Top Banner
Branch and Cut Technique Discrete Optimization IME 960 Abhishek Singh
34

Branch and Cut Algorithm IME 960 Project (1)

Aug 16, 2015

Download

Documents

Abhishek Singh

Brief overview of Branch and cut method
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

Branch and Cut TechniqueDiscrete OptimizationIME 960Abhishek in!hBranch"and"cut methods# are e$act a%!orithms consistin! o& a combination o& a cuttin! p%ane method 'ith a branch"and"bound a%!orithm( These methods 'ork b) so%*in! a sequence o& %inear pro!rammin! re%a$ations o& the inte!er pro!rammin! prob%em( Cuttin! p%ane methods impro*e the re%a$ation o& the prob%em to more c%ose%) appro$imate the inte!er pro!rammin! prob%em( Branch"and"bounda%!orithms proceed b) a sophisticated di*ide and conquer approach to so%*e prob%ems(Introduction Branch + Cut a%!orithms modi&) the basic Branch + Bound strate!) b) attemptin! to stren!then the %inear pro!rammin! re%a$ation,-./0 o& an I. 'ith ne' inequa%ities be&ore branchin! a partia% so%ution( Basica%%)# Branch + Cut 1 Branch + Bound 2 Cuttin! .%anes .ure Branch + Bound can be considerab%) sped up b) emp%o)in! cuttin! p%anes either at the top o& a Branch + Bound tree or at e*er) node o& the tree# because cuttin! p%anes considerab%) reduce the size o& the tree( Branch + Cut can be used in con3unction 'ith heuristics to obtain a %o'er bound on the optima% *a%ue# usin! the Branch + Bound a%!orithmConcept o& Branch and Cut Branch"and"cut methods ha*e a%so been used to so%*e other combinatoria% optimization prob%ems# a!ain throu!h the e$p%oitation o& stron! cuttin! p%anes arisin! &rom po%)hedra% theor)( .rob%ems attacked recent%) 'ith cuttin! p%ane or branch"and"cut methods inc%ude4 The %inear orderin! prob%em Ma$imum cut prob%ems chedu%in! prob%ems 5et'ork desi!n prob%ems .ackin! prob%ems etc( A pure branch"and bound approach can be sped up considerab%) b) the emp%o)ment o& a cuttin! p%ane scheme# either 3ust at the top o& the tree# or at e*er) node o& the tree because the cuttin! p%anes %ead to a considerab%e reduction in the size o& the tree(T)pes o& .rob%ems o%*ed6e re!ard the mi$ed inte!er %inear pro!rammin! prob%em 6here $ and c are n"*ectors b is an m"*ector A is an m 7 n matri$( The 8rst p *ariab%es are restricted to be inte!er# and the remainder ma) be &ractiona%(A%!orithm Branch and Cut - is the set o& acti*e nodes in the branch"and"cut tree( The *a%ue o& the best kno'n &easib%e point &or ,I-.0is 9z# 'hich pro*ides an upper bound on the optima% *a%ue o& ,I-.0 z% is a %o'er bound on the optima% *a%ue o& the current sub prob%em under consideration( The *a%ue o& the -. re%a$ation o& the sub prob%em can be used to update z%A%!orithm Branch and CutInitia% so%ution to re%a$ation4 I& the a%!orithm sp%its on $:# t'o ne' prob%ems are obtainedE$amp%e to i%%ustrate Branch and Cut a%!orithmE$amp%e to i%%ustrate Branch and Cut a%!orithm cont(E$amp%e to i%%ustrate Branch and Cut a%!orithm cont(E$amp%e to i%%ustrate Branch and Cut a%!orithm cont(E$amp%e to i%%ustrate Branch and Cut a%!orithm cont(E$amp%e to i%%ustrate Branch and Cut a%!orithm cont(E$amp%e to i%%ustrate Branch and Cut a%!orithm cont(E$amp%e to i%%ustrate Branch and Cut a%!orithm cont( The constraints added b) the cuttin! p%ane must be a *a%id inequa%it)( 6hich means4 It is satis8ed b) e*er) inte!ra% point that is &easib%e in the sub prob%em This inequa%it) is *io%ated b) the optima% so%ution o& the sub prob%em(Cuttin! .%ane is added to so%*e the prob%emE$amp%e to i%%ustrate Branch and Cut a%!orithm cont(;eneratin! Cuttin! .%ane Cha*ata% Take a 'ei!hted combination o& the inequa%ities &rom the current -./ E$p%oit the &act that *ariab%es must be inte!ra%# process kno'n as inte!er roundin! Cuttin! p%anes !enerated in this 'a) are ca%%ed Ch*ata%";omor)cuttin! p%anes( E$amp%e4 The 8rst step is to take a 'ei!hted combination o& the inequa%ities( :?::0 2 @,"$:2 >$> ?@0 !i*es:$:2 $> ?= :: -A o& the inequa%it) is rounded do'n# 'hich !i*es $> ?= :: In an) &easib%e so%ution to an I.# the -A must take an inte!er *a%ue# so the /A is rounded do'n( Bina%%) 'e ha*e the *a%id inequa%it) 4 $> ?=;eneratin! Cuttin! .%ane;omor) ori!ina%%) deri*ed constraints o& this &orm direct%) &rom the optima% simp%e$ tab%eau( ;omor) ori!ina%%) deri*ed constraints o& this &orm direct%) &rom the optima% simp%e$ tab%eau(ince $: and $> are constrained to be inte!er# it &o%%o's that z# $=# and $C must a%so a%% be inte!er(Bor each ro'# the &ractiona% parts o& the %e&t hand side and the ri!ht hand side must be equa%(Thus# the ob3ecti*e &unction ro' o& this tab%eau indicates that the constraint(This constraint can be added to the tab%eau and the modi8ed re%a$ation so%*ed usin! the dua% simp%e$ method( The constraint can be 'ritten in terms o& the ori!ina% *ariab%es4;eneratin! Cuttin! .%aneCuttin! p%anes can be !enerated &rom an) constraint 'here the correspondin! basic *ariab%e is &ractiona%( The t'o constraint ro's o& the tab%eau !i*en abo*e imp%) the constraints4,Constraints 'ritten in ori!ina% *ariab%es0Cuttin! .%ane The constraints added b) the cuttin! p%ane must be a *a%id inequa%it)( 6hich means4 It is satis8ed b) e*er) inte!ra% point that is &easib%e in the sub prob%em This inequa%it) is *io%ated b) the optima% so%ution o& the sub prob%em(6hen the inequa%it) !enerated satis8es the abo*e condition then it is a cuttin! p%ane(E*er) *a%id inequa%it) &or the con*e$ hu%% o& the set o& &easib%e points &or ,I-.0 can be deri*ed b) repeated%) app%)in! the Ch*Data%";omor) roundin! procedure( I& a cuttin! p%ane is a%'a)s !enerated &rom the 8rst possib%e ro' then ;omor)Es cuttin! p%ane a%!orithm 'i%% so%*e an inte!er pro!ram in a 8nite number o& iterations(Ba%as et a%( ,:996b0 ha*e sho'n that the a%!orithm can be made competiti*e 'ith other methods i& certain techniques are used# such as addin! man) Ch*Data%";omor) cuts at once(Impro*in! the per&ormance o& a branch"and"cut code( Fsin! reduced costs to e%iminate *ariab%es( 6orkin! 'ith a subset o& the *ariab%es and then addin! in the omitted *ariab%es %ater i& necessar)( Fsin! prima% heuristics to !enerate !ood so%utions so that nodes can be pruned b) bounds( .reprocessin! the prob%em ,simp%i&) prob%em0 Maintainin! an appropriate ba%ance bet'een cuttin! and branchin! tren!thenin! cuts throu!h %i&tin! Man) re8nements to the basic a%!orithm are necessar) to !et the best possib%e per&ormance out o& a branch"and"cut code( These inc%ude4O-GI5; A T/FCH DI.ATCAI5; CAEDF-I5; ./OB-EMFI5; B/A5CA"A5D"CFT /OBE/T E( BIIBJ This paper presents a branch"and"cut a%!orithm &or a structured 0