Top Banner
BCI Implementation For Blind Subjects using Signal Processing BY- -Sanchita Singha
17
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Brain computer interface

BCI Implementation For Blind Subjects using Signal Processing

BY--Sanchita Singha

Page 2: Brain computer interface

04/12/2023 BCI Implementation 2

ContentsWhat is BCI?How human brain works How BCI works Uses of BCI Implementation Constraints Conclusion

Page 3: Brain computer interface

04/12/2023 BCI Implementation 3

What is BCI

• BCI-Brain Computer Interface• Direct communication pathway between the brain and an external device• Reads electrical signals from brain

Page 4: Brain computer interface

04/12/2023 BCI Implementation 4

How BCI works

Page 5: Brain computer interface

04/12/2023 BCI Implementation 5

Types of BCI

Page 6: Brain computer interface

BCI Implementation 604/12/2023

Jens Naumann, a man with acquired

blindness

People with spinal injuries

Targeted for people with paralysis

People with acquired blindness can get vision

Practical Use of BCI

Page 7: Brain computer interface

BCI Implementation 7

How virtual eye works

04/12/2023

Page 8: Brain computer interface

04/12/2023 BCI Implementation 8

Flowchart

Page 9: Brain computer interface

04/12/2023 BCI Implementation 9

Signal Acquisition

Page 10: Brain computer interface

04/12/2023 BCI Implementation 10

Training

Page 11: Brain computer interface

04/12/2023 BCI Implementation 11

Feature Extraction

Page 12: Brain computer interface

04/12/2023 BCI Implementation 12

Pre-processing

Page 13: Brain computer interface

04/12/2023 BCI Implementation 13

Constraints • EEGs measure tiny voltage potentials. The signal is

weak and prone to interference.• Each neuron is constantly sending and receiving

signals through a complex web of connections. There are chemical processes involved as well, which EEGs can't pick up on.

• The equipment heavy & hence not portable.

Page 14: Brain computer interface

04/12/2023 BCI Implementation 14

Conclusion• Enables people to communicate and control

appliances with use of brain signals• Open gates for disabled people.• Numerous future applications

Page 15: Brain computer interface

04/12/2023 BCI Implementation 15

References• [1] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer interface (BCI),”

IEEE Trans. Neural Syst. Rehab. Eng., vol. 9, no. 1, pp. 49–58, 2001.• [2] G. Pfurtscheller, R. Leeb, C. Keinrath, D. Friedman, C. Neuper, C. Guger, and M. Slater, “Walking from thought,” Brain Res., vol. 1071, no. 1, pp. 145–152,

2006.• [3] N.J. Hill, T.N. Lal, M. Schroder, T. Hinterberger, B. Wilhelm, F. Nijboer, U. Mochty, G. Widman, C. Elger, B. Scholkopf, A. Kubler, and N. Birbaumer, “Classifying

EEG and ECoG signals without subject training for fast BCI implementation: Comparison of nonparalyzed and completely paralyzed subjects,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 14, pp. 183–186, June 2006.

• [4] N. Weiskopf, K. Mathiak, S.W. Bock, F. Scharnowski, R. Veit, W. Grodd, R. Goebel, and N. Birbaumer, “Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI),” IEEE Trans. Biomed. Eng., vol. 51, pp. 966–970, June 2004.

• [5] S.-S. Yoo, T. Fairneny, N.-K. Chen, S.-E. Choo, L.P. Panych, H. Park, S.-Y. Lee, and F.A. Jolesz, “Brain-computer interface using fMRI: Spatial navigation by thoughts,” Neuroreport, vol. 15, no. 10, pp. 1591–1595, 2004.

• [6] M. A. L. Nicolelis, “Actions from Thoughts,” Nature, vol. 409, pp.403-407, 2001• [7] X. Gao, X. Dignfeng, M. Cheng and S. Gao, “A BCI-based Environmental Controller for the Motion-Disabled,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 11, pp. 137-140, 2003• [8] J. R. Mill´an, P. W. Ferrez and A. Buttfield, “Non Invasive Brain Machine Interfaces - Final report,” IDIAP Research Institute - ESA, 2005• [9] J. D. Bayliss, “Use of the Evoked Potential P3 Component for Control in a Virtual Environment,” IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 11, pp. 113-116, 2003• [10] J. L. Sirvent, J. M. Azor´ın, E. Ia´n˜ez, E., A. U´ beda and E. Ferna´ndez, “P300-based Brain-Computer Interface for Internet Browsing,” IEEE International

Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS), pp. 615-622, 2010• [11] E. Ia´n˜ez, J. M. Azor´ın, A. U´ beda, J. M. Ferra´ndez and E. Ferna´ndez, “Mental Tasks-Based Brain–Robot Interface,” Robotics and Autonomous Systems,

vol. 58(12), pp. 1238-1245, 2010• [12] G. Pfurtscheller and C. Neuper, “Motor Imagery and Direct Brain Computer Communication,” Proceedings of the IEEE, vol. 89, pp. 1123-1134, 2001• [13] F. Lotte, M. Congedo, A. L´ecuyer, F. Lamarche and B. Arnaldi, “A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces,” Journal of

Neural Engineering, vol. 4, pp. 1-13, 2007• [14] F. Cincotti et al., “High-resolution EEG Techniques for Brain Computer Interface Applications,” Journal of Neuroscience Methods, vol. 167(1), pp. 31-42,

2008• [15] R. T. Lauer, P. H. Peckham, K. L. Kilgore, andW. J. Heetderks, “Applications of cortical signals to neuroprosthetic control: A critical review,” IEEE Trans.

Rehab. Eng., vol. 8, pp. 205–208, June 2000.• [16] G. Garcia, T. Ebrahimi, and J.-M. Vesin, “Classification of EEG signals in the ambiguity domain for brain-computer interface applications,” in IEEE Int. Conf.

Digit. Sig. Proc., Santorini, Greece, vol. 1, 1-3 July 2002, pp. 301-305.• [17] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Trans. Rehab. Eng.,

vol. 8, pp. 441–446, Dec. 2000.• [18] B. Kotchoubey, D. Schneider, H. Schleichert, U. Strehl, C. Uhlmann, V. Blankenhorn, W. Froscher, and N. Birbaumer, “Self-regulation of slow cortical

potentials in epilepsy: A retrial with analysis of influencing factors,” Epilepsy Res., vol. 25, no. 3, pp. 269–276, Nov. 1996.

Page 16: Brain computer interface

04/12/2023 BCI Implementation 16

~Thank You~For your attention

Page 17: Brain computer interface

04/12/2023 BCI Implementation 17

Any Queries??