]

2.053 2.050 99

2.033 2.033

2.160 2.160 700

2.055 2.055 65G

50

Based on ESR and Magn.data all complexes assignedto square-planar structure.

EPR signal obsd. below Tc.

SHP and MO coeff. reported.

40

18G Cu2+ ions sub. Ni2+ sites.covalency parameters indicatethe Cu(II) ions more covalentcharacter in host lattice.

25 GS wavefunction constructedand Cu2+ sub. Zn2+ sites.

The study indicate thetetracationic porphyrins inter-interact with and exist asmonomeric entities. SHPreported for diff. ligandenvironments.

-26 -26 MO coeff. calculated.

[242]

[40]

[233]

[234]

[235]

[205]

[412]

GS is of the form dix2_y2> [249]observed. The role of latticesymmetry in Cu-amino acidcomplexes estimated.

Temperature dependence EPR [289]studies reported.

SHP reported for diff. sol- [167]vents and Magn. propertiesreported.

24.5 18.9 Ground state wave function [274]of the form dix2-y2> • Twomodels of copper centresdiscussed.

Diff. composition of glass [50]SHP reported and GS is ofthe form of dix2-y2> •

760

GS is of the form dix2_y2>. [281]

760 Cu2+ in anisotropic environ- [61]ment due to the presence ofrapid oscillating distortions.

0 Depending on both temp. [398]and microwave freq.Resonant fielddetermined.

Page 48: Bull. Magn. Reson., 16 (3-4) 239-291

286 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

402. YBa2Cu3O7_x 2.2167 2.0475 2.0475 166.5G 25G 15G

403. YBa2Cu3O7-*

404. Y2Ba2CuOs

405. Y2BaCuO5

406. Y-Ba-Cu-O

407. YBa2Cu3O7_s

408. YBa 2 Cu 3 O 6 + x

409. YBa 2 Cu 3 0 7 _ s

410. YBa2Cu3O8

411. YBa2Cu3O7-x

412. YBa2Cu3O8

414. YBa2Cu3Ox

415. YBa2Cu3O7-x

2.24 2.06 2.06

2.200 2.060 2.060

2.047 2.05 2.05

2.215 2.065 2.065

413. YBa2Cu3O7_x 2.194 2.069 2.069 72G

2.315

[2.03-2.06]

2.16 2.019

2.2

416. YBa2Cu3O7-x 2.224 2.051 2.051

417. YBa2Cu3O7_x

g// value varied with temp,g ~ 2 assigned to additionalweak broad EPR line.

EPR directly detected small [428]superconducting domainsand Cu2+ inclusions.

At RT uniaxiai EPR spectrum [226]observed for Cu2+ ions.

Cu2+ EPR signal observed. At [206]LT the EPR line broadenedand disappeared at around 20K.

Non-superconducting in dis- [93]torted octahedral surroundings.Cu2+ EPR signal existedonly in fraction of samples.

Electronic charge compensation [34]of copper discussed.

EPR LW temp, independent.

EPR signal from supercon-ductivity phase due tosmall quantity of Cu2+ ions.

Localized Cu2+ positioncentres established.

Cu2+ signals used for cal-culating the oxygen deficiency.

EPR results assigned toorthorhombic symmetry.

[210]

[14]

[9]

[39]

[10]

Density of magnetic moments [31]decreases with temp.; increasingfrom LNT to superconductivetransition.

EPR spectrum attributed to [138]compressed rhombic symmetry.

EPR signal absence from [48]

Cu2+ ions.

EPR LW independent on temp. [84]

EPR signal disappeared at [256]T>Tc.

Page 49: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 287

S.No Host Lattice Site Spin-Hamiltonian Parametersgz gx gy Az Ax Ay

Comments Ref.

418. YBa2Cu3O7_x

Y2BaCuO5

419.

420.

2.075 2.086 2.086 90G 75G 75G

2.23 2.09 2.09Y2BaCuO5YBa3Cu2Oy

421. Y2BaCuOs

422. Y2BaCuO5

423. YBa2Cu3OxBi2Sr2CaCu2Ox

424. YBa 2 Cu 3 O 7 - x

Y2BaCuO5

425. YBa 2 Cu 3 O 7 - x

426. Yi + x Ba 2 _ x Cu 3 O y

427. YBa2Cu3O7_y

III

2.402.23

2.222

2.208

2.1092.1202.100

2.05

2.20

2.1072.09

2.050

2.047

2.0552.050

2.10

2.05

2.0612.09

2.094

2.047

2.1202.050

2.23

2.10

428. YBa2Cu3O7

429. YBa2Cu3O7

430. Yttrium Barium Copper Oxide

431. Y2BaCuO5

432. YBa2Cu3O7_s

2.20

2.215 2.065 2.065

2.20 2.10 2.102.23 2.03 2.03

Resonance signal of DPPH [222]deposited on specimen shifted.Intensity of EPR signal ofCu2 + ions measured at roomtemperature.

Isotropic and strong EPR [282]signal observed in unannealedcrystals; EPR signal absencefor Cu2 + ions in annealedcrystals.

Causes for EPR signal [278]absence of black phase dis-cussed. Due to Brown andgreen phase impurity weak Cu2 +

EPR signal observed.

Temp, depedence of ratio of [223]EPR intensity to that of DPPHat room temp, reported.

SHP and Magn. suceptibility [283]reported.

EPR signal silence at temp. [284]of upto 570K of Cu2 + ions.

EPR LW and intensity changes [323]with temp.; JTE suggested forpossible correction.

EPR signal observed due to [510]

impurity phases.

Superconducting material. [133]

EPR signal observed due to [111]dark phase: LW temp, dependence.Diminishing microwave loss [464]with increasing impurityphases.

LW temp, dependence from [11]normal state to superconduc-ting state.

EPR line intensity varies [340]with temperature.

Temp, dependence of the EPR [105]signal and susceptibilitiesdiscussed.

The structure, electrical [498]conductivities and Magn.susceptibilities reported.

Page 50: Bull. Magn. Reson., 16 (3-4) 239-291

288 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgz gx gy A2 Ax Ay

Comments Ref.

433. Yttrium Barium CopperOxide (YBCO)

434. YBa2Cu3O7

435. YBa2Cu3O7-sYBa2(Cui_xFex)3O7-s

436. YBa2Cu3O7_s

437. YBa2Cu3O7-s

438. YBa2Cu3O7

439. YBa 2 Cu 3 O 7 - x

Bi4/3Pb2/3Sr2CaCu2O8+x

440. YBa2Cu3O7_s

Green phase 2.264 2.056 2.137Brown phase 2.262 2.038 2.038Black phase EPR signal silent

441. YBa2(Cu1_xFex)3O7_s

442. YBa2Cu306.8±o.i

443. YBa2Cu3O7_s

444. Y-Ba-Cu-O

445. YBa2Cu3O7_x

Ca2Sr2Bi2Cu30io-x

446. YBa2Cu3O7_s

447. YBa2Cu2O7

Bi2Sr2CaCu2O8

448. YBa2Cu3O7_s

2.055

2.050 2.222 2.094

2.223 2.091 2.091

2.218 2.06 2.06

Low-field EPR signal is [207]non-resonant in nature.

EPR spectra changes with [73]time of exposure of H2O.

ESR study explained with [382]oxygen-deficiency and Fe-dopant.

Below Tc, EPR line shifts [359]due to local fields.

Comments provided on ZFR [499]and non-resonant of powdersas well as single crystals.

Single EPR line obsd. above [101]Tc, below it resolved into two.

ESR signal is const, with [208]temp, below Tc.

g-values increases with [218]temp, becomes maximum at 230Kand g-values decreases, butweak signal appeared withoriginal signal below 130K.

Size and shape of signal [65]near zero-field microwaveabsor. analysed.

SHP. [229]

SHP and NMR data estimated. [360]Local Magn. flux density ofsample measured by EPR probes.

Cu2+ state stabilized byfive oxygen ligands.

[326]

EPR signal depends on 02 [321]pressure and annealing temp.

gav related to superposition [429]of vibronically coupled orbitalstates Ix2-y2> and 3z2-r2.

Both compounds exhibit EPR [41]broadening at LT.

gav-factor related to super- [430]position of vibronicallycoupled orbital states Ix2-y2>and 3z2-r2.

Page 51: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 289

S.No Host Lattice Site Spin-Hamiltonian ParametersSz gx gy Az Ax Ay

Comments Ref.

449. YBa2Cu3O6+y

450. YBa2Cu3O7_s

451. YBa2Cu3O7_s

452. YBa2Cu3O4

453. YBa2Cu3O7_s

454. YBa2Cu3Oy

455. YBa2Cu3O7_x

Ca2Sr2Bi2Cu3Oi0_x

456. YBa2Cu3O6+y

457. YBa2(Cuo.98Coo.o2)0T

458. Y2Cu2Os

459. Y2Cu2Os

460. Yo.gEro.iBai.

461. Y1_xGdxBa2Cu3O7

462. Yx-xGdxBaa

463. Zeolites

464. Zeolites NaX

Zeolites KX

Zeolites KA

ABA'AA'CD

2.39 2.07 2.07

2.270 2.020 2.020

2.232.23

2.39

2.03

2.08 2.082.08 2.08

2.285 2.06 2.06

[2-2.3]

2.108

2.04 2.04

2.049 2.083 2.083

2.0622.0812.0602.0622.0602.0672.074

2.3562.4062.3732.3432.3742.3852.327

2.3562.4062.3732.3432.3742.3852.327

138G90G125G130G125GHOG145G

EPR signal observation on [380]local oxygen order.

EPR study presented by diff. [431]scientists explained.

Due to heat treatment pro- [106]cess amplitude of EPR signaldecreases, but g-factor LW.lineshape unchanged at measuredtemp.

LW variation studies withtemp.

SHP.

Below Tc, shifting andbroadening observed of EPR line.

Low field ESR intensitiesof Cu2+ studied.

The ZFR depends on thecrystal field.

The efficiency of the methoddemonstrated by LT.

Temp, dependence of singlebroad EPR line observed.

For superconductivity phasesassociated with latticedefects weak EPR signal obsd.

No EPR signal observed atany temp, because of green phase.

EPR spectrum observed forCu2+ ions.

Gd ions decoupled from Cu-Onetwork of material.

Two kinds of dipole-coupled

[439]

[211]

[286]

[322]

[381]

[194]

[361]

[341]

[306]

[8]

[494]

[507]Cu2 + pairs existed and explainedby EPR.

Cu2+ located at diff. sitesin zeolites shows unique spectra.

[79]

Page 52: Bull. Magn. Reson., 16 (3-4) 239-291

290 Bulletin of Magnetic Resonance

S.No Host Lattice Site Spin-Hamiltonian Parametersgx gy Az Ax

Comments Ref.

[483]

[185]

465. Zeolites and Oxides

466. Zn(BDtc)2

Cd(PmDtc)2

Cd(MfDtc)2

Zn(PmDtc)2

467. Zn(II)-bis-(L-histidine)

468. Zn-bis(N,N'-di-isopropyldi-Thiocarbamate)

2.0872.0932.0952.103

2.0852.1022.1082.0852.1032.0052.0862.108

2.278

2.0262.030-2.0252.0362.0262.0302.0322.0262.0282.034-2.031

2.070

2.0262.030-2.0252.0362.0262.0302.0322.0262.0282.034-2.031

2.070

156/167G153G149G139/49G-157/168G142/152G127/136G157/168G153/164G136/146G157/168G123/132G

13.9tnT

44G39G-9G35G45G32G22G45G35G25G-23G

2.5mT

44G39G-9G35G45G32G22G45G35G25G-23G

2.5mT

g-factors and coordinationsites discussed.

Two types of Cu2+ existsnamely square-planarmonomer andtetrahedral dimer.

2.080 2.020 2.015 32.9

473. Zni_xMxCr2O4

474. ZnO - B2O3;PbO - B2O3

475. ZnSiF6-6H2OPowder

476. ZnTiF6-6H2O

477. ZnTiF6-6H2O

2.4672.460

2.102.114

2.430 2.12

2.102.116

2.12

Solid-like and liquid-likespectra obsd. at LT.SHP reptd.

[378]

67.9 28.3

469.

470.

471.

472.

Zn(C4H4N2)SO4-3H2O

Zn(Cu)(trien)I2[Cu(trien)NCS)B04Cd(Cu)(trien)I2

Zinc Maleate-4H2OPowder

Zn(I)-Malate TrihydratePowder

III

2.3875

2.2072.2012.206

2.0432.060

2.42492.423

2.1924

2.067

2.3742.330

2.08792.088

2.0205

2.047

2.2072.210

2.08792.088

0.324GHz

166.5G166G167G150G

29.5

-120120

0.181GHz

25G

46.8

-1123

0.104GHz

15G

39.7

9.523

ZFR and exchange coupling [425]constant determined.

Dynamic JTE observed at [307]334 ± IK.

GS wavefunction constructed [260]and MO coeff. calculated.

Ground state wave function [468]is of the form d2!2. Sub. forZn2+ sites.

EPR spectrum shows [251]forbidden transitionswith a normal intensity.

JT distortions in tetra- [374]hedral coordination.

Decrease in the interaction [490]between electron and nuclearspin moments with increasingCuO concentration.

JT energy detected and pot- [258]ential barrier is 110 cm"1.

EPR and SLR study of Cu2+ [82]ions at different temp.

EPR showed PT. PT temp. [83]decreased with increase inimpurity concentration.

Page 53: Bull. Magn. Reson., 16 (3-4) 239-291

Vol. 16, No. 3/4 291

S.No Host Lattice Site Spin-Hamiltonian Parameters Comments Ref.gz gx gy Az Ax Ay

478. ZnTiF6-6H2O 2.472 2.097 2.097 107 SHP presented over the temp. [386]range 4-160K.

479. ZnZ6F-6H2O Results reported in terms [257]of JT effect.

480. 60ZrF4 - 5LaF3 - 2.500 2.065 2.065 80 25 25 Glasses. [49]20BaF2 - 15NaF