Top Banner
Topology of Graphic Hyperplane Arrangements Kenneth Ascher & Donald Mathers Introduction Definitions Example More Definitions Graphs Algebra O.S. Algebra Resonance Varieties Results Resonance Varieties Polymatroid Example Future Future End Topology of Graphic Hyperplane Arrangements Kenneth Ascher & Donald Mathers Brown SUMS 2012
23

Brown presentation

Jan 24, 2018

Download

Education

Donald Mathers
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Topology of Graphic Hyperplane Arrangements

Kenneth Ascher & Donald Mathers

Brown SUMS 2012

Page 2: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Definitions

Setup: i = 1, · · · ,nαi : C`→ C is a non-zero linear transformationai = [ai1 · · ·ai` ]

Definition

Ker(αi ) = {x ∈ C` | αi (x) = 0} := Hiis called a linear hyperplane.

Definition

We call A = {H1, · · · ,Hn}, a finite set of hyperplanes, ahyperplane arrangement.

Page 3: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Example

Example

A =

1 0 00 1 00 0 1−1 1 0−1 0 10 −1 1

H1 : x = 0H2 : y = 0H3 : z = 0H4 :−x + y = 0H5 :−x + z = 0H6 :−y + z = 0

Example

6

Page 4: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Combinatorial Definitions

Definition

A subset S ⊆A is called dependent iff the set {αi | Hi ∈ S} isa linear dependent set.

Page 5: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Graphic Arrangements

We will deal with graphic arrangements – arrangementsassociated with a simple graph, ΓGiven a graph, Γ with edge set E , the arrangement isformed by the following hyperplanes (in C`):

AΓ = {zi − zj = 0 | (i , j) ∈ E }

Example

Edges – HyperplanesRank of graph – Space we are in

We are interested in the complement of A ,

M = C`−n⋃

i=1

Hi (or in complex projective space. . . )

Page 6: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Orlik-Solomon Algebra

We are interested in the complement of A ,

M = C`−n⋃

i=1

Hi (or in complex projective space)

For each Hi ∈A we have a corresponding basis vector, ei .Let E = ∧(e1, · · · ,e`) be the exterior algebraDefine ∂ : E p→ E p−1 by:

∂ (ei1 ∧·· ·∧ eip ) =p

∑k=1

(−1)k−1ei1 ∧·· ·∧ eik ∧·· ·∧ eip

Notation: S = (i1, · · · , ip), denote ei1 ∧·· ·∧ eip as eS

Page 7: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

O.S. Algebra Cont.

Let I be the ideal generated by: (∂eS | S is dependent)

Definition

The Orlik-Solomon Algebra is A(A ) = E /I

A is a homogeneous, graded algebra

Theorem

Let M be the complement as before. ThenA(A ) = E /I ∼= H∗(M)

Page 8: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties

Fix a ∈ A1 so that a =n

∑i=1

λiei , δa(x) = a∧ x

A(A ) is graded so we have:

0→ A0 δ0a−→ A1 δ1

a−→ A2 δ2a−→ ·· · δ `−1

a−−→ A` δ `a−→ 0

We have a co-chain complex ⇒ Hk(a,δa) = Ker(δ ka )/Im(δ k−1

a )

Definition

The dth resonance variety isRd (A ) = {a ∈ Ad | Hd (Ad ,δ d

a ) 6= 0}

Page 9: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties, Cont.

Important properties:

It is an algebraic variety, specifically, a union of linearsubspaces

For graphic arrangements we have the following theorem:

Theorem

For a graphic arrangement, AΓ, R1(AΓ) has a component foreach K3 and K4 in the graph.

Page 10: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Graph Operations

ExampleExample

Parallel-connection vs. Parallel-indecomposable

Page 11: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties

We are interested in the dimension of the (first) resonancevariety and have the following theorem:

Theorem

Given a graphic arrangement, AΓ, let B be the arrangementformed by removing all hyperplanes in A which are notcontained in a K3. Call this resulting graph associated to B, H.Then, dim(R1(A )) = e(H)− c(H), where e(H) denotes thenumber of edges in H, and c(H) denotes the number ofmaximal edge-joint components.

Corollary

Given a 2-connected, parallel-indecomposable graph Γ, suchthat each edge is contained in a K3, dim(R1(A )) = e(Γ)−1.

Page 12: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Resonance Varieties

Example

This is what we call aparallel connection. Inthis case, we parallelconnected two K3s.The dimension of thespan of R1(A ) is 4 .

Example

This is a W5, a wheelgraph with 5 vertices.The dimension of thespan of R1(A ) is 7 .

Page 13: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Polymatroids

We’ve already established that the resonance variety is a unionof linear subspaces.

Let’s assume R1(A ) = L1∪L2 · · ·∪Lk⋃

M1∪·· ·∪Mn

Li ↔ K3Mi ↔ K4

The polymatroid is a function that assigns to eachsubspace of R1, the dimension of its span

Using our theorem on dimension of the span of the resonancevariety, we can calculate the polymatroid of a graph containingno 4-cliques.

Page 14: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Polymatroid

Let Γ be a K4-free graph (a decomposable arrangement)

Each K3 contributes a local component, a linear space ofdimension 2, so we are interested in the dimension of thespan of the union of any componentsWe call the dimension of the span degenerate if it is “lessthan expected“Wheel graphs represent “minimal degenerate sets“

We can determine the polymatroid of these arrangements bylooking at subgraphs which are wheel graphs.

Page 15: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Page 16: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Page 17: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Page 18: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Examples

Example

Page 19: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Example

Example

Example

Parallel-indecomposable, irreducible, inerectibleSame chromatic polynomial and same polymatroidSame quadratic O.S. algebras

Page 20: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Future

Page 21: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Future

Page 22: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Acknowledgements

Professor Michael FalkCaleb Holtzinger

YMCNSF

Page 23: Brown presentation

Topology ofGraphic

HyperplaneArrangements

KennethAscher &DonaldMathers

IntroductionDefinitionsExampleMoreDefinitionsGraphs

AlgebraO.S. AlgebraResonanceVarieties

ResultsResonanceVarietiesPolymatroidExampleFutureFuture

End

Thanks!

Questions?