Top Banner
Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)
47

Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Dec 28, 2015

Download

Documents

Gladys Pearson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Brownian Motion in AdS/CFTYITP Kyoto, 24 Dec 2009

Masaki Shigemori (Amsterdam)

Page 2: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

2

This talk is based on:

J. de Boer, V. Hubeny, M. Rangamani, M.S., “Brownian motion in AdS/CFT,” arXiv:0812.5112.

A. Atmaja, J. de Boer, M.S., in preparation.

Page 3: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

3

Introduction / Motivation

Page 4: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

4

thermodynamics

Hierarchy of scales in physics

hydrodynamics

atomic theory

subatomic theory

large

small

Scale

macrophysics

microphysics

coarse-grain

Brownian motion

Page 5: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

5

AdS BHin classical GR

Hierarchy in AdS/CFT

AdS CFT

[Bhattacharyya+Minwalla+

Rangamani+Hubeny]

thermodynamics of plasma

horizon dynamics

in classical GR

hydrodynamics

Navier-Stokes eq.

quantum BH

strongly coupled quantum plasma

large

small

Scale

long-wavelength approximation

macro-physics

micro-physics

?

This

talk

Page 6: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

6

Brownian motion

― Historically, a crucial step toward microphysics of nature

1827 Brown

Due to collisions with fluid particles Allowed to determine Avogadro #: NA= 6x1023 < ∞

Ubiquitous Langevin eq. (friction + random force)

Robert Brown (1773-1858)

erratic motion

pollen particle

Page 7: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

7

Brownian motion in AdS/CFT

Do the same in AdS/CFT!

Brownian motion of an external quark in CFT plasma

Langevin dynamics from bulk viewpoint?

Fluctuation-dissipation theorem

Read off nature of constituents of strongly coupled plasma

Relation to RHIC physics?Related work:Drag force: Herzog+Karch+Kovtun+Kozcaz+Yaffe, Gubser, Casalderrey-Solana+TeaneyTransverse momentum broadening: Gubser, Casalderrey-Solana+Teaney

Page 8: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

8

Preview: BM in AdS/CFT

horizon

AdS boundaryat infinity

fundamentalstring

black hole

endpoint =Brownian particle Brownian

motion

Page 9: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

9

Outline

Intro/motivation

Boundary BM

Bulk BM

Time scales

BM on stretched horizon

Page 10: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

10

Boundary BM

- Langevin dynamics

Paul Langevin (1872-1946)

Page 11: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

11

Simplest Langevin eq.

𝑥,𝑝= 𝑚𝑥ሶ 𝑝ሶሺ𝑡ሻ= −𝛾0𝑝ሺ𝑡ሻ+ 𝑅ሺ𝑡ሻ (instantaneo

us)friction

random force

𝑅ሺ𝑡ሻۃ =ۄ 0, 𝑅ሺ𝑡ሻ𝑅ሺ𝑡′ሻۃ =ۄ 𝜅0𝛿(𝑡− 𝑡′) white noise

Page 12: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

12

Simplest Langevin eq.

diffusive regime(random walk)

≈൞

𝑇𝑚𝑡2 (𝑡 ≪𝑡𝑟𝑒𝑙𝑎𝑥)2𝐷𝑡 (𝑡 ≫𝑡𝑟𝑒𝑙𝑎𝑥)

• Diffusion constant:

𝐷≡ 𝑇𝛾0𝑚

𝑠2ሺ𝑡ሻۃ ≡ۄ −ሾ𝑥ሺ𝑡ሻۃ 𝑥ሺ0ሻሿ2 ۄ

ballistic regime(init. velocity )

𝑥ሶ~ඥ𝑇/𝑚

Displacement:

𝑡relax = 1𝛾0 • Relaxation time:

(S-E relation) 𝛾0 = 𝜅02𝑚𝑇 FD theorem

Page 13: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

13

Generalized Langevin equation

𝑝ሶሺ𝑡ሻ= −න 𝑑𝑡′𝑡−∞ 𝛾ሺ𝑡− 𝑡′ሻ𝑝ሺ𝑡′ሻ+ 𝑅ሺ𝑡ሻ+ 𝐹(𝑡)

delayed

friction

random force

𝑅ሺ𝑡ሻۃ =ۄ 0, 𝑅ሺ𝑡ሻ𝑅ሺ𝑡′ሻۃ =ۄ 𝜅(𝑡− 𝑡′)

external force

Qualitatively similar to simple LE ballistic regime diffusive regime

Page 14: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

14

Time scales

Relaxation time𝑡relax ≡ 1𝛾0 , 𝛾0 = න 𝑑𝑡∞0 𝛾(𝑡)

𝑅ሺ𝑡ሻ𝑅ሺ0ሻۃ ∽ۄ 𝑒−𝑡/𝑡coll time elapsed in a single collision

𝑡coll

𝑡mfp

Typically𝑡relax ≫𝑡mfp ≫𝑡coll but not necessarily sofor strongly coupled plasma

R(t)

t𝑡mfp

𝑡coll

time between collisions

Collision duration time

Mean-free-path time

Page 15: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

How to determine γ, κ

15

1. Forced motion

2. No external force,

𝑝ሺ𝜔ሻ= 𝑅ሺ𝜔ሻ+ 𝐹ሺ𝜔ሻ𝛾ሾ𝜔ሿ− 𝑖𝜔 ≡ 𝜇ሺ𝜔ሻሾ𝑅ሺ𝜔ሻ+ 𝐹ሺ𝜔ሻሿ

𝐹ሺ𝑡ሻ= 𝐹0𝑒−𝑖𝜔𝑡

𝑝ሺ𝑡ሻۃ =ۄ 𝜇ሺ𝜔ሻ𝐹0𝑒−𝑖𝜔𝑡

𝑝𝑝ۃ =ۄ a2𝜇a22 𝑅𝑅ۃ ۄmeasure

known

read off μ

read off κ

admittance

𝐹= 0

Page 16: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

16

Bulk BM

Page 17: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

17

Bulk setup

AdSd Schwarzschild BH(planar)

𝑑𝑠𝑑2 = 𝑟2𝑙2 ൫−ℎሺ𝑟ሻ𝑑𝑡2 + 𝑑𝑋Ԧ𝑑−22 ൯+ 𝑙2𝑑𝑟2𝑟2ℎ(𝑟)

ℎሺ𝑟ሻ= 1−ቀ𝑟𝐻𝑟ቁ𝑑−1

𝑇= 1𝛽 = ሺ𝑑− 1ሻ𝑟𝐻4𝜋𝑙2

r

𝑋Ԧ𝑑−2

horizon

boundary

fundamentalstring

black hole

endpoint =Brownian

particle

Brownian motion

𝑙:AdS radius

Page 18: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

18

Physics of BM in AdS/CFT

Horizon kicks endpoint on horizon(= Hawking radiation)

Fluctuation propagates toAdS boundary

Endpoint on boundary(= Brownian particle) exhibits BM

transverse fluctuationWhole process is dual to

quark hit by plasma particles

r

𝑋Ԧ𝑑−2 boundary

black hole

endpoint =Brownian

particle

Brownian motion

kick

Page 19: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

19

Assumptions

𝑋Ԧ𝑑−2(𝑡,𝑟)

𝑋ሺ𝑡,𝑟ሻ r

𝑋Ԧ𝑑−2

horizon

boundary

Probe approximation

Small gs

No interaction with bulk

Only interaction is at horizon

Small fluctuation

Expand Nambu-Goto actionto quadratic order

Transverse positions aresimilar to Klein-Gordon scalar

Page 20: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

20

Transverse fluctuations

Quadratic action

𝑆2 = − 14𝜋𝛼′ න𝑑𝑡 𝑑𝑟ቈ𝑋ሶ2ℎሺ𝑟ሻ− 𝑟4ℎሺ𝑟ሻ𝑙4 𝑋′2

ቈ𝜔2 + ℎሺ𝑟ሻ𝑙4 𝜕𝑟ሺ𝑟4ℎሺ𝑟ሻ𝜕𝑟ሻ 𝑓𝜔ሺ𝑟ሻ= 0

𝑋ሺ𝑡,𝑟ሻ=න 𝑑𝜔∞0 ൫𝑓𝜔ሺ𝑟ሻ𝑒−𝑖𝜔𝑡𝑎𝜔 + h.c.൯

d=3: can be solved exactlyd>3: can be solved in low frequency limit

𝑋ሺ𝑡,𝑟ሻ

𝑆NG = const + 𝑆2 + 𝑆4 + ⋯

Mode expansion

Page 21: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

21

Bulk-boundary dictionary

Near horizon:

𝑋ሺ𝑡,𝑟cሻ≡ 𝑥(𝑡) = න 𝑑𝜔∞0 �𝑓𝜔(𝑟𝑐)𝑒−𝑖𝜔𝑡𝑎𝜔 + h.c.൧

𝑋ሺ𝑡,𝑟ሻ∼න𝑑𝜔ξ2𝜔∞

0 �൫𝑒−𝑖𝜔(𝑡−𝑟∗) + 𝑒𝑖𝜃𝜔𝑒−𝑖𝜔(𝑡+𝑟∗)൯𝑎𝜔 + h.c.൧ outgoin

gmode

ingoingmode

phase shift

𝑟∗

: tortoise coordinate

𝑟c : cutoff

⋯𝑥ሺ𝑡1ሻ𝑥ሺ𝑡2ሻۃ ↔ۄ †𝑎𝜔1𝑎𝜔2ۃ ⋯ ۄ

observe BMin gauge theory

correlator ofradiation

modesCan learn about quantum gravity in principle!

Near boundary:

Page 22: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

22

Semiclassical analysis

Semiclassically, NH modes are thermally excited:

AdS3

†𝑎𝜔𝑎𝜔ۃ ∝ۄ 1𝑒𝛽𝜔 − 1

Can use dictionary to compute x(t), s2(t) (bulk boundary)

𝑠2(𝑡) ≡ ⟨:ሾ𝑥ሺ𝑡ሻ− 𝑥ሺ0ሻሿ2:⟩ ≈ە۔

ۓ

𝑇𝑚𝑡2 (𝑡 ≪𝑡relax )𝛼′𝜋𝑙2𝑇𝑡 (𝑡 ≫𝑡relax )

𝑡relax ∼ 𝛼′𝑚𝑙2𝑇2

: ballistic: diffusiveDoes exhibit

Brownian motion

Page 23: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

23

Semiclassical analysis Momentum

distribution

Diffusion constant

Probability distribution for 𝑝= 𝑚𝑥ሶ 𝑓ሺ𝑝ሻ∝ exp൫−𝛽𝐸𝑝൯, 𝐸𝑝 = 𝑝22𝑚

Maxwell-Boltzmann

𝐷= ሺ𝑑− 1ሻ2𝛼′8𝜋𝑙2𝑇

Agrees with drag force computation[Herzog+Karch+Kovtun+Kozcaz+Yaffe]

[Liu+Rajagopal+Wiedemann][Gubser] [Casalderrey-Solana+Teaney]

Page 24: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

24

Forced motion Want to determine μ(ω), κ(ω)

― follow the two-step procedure

Turn on electric field E(t)=E0e-iωt

on “flavor D-brane” and measure response ⟨p(t)⟩ E(t)p

freely infalling therm

al

b.c. changed from Neumann

“flavor D-brane”

Page 25: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

25

Forced motion: results (AdS3) Admittance

Random force correlator

FD theorem

𝜇ሺ𝜔ሻ= 1𝛾ሾ𝜔ሿ− 𝑖𝜔= 𝛼′𝛽2𝑚2𝜋 1− 𝑖𝜔/𝜋𝛼′𝑚1− 𝛼′𝑚𝛽2𝜔/2𝜋

𝜅ሺ𝜔ሻ= 4𝜋𝛼′𝛽3 1−ሺ𝛽𝜔/2𝜋ሻ21−ሺ𝜔/2𝜋𝛼′𝑚ሻ2 𝑡coll ∼ 1𝑇 (no λ)

2𝑚 Re(𝛾ሾ𝜔ሿ) = 𝛽𝜅ሺ𝜔ሻ satisfiedcan be proven

generally

Page 26: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

26

Time scales

Page 27: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

27

Time scales

R(t)

t𝑡mfp

𝑡coll

𝑡relax

𝑡mfp 𝑡coll

information about plasma

constituents

Page 28: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

28

Time scales from R-correlators

R(t) : consists of many pulses randomly distributed

A toy model:

𝑅ሺ𝑡ሻ= 𝜖𝑖𝑓ሺ𝑡− 𝑡𝑖ሻ𝑘

𝑖=1 𝑓(𝑡) : shape of a single

pulse  𝜖𝑖 = ±1 : random sign

𝜇 : number of pulses per unit time,∼ 1/𝑡mfp

𝜖1 = 1 𝜖2 = 1

𝜖3 = −1

𝑓(𝑡− 𝑡1) 𝑓(𝑡− 𝑡2)

−𝑓(𝑡− 𝑡3) Distribution of pulses = Poisson distribution

Page 29: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

29

Time scales from R-correlators

Can determine μ, thus tmfp

𝑅෨(𝜔1)𝑅෨(𝜔2)ۃ ≈ۄ 2𝜋𝜇𝛿(𝜔1 + 𝜔2)𝑓ሚሺ0ሻ2

𝑅෨ሺ𝜔1ሻ𝑅෨ሺ𝜔2ሻ𝑅෨ሺ𝜔3ሻ𝑅෨ሺ𝜔4ሻۃ connۄ ≈ 2𝜋𝜇𝛿(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4)𝑓ሚሺ0ሻ4

tilde = Fourier transform

2-pt func

Low-freq. 4-pt func

𝑅ሺ𝑡ሻ𝑅ሺ0ሻۃ 𝑡coll→ۄ

𝑅෨ሺ𝜔1ሻ𝑅෨ሺ𝜔2ሻ𝑅෨ሺ𝜔3ሻ𝑅෨ሺ𝜔4ሻۃ 𝑡mfp→ۄ

Page 30: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

30

Sketch of derivation (1/2)

𝑃𝑘ሺ𝜏ሻ= 𝑒−𝜇𝜏ሺ𝜇𝜏ሻ𝑘𝑘!

Probability that there are k pulses in period [0,τ]:

𝑅ሺ𝑡ሻ= 𝜖𝑖𝑓ሺ𝑡− 𝑡𝑖ሻ𝑘

𝑖=1

𝑅ሺ𝑡ሻ𝑅(𝑡′)ۃ =ۄ 𝑃𝑘ሺ𝜏ሻ∞𝑘=1 −𝜖𝑖𝜖𝑗𝑓ሺ𝑡ۃ 𝑡𝑖ሻ𝑓(𝑡− 𝑡𝑗) 𝑘ۄ

𝑘𝑖,𝑗=1

𝜖𝑖 = ±1 ∶ random signs → 𝜖𝑖𝜖𝑗ۃ =ۄ 𝛿𝑖𝑗

0

k pulses

𝑡1 𝑡2 𝑡𝑘 … 𝜏

(Poisson dist.)

−𝑓ሺ𝑡ۃ 𝑡𝑖ሻ𝑓ሺ𝑡′ − 𝑡𝑖ሻ 𝑘ۄ = 𝑘𝜏න 𝑑𝑢𝜏0 𝑓ሺ𝑡− 𝑢ሻ𝑓(𝑡′ − 𝑢)

2-pt func:

Page 31: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

31

Sketch of derivation (2/2)

𝑅ሺ𝑡ሻ𝑅(𝑡′)ۃ =ۄ 𝜇න 𝑑𝑢∞−∞ 𝑓ሺ𝑡− 𝑢ሻ𝑓(𝑡′ − 𝑢)

𝑅෨ሺ𝜔ሻ𝑅෨(𝜔′)ۃ =ۄ 2𝜋𝜇𝛿ሺ𝜔+ 𝜔′ሻ𝑓ሚሺ𝜔ሻ𝑓ሚ(𝜔′)

Similarly, for 4-pt func,

+2𝜋𝜇𝛿ሺ𝜔+ 𝜔′ + 𝜔′′ + 𝜔′′′ ሻ𝑓ሚሺ𝜔ሻ𝑓ሚሺ𝜔′ሻ𝑓ሚሺ𝜔′′ሻ𝑓ሚሺ𝜔′′′ሻ 𝑅෨ሺ𝜔ሻ𝑅෨(𝜔′)𝑅෨(𝜔′′)𝑅෨(𝜔′′′)ۃ ۄ𝑅෨ሺ𝜔ሻ𝑅෨ሺ𝜔′ሻ⟩ ⟨𝑅෨(𝜔′′)𝑅෨(𝜔′′′)ۃ ሺ2 more termsሻ+ۄ

“disconnected part”

“connected

part”=

𝑅෨(𝜔1)𝑅෨(𝜔2)ۃ ≈ۄ 2𝜋𝜇𝛿(𝜔1 + 𝜔2)𝑓ሚሺ0ሻ2

𝑅෨ሺ𝜔1ሻ𝑅෨ሺ𝜔2ሻ𝑅෨ሺ𝜔3ሻ𝑅෨ሺ𝜔4ሻۃ connۄ ≈ 2𝜋𝜇𝛿(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4)𝑓ሚሺ0ሻ4

Page 32: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

32

⟨RRRR⟩ from bulk BM

Expansion of NG action to higher order: 𝑋ሺ𝑡,𝑟ሻ 𝑆NG = const + 𝑆2 + 𝑆4 + ⋯

Can compute tmfp from connected to 4-pt func.

𝑆4 = 116𝜋𝛼′ න𝑑𝑡 𝑑𝑟ቈ𝑋ሶ2ℎሺ𝑟ሻ− 𝑟4ℎሺ𝑟ሻ𝑙4 𝑋′22

𝑅𝑅𝑅𝑅ۃ connۄ Can compute and thus tmfp

4-point vertex

Page 33: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

33

Holographic renormalization [Skenderis]

Similar to KG scalar, but not quite

Lorentzian AdS/CFT [Skenderis + van Rees]

IR divergence

Near the horizon, bulk integral diverges

⟨RRRR⟩ from bulk BM

Page 34: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

34

Reason: Near the horizon, local

temperature is high String fluctuates wildly Expansion of NG action breaks

down

Remedy: Introduce an IR cut off

where expansion breaks down Expect that this gives

right estimate of the full result

IR divergence

cutoff

Page 35: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

35

Times scales from AdS/CFT (weak)

conventional kinetic theory is good

𝑡relax ~ 𝑚ξ𝜆 𝑇2 𝑡coll ~1𝑇

Resulting timescales:

𝜆≡ 𝑙4𝛼′2

weak coupling𝜆≪1 𝑡relax ≫𝑡mfp ≫𝑡coll

𝑡mfp ~ 1 𝑇logλ

Page 36: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

36

Times scales from AdS/CFT (strong)

Multiple collisions occur simultaneously.

strong coupling𝜆≫1 𝑡mfp ≪𝑡coll

Cf. “fast scrambler”

[Hayden+Preskill] [Sekino+Susskind]

𝑡relax ~ 𝑚ξ𝜆 𝑇2 𝑡coll ~1𝑇

Resulting timescales:

𝜆≡ 𝑙4𝛼′2 𝑡mfp ~ 1 𝑇logλ

Page 37: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

37

BM on stretched horizon

Page 38: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

38

Membrane paradigm?

Attribute physical properties to “stretched horizon”

E.g. temperature, resistance, …

stretched horizon

actual horizonQ. Bulk BM was due to b.c. at horizon (ingoing: thermal, outgoing: any). Can we reproduce this by interaction between string and “membrane”?

Page 39: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

39

Langevin eq. at stretched horizon

𝑋ሺ𝑡,𝑟ሻ r

r=rsr=rH

−#𝜕𝑟𝑋ሺ𝑡,𝑟𝑠ሻ= 𝐹𝑠ሺ𝑡ሻ 𝐹𝑠(𝑡) = −න 𝑑𝑡′𝛾𝑠ሺ𝑡− 𝑡′ሻ𝜕𝑡𝑋ሺ𝑡′,𝑟𝑠ሻ+ 𝑅𝑠(𝑡)𝑡

−∞

𝑅𝑠ሺ𝑡ሻۃ =ۄ 0, 𝑅𝑠ሺ𝑡ሻ𝑅𝑠ሺ𝑡′ሻۃ =ۄ 𝜅𝑠(𝑡− 𝑡′)

𝐹𝑠ሺ𝑡ሻ

EOM for endpoint: Postulate:

Page 40: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Langevin eq. at stretched horizon

𝑋ሺ𝑡,𝑟~𝑟𝐻ሻ=න𝑑𝜔ξ2𝜔[𝑎𝜔ሺ+ሻ𝑒−𝑖𝜔ሺ𝑡−𝑟∗ሻ+ 𝑎𝜔ሺ−ሻ𝑒−𝑖𝜔ሺ𝑡+𝑟∗ሻ+ h.c.]

𝛾𝑠ሺ𝑡ሻ∝ 𝛿ሺ𝑡ሻ, 𝑅𝑠ሺ𝜔ሻ∝ ξ𝜔 𝑎𝜔(+)

𝑅𝑠ሺ𝜔ሻ†𝑅𝑠ሺ𝜔ሻۃ ∝ۄ 𝑎𝜔ሺ+ሻ†𝑎𝜔ሺ+ሻۃ ∝ۄ 𝜔𝑒𝛽𝜔 − 1

Plug into EOM

Ingoing (thermal)

outgoing (any)

40

Friction precisely cancels outgoing

modes

Random force excites ingoing

modes thermally

Can satisfy EOM if

Correlation function:

Page 41: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

41

Granular structure on stretched horizon

BH covered by “stringy gas”[Susskind et al.]

Frictional / random forcescan be due to this gas

Can we use Brownian stringto probe this?

Page 42: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

42

Granular structure on stretched horizon AdSd BH

One quasiparticle / string bit per Planck area

Proper distance from actual horizon:

𝑑𝑠𝑑2 = 𝑟2𝑙2 ൫−ℎሺ𝑟ሻ𝑑𝑡2 + 𝑑𝑋Ԧ𝑑−22 ൯+ 𝑙2𝑑𝑟2𝑟2ℎ(𝑟)

ℎሺ𝑟ሻ= 1−ቀ𝑟𝐻𝑟ቁ𝑑−1

𝑇= 1𝛽 = ሺ𝑑− 1ሻ𝑟𝐻4𝜋𝑙2

𝛥𝑋∼ 𝑙𝑟𝐻ℓ𝑃

𝛥𝑡 ∼ Δ𝑋ξ𝜖 ∼ 𝑙ℓ𝑃ξ𝜖 𝑟𝐻 𝑟𝑠 = ሺ1+ 2𝜖ሻ𝑟𝐻 𝐿∼ ξ𝜖 𝑙

qp’s are moving at speed of light

(stretched horizon at )

Page 43: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

Granular structure on stretched horizon

43

String endpoint collides with a quasiparticle once in time

Cf. Mean-free-path time read off Rs-correlator:

Scattering probability for string endpoint:

Δ𝑡 ∼ ℓ𝑃𝑇𝐿

𝑡mfp ∼ 1𝑇

𝜎= 𝛥𝑡𝑡mfp ∼ ℓ𝑃𝐿 ∼൜1 (𝐿∼ ℓP)𝑔s# (𝐿∼ ℓs)

Page 44: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

44

Conclusions

Page 45: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

45

Conclusions

Boundary BM ↔ bulk “Brownian string”

Can study QG in principle

Semiclassically, can reproduce Langevin dyn. from bulk

random force ↔ Hawking rad. (“kick” by horizon)

friction ↔ absorption

Time scales in strong coupling QGP: trelax, tcoll, tmfp FD theorem

Page 46: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

46

Conclusions

BM on stretched horizon

Analogue of Avogadro # NA= 6x1023 < ∞?

Boundary:

Bulk:

energy of a Hawking quantum is tiny as compared to BH mass, but finite

𝐸/𝑇∼ 𝒪ሺ𝑁2ሻ< ∞ 𝑀/𝑇∼ 𝒪ሺ𝐺𝑁−1ሻ< ∞

Page 47: Brownian Motion in AdS/CFT YITP Kyoto, 24 Dec 2009 Masaki Shigemori (Amsterdam)

47

Thanks!