Top Banner
1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseri a and Kamal K. Kar a,b* a Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India. b Advanced Nanoengineering Materials Laboratory Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India. *Corresponding Author. Tel: +91-512-2597687, E-mail: [email protected] (Kamal K. Kar) Electronic Supplementary Information (ESI) List of Contents Supplementary Methods: MethodS1. Calculation of ionic conductivity of OCNTF/PPY nanocomposite hybrid electrodes. Method S2. Calculation of the cellcapacitance of OCNTF/PPY supercapacitor. Method S3.Calculation of thevolume specific capacitance of OCNTF/PPY supercapacitor. Method S4. Calculation of thevolume specific energy density of OCNTF/PPY supercapacitor. Method S5. Calculation of the gravimetric capacitance of OCNTF/PPY supercapacitor. Method S6. Calculation of the gravimetric energy density of OCNTF/PPY supercapacitor. Supplementary Figures: Fig. S1. SEM images of OCNTF/PPY nanocomposites prepared by electrochemical deposition. (a) OCNTF-PPY-10, (b) OCNTF-PPY-20, (c) OCNTF-PPY-30, (d) OCNTF- PPY-40, (e) OCNTF-PPY-50 and (f) OCNTF-PPY-60. Fig. S2. Raman spectra of CNTF, OCNTF and OCNTF/PPY nanocomposites. Fig. S3. FTIR spectra of CNTF, OCNTF and OCNTF/PPY nanocomposites. Fig. S4. High resolution XPS spectra of OCNTF/PPY nanocomposites. (a) OCNTF-PPY-10, (b) OCNTF-PPY-20, (c) OCNTF-PPY-30, (d) OCNTF-PPY-40, (e) OCNTF-PPY-50, and (f) OCNTF-PPY-60. (a1-f1) C 1s spectra, (a2-f2) O 1s spectra and (a3-f3) N1s spectra. Fig. S5. Plot of conductivity of CNTF, OCNTF and OCNTF/PPY supercapacitors. Fig. S6. (a) N 2 sorption isotherms and (b) BJH pore-size distribution curve of OCNTF-PPY- 50 nanocomposite sample. Fig. S7. Two-electrode cell CV curves of OCNTF-PPY-50 nanocomposite electrodes at different scan rates obtained in 1M LiClO 4 acetonitrilic electrolyte. Fig. S8. Plot of variation in the gravimetric energy density at different current densities of the OCNTF-PPY-50 supercapacitor. Fig. S9. Plot of variation in the volume specific energy density at different current densities of the OCNTF-PPY-50 supercapacitor. Fig. S10. Variation in the thermal lifetime of OCNTF-PPY-50 nanocomposite at different temperatures. Fig. S11. EPMA secondary electron image ofOCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016
11

brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

Jun 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

1

Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes

Jayesh Cherusseriaand Kamal K. Kara,b*

aAdvanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India.bAdvanced Nanoengineering Materials Laboratory Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India.

*Corresponding Author. Tel: +91-512-2597687, E-mail: [email protected] (Kamal K. Kar)

Electronic Supplementary Information (ESI)List of Contents

Supplementary Methods:MethodS1. Calculation of ionic conductivity of OCNTF/PPY nanocomposite hybrid electrodes.Method S2. Calculation of the cellcapacitance of OCNTF/PPY supercapacitor.Method S3.Calculation of thevolume specific capacitance of OCNTF/PPY supercapacitor.Method S4. Calculation of thevolume specific energy density of OCNTF/PPY supercapacitor.Method S5. Calculation of the gravimetric capacitance of OCNTF/PPY supercapacitor.Method S6. Calculation of the gravimetric energy density of OCNTF/PPY supercapacitor.

Supplementary Figures:Fig. S1. SEM images of OCNTF/PPY nanocomposites prepared by electrochemical deposition. (a) OCNTF-PPY-10, (b) OCNTF-PPY-20, (c) OCNTF-PPY-30, (d) OCNTF-PPY-40, (e) OCNTF-PPY-50 and (f) OCNTF-PPY-60.Fig. S2. Raman spectra of CNTF, OCNTF and OCNTF/PPY nanocomposites.Fig. S3. FTIR spectra of CNTF, OCNTF and OCNTF/PPY nanocomposites.Fig. S4. High resolution XPS spectra of OCNTF/PPY nanocomposites. (a) OCNTF-PPY-10, (b) OCNTF-PPY-20, (c) OCNTF-PPY-30, (d) OCNTF-PPY-40, (e) OCNTF-PPY-50, and (f) OCNTF-PPY-60. (a1-f1) C 1s spectra, (a2-f2) O 1s spectra and (a3-f3) N1s spectra.Fig. S5. Plot of conductivity of CNTF, OCNTF and OCNTF/PPY supercapacitors.Fig. S6. (a) N2 sorption isotherms and (b) BJH pore-size distribution curve of OCNTF-PPY-50 nanocomposite sample.Fig. S7. Two-electrode cell CV curves of OCNTF-PPY-50 nanocomposite electrodes at different scan rates obtained in 1M LiClO4 acetonitrilic electrolyte.Fig. S8. Plot of variation in the gravimetric energy density at different current densities of the OCNTF-PPY-50 supercapacitor.Fig. S9. Plot of variation in the volume specific energy density at different current densities of the OCNTF-PPY-50 supercapacitor.Fig. S10. Variation in the thermal lifetime of OCNTF-PPY-50 nanocomposite at different temperatures.Fig. S11. EPMA secondary electron image ofOCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2016

Page 2: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

2

Fig. S12. EPMA 2D-mapping of carbon, oxygen and nitrogen of the OCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles.Fig. S13. XPS de-convolution spectra of the OCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles: (a) C 1s spectra, (b) O 1s spectra and (c) N 1s spectra.

Supplementary methods:

Method S1. Calculation of ionic conductivity of OCNTF/PPY nanocomposite hybrid electrodes.The ionic conductivity of the supercapacitor electrodes is calculated by using the equation

b

Tσ = R X A

Where σ is the ionic conductivity in S/cm, T is the total thickness of the supercapacitor cell (in cm), Rb is the bulk electrolyteresistance (in Ω), and A is the geometrical area of electrodes (in cm2).

Method S2. Calculation of the cellcapacitance of OCNTF/PPY supercapacitor.The cellcapacitance (Ccell) of the supercapacitor is calculated by using equation

dis

cellItCE

Where, I is the charging current, tdis is the discharging time, and ΔE is the operating potential window.

Method S3. Calculation of thevolume specific capacitance of OCNTF/PPY supercapacitor.The volume specific capacitance (Ccell,sp,V) of the supercapacitor is calculatedby using the equation

, , 4 cellcell sp V

el

CC XV

Where, Vel is the total volume of two supercapacitor electrodes (the volumes of separator and electrolyteareexcluded).

Method S4. Calculation of thevolume specific energy density of OCNTF/PPY supercapacitor.The volume specific energy density (EDcell,sp,V) of the supercapacitor is calculated by using the equation

2, ,

, ,

( )

2 3600

cell sp Vcell sp V

C X EED

X

Method S5. Calculation of the gravimetriccapacitance of OCNTF/PPY supercapacitor.The gravimetriccapacitance (Cm) of the supercapacitor is calculated by using the equation

( )

dis cell

mI X t CCm X E m

Where, ‘m’ is the total mass of electro-active materials (both OCNTF and PPY) in the two electrodes of the supercapacitor (excluding the mass of UCF, separator and electrolyte).

Page 3: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

3

Method S6. Calculation of the gravimetric energy density of OCNTF/PPY supercapacitor.The gravimetric energy density (EDm) of the supercapacitor is calculated by using the equation

2 ( ) 2 3600

m

mC X EEDX

Supplementary Figures:

Fig. S1. SEM images of OCNTF/PPY nanocomposites prepared by electrochemical deposition. (a) OCNTF-PPY-10, (b) OCNTF-PPY-20, (c) OCNTF-PPY-30, (d) OCNTF-PPY-40, (e) OCNTF-PPY-50 and (f) OCNTF-PPY-60.

Page 4: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

4

Fig. S2. Raman spectra of CNTF, OCNTF and OCNTF/PPY nanocomposites.

Fig. S3. FTIR spectra of CNTF, OCNTF and OCNTF/PPY nanocomposites.

Page 5: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

5

Fig. S4. High resolution XPS spectra of OCNTF/PPY nanocomposites. (a) OCNTF-PPY-10, (b) OCNTF-PPY-20, (c) OCNTF-PPY-30, (d) OCNTF-PPY-40, (e) OCNTF-PPY-50, and (f) OCNTF-PPY-60. (a1-f1) C 1s spectra, (a2-f2) O 1s spectra and (a3-f3) N1s spectra.

Page 6: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

6

Fig. S5. Plot of conductivity of CNTF, OCNTF and OCNTF/PPY supercapacitors.

Page 7: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

7

Fig. S6. (a) N2 sorption isotherms and (b) BJH pore-size distribution curve of OCNTF-PPY-50 nanocomposite sample.

Page 8: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

8

Fig. S7.Two-electrode cell CV curves of OCNTF-PPY-50 nanocomposite electrodes at different scan rates obtained in 1M LiClO4 acetonitrilic electrolyte.

Fig. S8. Plot of variation in the gravimetric energy density at different current densities of the OCNTF-PPY-50 supercapacitor.

Page 9: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

9

Fig. S9. Plot of variation in the volume specific energy density at different current densities of the OCNTF-PPY-50 supercapacitor.

Fig. S10. Variation in the thermal lifetime of OCNTF-PPY-50 nanocomposite at different temperatures.

Page 10: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

10

Fig. S11. EPMA secondary electron image ofOCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles.

Fig. S12. EPMA 2D mapping of carbon, oxygen and nitrogen of the OCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles.

Page 11: brush-like electrodes Ultra-flexible fibrous ... · 1 Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes Jayesh Cherusseriaand Kamal K.

11

Fig. S13. XPS de-convolution spectra of the OCNTF-PPY-50 nanocomposite electrode after completing the cycling test of 5000 cycles: (a) C 1s spectra, (b) O 1s spectra and (c) N 1s spectra.