Top Banner
Bounded Arithmetic in Free Logic Yoriyuki Yamagata CTFM, 2013/02/20
31

Bounded arithmetic in free logic

Jul 09, 2015

Download

Technology

Presentation at CTFM (Computability Theory and Foundation of Mathematics)
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bounded arithmetic in free logic

Bounded Arithmetic in Free Logic

Yoriyuki Yamagata CTFM, 2013/02/20

Page 2: Bounded arithmetic in free logic

Buss’s theories 𝑆2𝑖 β€’ Language of Peano Arithmetic + β€œ#”

– a # b = 2 π‘Ž β‹…|𝑏| β€’ BASIC axioms β€’ PIND

𝐴 π‘₯2 , Ξ“ β†’ Ξ”,𝐴(π‘₯)

𝐴 0 , Ξ“ β†’ Ξ”,𝐴(𝑑)

where 𝐴 π‘₯ ∈ Σ𝑖𝑏, i.e. has 𝑖-alternations of bounded quantifiers βˆ€π‘₯ ≀ 𝑑,βˆƒπ‘₯ ≀ 𝑑.

Page 3: Bounded arithmetic in free logic

PH and Buss’s theories 𝑆2𝑖

𝑆21 = 𝑆22 = 𝑆23 = … Implies

𝑃 = β–‘(𝑁𝑃) = β–‘(Ξ£2𝑝) = …

We can approach (non) collapse of PH from (non) collapse of hierarchy of Buss’s theories

(PH = Polynomial Hierarchy)

Page 4: Bounded arithmetic in free logic

Our approach

β€’ Separate 𝑆2𝑖 by GΓΆdel incompleteness theorem β€’ Use analogy of separation of 𝐼Σ𝑖

Page 5: Bounded arithmetic in free logic

Separation of 𝐼Σ𝑖

𝐼Σ3 ⊒ Con(IΣ2)

𝐼Σ2 ⊒ Con IΣ2

…

𝐼Σ1

βŠ†

βŠ†

Page 6: Bounded arithmetic in free logic

Consistency proof inside 𝑆2𝑖 β€’ Bounded Arithmetics generally are not

capable to prove consistency. – 𝑆2 does not prove consistency of Q (Paris, Wilkie) – 𝑆2 does not prove bounded consistency of 𝑆21 (PudlΓ‘k)

– 𝑆2𝑖 does not prove consistency the 𝐡𝑖𝑏 fragement of 𝑆2βˆ’1 (Buss and IgnjatoviΔ‡)

Page 7: Bounded arithmetic in free logic

Buss and Ignjatović(1995)

…

βŠ†

𝑆23 ⊒ 𝐡3b βˆ’ Con(𝑆2βˆ’1)

𝑆22 ⊒ 𝐡2b βˆ’ Con(𝑆2βˆ’1)

𝑆21 ⊒ 𝐡1b βˆ’ Con(𝑆2βˆ’1)

βŠ†

Page 8: Bounded arithmetic in free logic

Where…

β€’ 𝐡𝑖𝑏 βˆ’ 𝐢𝐢𝐢 𝑇 – consistency of 𝐡𝑖𝑏 βˆ’proofs – 𝐡𝑖𝑏 βˆ’proofs : the proofs by 𝐡𝑖𝑏-formule – 𝐡𝑖𝑏:Ξ£0𝑏(Σ𝑖𝑏)… Formulas generated from Σ𝑖𝑏 by

Boolean connectives and sharply bounded quantifiers.

β€’ 𝑆2βˆ’1 – Induction free fragment of 𝑆2𝑖

Page 9: Bounded arithmetic in free logic

If…

𝑆2𝑗 ⊒ 𝐡ib βˆ’ Con 𝑆2βˆ’1 , j > i

Then, Buss’s hierarchy does not collapse.

Page 10: Bounded arithmetic in free logic

Consistency proof of 𝑆2βˆ’1 inside 𝑆2𝑖

Problem β€’ No truth definition, because β€’ No valuation of terms, because

β€’ The values of terms increase exponentially β€’ E.g. 2#2#2#2#2#...#2

In 𝑆2𝑖 world, terms do not have values a priori. β€’ Thus, we must prove the existence of values in proofs. β€’ We introduce the predicate 𝐸 which signifies existence of

values.

Page 11: Bounded arithmetic in free logic

Our result(2012)

…

βŠ†

𝑆25 ⊒ 3 βˆ’ Con(𝑆2βˆ’1𝐸)

𝑆24 ⊒ 2 βˆ’ Con(𝑆2βˆ’1𝐸)

𝑆23 ⊒ 1 βˆ’ Con(𝑆2βˆ’1𝐸)

βŠ†

Page 12: Bounded arithmetic in free logic

Where…

β€’ 𝑖 βˆ’ 𝐢𝐢𝐢 𝑇 – consistency of 𝑖-normal proofs – 𝑖-normal proofs : the proofs by 𝑖-normal formulas – 𝑖-normal formulas: Formulas in the form: βˆƒπ‘₯1 ≀ 𝑑1βˆ€π‘₯2 ≀ 𝑑2 …𝑄π‘₯𝑖 ≀ 𝑑𝑖𝑄π‘₯𝑖+1 ≀ 𝑑𝑖+1 .𝐴(… ) Where 𝐴 is quantifier free

Page 13: Bounded arithmetic in free logic

Where…

β€’ 𝑆2βˆ’1𝐸 – Induction free fragment of 𝑆2𝑖𝐸 – have predicate 𝐸 which signifies existence of

values β€’ Such logic is called Free logic

Page 14: Bounded arithmetic in free logic

𝑆2𝑖𝐸(Language)

Predicates β€’ =,≀,𝐸

Function symbols β€’ Finite number of polynomial functions

Formulas β€’ Atomic formula, negated atomic formula β€’ 𝐴 ∨ 𝐡,𝐴 ∧ 𝐡 β€’ Bounded quantifiers

Page 15: Bounded arithmetic in free logic

𝑆2𝑖𝐸(Axioms)

β€’ 𝐸-axioms β€’ Equality axioms β€’ Data axioms β€’ Defining axioms β€’ Auxiliary axioms

Page 16: Bounded arithmetic in free logic

Idea behind axioms…

β†’ π‘Ž = π‘Ž

Because there is no guarantee of πΈπ‘Ž Thus, we add πΈπ‘Ž in the antecedent

πΈπ‘Ž β†’ π‘Ž = π‘Ž

Page 17: Bounded arithmetic in free logic

E-axioms

β€’ 𝐸𝐸 π‘Ž1, … ,π‘Žπ‘› β†’ πΈπ‘Žπ‘— β€’ π‘Ž1 = π‘Ž2 β†’ πΈπ‘Žπ‘— β€’ π‘Ž1 β‰  π‘Ž2 β†’ πΈπ‘Žπ‘— β€’ π‘Ž1 ≀ π‘Ž2 β†’ πΈπ‘Žπ‘— β€’ Β¬π‘Ž1≀ π‘Ž2 β†’ πΈπ‘Žπ‘—

Page 18: Bounded arithmetic in free logic

Equality axioms

β€’ πΈπ‘Ž β†’ π‘Ž = π‘Ž

β€’ 𝐸𝐸 οΏ½βƒ—οΏ½ , οΏ½βƒ—οΏ½ = 𝑏 β†’ 𝐸 οΏ½βƒ—οΏ½ = 𝐸 𝑏

Page 19: Bounded arithmetic in free logic

Data axioms

β€’ β†’ 𝐸𝐸 β€’ πΈπ‘Ž β†’ 𝐸𝑠0π‘Ž β€’ πΈπ‘Ž β†’ 𝐸𝑠1π‘Ž

Page 20: Bounded arithmetic in free logic

Defining axioms

𝐸 𝑒 π‘Ž1 ,π‘Ž2, … , π‘Žπ‘› = 𝑑(π‘Ž1, … , π‘Žπ‘›)

πΈπ‘Ž1, … ,πΈπ‘Žπ‘›,𝐸𝑑 π‘Ž1, … , π‘Žπ‘› β†’ 𝐸 𝑒 π‘Ž1 ,π‘Ž2, … , π‘Žπ‘› = 𝑑(π‘Ž1, … , π‘Žπ‘›)

𝑒 π‘Ž = 0,π‘Ž, 𝑠0π‘Ž, 𝑠1π‘Ž

Page 21: Bounded arithmetic in free logic

Auxiliary axioms

π‘Ž = 𝑏 βŠƒ π‘Ž#𝑐 = 𝑏#𝑐

πΈπ‘Ž#𝑐,𝐸𝑏#𝑐, π‘Ž = |𝑏| β†’ π‘Ž#𝑐 = 𝑏#𝑐

Page 22: Bounded arithmetic in free logic

PIND-rule

where 𝐴 is an Σ𝑖𝑏-formulas

Page 23: Bounded arithmetic in free logic

Bootstrapping 𝑆2𝑖𝐸

I. 𝑆2𝑖𝐸 ⊒ Tot(𝐸) for any 𝐸, 𝑖 β‰₯ 0 II. 𝑆2𝑖𝐸 ⊒ BASICβˆ—, equality axioms βˆ— III. 𝑆2𝑖𝐸 ⊒ predicate logic βˆ— IV. 𝑆2𝑖𝐸 ⊒ Σ𝑖𝑏 βˆ’PINDβˆ—

Page 24: Bounded arithmetic in free logic

Theorem (Consistency)

𝑆2𝑖+2 ⊒ i βˆ’ Con(𝑆2βˆ’1𝐸)

Page 25: Bounded arithmetic in free logic

Valuation trees

a#a+b=19

a#a=16 b=3

a=2

ρ-valuation tree bounded by 19 ρ(a)=2, ρ(b)=3

𝑣 π‘Ž#π‘Ž + 𝑏 ,𝜌 ↓19 19 𝑣 𝑑 ,𝜌 ↓𝑒 𝑐 is Ξ£1𝑏

Page 26: Bounded arithmetic in free logic

Bounded truth definition (1)

β€’ 𝑇 𝑒, 𝑑1 = 𝑑2 , 𝜌 ⇔def βˆƒπ‘ ≀ 𝑒, 𝑣 𝑑1 ,𝜌 ↓𝑒 𝑐 ∧ 𝑣 𝑑1 ,𝜌 ↓𝑒 𝑐

β€’ 𝑇 𝑒, πœ™1 ∧ πœ™2 ,𝜌 ⇔def 𝑇 𝑒, πœ™1 , 𝜌 ∧ 𝑇 𝑒, πœ™2 , 𝜌 β€’ 𝑇 𝑒, πœ™1 ∨ πœ™2 ,𝜌 ⇔def 𝑇 𝑒, πœ™1 , 𝜌 ∨ 𝑇 𝑒, πœ™2 ,𝜌

Page 27: Bounded arithmetic in free logic

Bounded truth definition (2)

β€’ 𝑇 𝑒, βˆƒπ‘₯ ≀ 𝑑,πœ™(π‘₯) ,𝜌 ⇔def βˆƒπ‘ ≀ 𝑒, 𝑣 𝑑 , 𝜌 ↓𝑒 𝑐 ∧

βˆƒπ‘‘ ≀ 𝑐,𝑇 𝑒, πœ™ π‘₯ ,𝜌 π‘₯ ↦ 𝑑 β€’ 𝑇 𝑒, βˆ€π‘₯ ≀ 𝑑,πœ™(π‘₯) , 𝜌 ⇔def

βˆƒπ‘ ≀ 𝑒, 𝑣 𝑑 , 𝜌 ↓𝑒 𝑐 ∧ βˆ€π‘‘ ≀ 𝑐,𝑇(𝑒, πœ™ π‘₯ ,𝜌[π‘₯ ↦ 𝑑])

Remark: If πœ™ is Σ𝑖𝑏,𝑇 𝑒, πœ™ is Σ𝑖+1𝑏

Page 28: Bounded arithmetic in free logic

induction hypothesis

𝑒: enough large integer π‘Ÿ: node of a proof of 0=1 Ξ“π‘Ÿ β†’ Ξ”π‘Ÿ: the sequent of node π‘Ÿ 𝜌: assignment 𝜌 π‘Ž ≀ 𝑒 βˆ€π‘’β€² ≀ 𝑒 βŠ– π‘Ÿ, { βˆ€π΄ ∈ Ξ“π‘Ÿ 𝑇 𝑒′, 𝐴 , 𝜌 βŠƒ

[βˆƒπ΅ ∈ Ξ”r,𝑇(𝑒′ βŠ• π‘Ÿ, 𝐡 , 𝜌)]}

Page 29: Bounded arithmetic in free logic

Conjecture

β€’ 𝑆2βˆ’1𝐸 is weak enough – 𝑆2𝑖+2 can prove 𝑖-consistency of 𝑆2βˆ’1𝐸

β€’ While 𝑆2βˆ’1𝐸 is strong enough – 𝑆2𝑖𝐸 can interpret 𝑆2𝑖

β€’ Conjecture 𝑆2βˆ’1𝐸 is a good candidate to separate 𝑆2𝑖 and 𝑆2𝑖+2.

Page 30: Bounded arithmetic in free logic

Future works

β€’ Long-term goal 𝑆2𝑖 ⊒ π‘–βˆ’Con(𝑆2βˆ’1𝐸)?

β€’ Short-term goal – Simplify 𝑆2𝑖𝐸

Page 31: Bounded arithmetic in free logic

Publications

β€’ Bounded Arithmetic in Free Logic Logical Methods in Computer Science Volume 8, Issue 3, Aug. 10, 2012