Top Banner
BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013
18

BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Mar 26, 2015

Download

Documents

Sean Walsh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

BosonSampling

Scott Aaronson (MIT)Talk at BBN, October 30, 2013

Page 2: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Shor’s Theorem: QUANTUM SIMULATION has no efficient classical algorithm, unless FACTORING does

also

The Extended Church-Turing Thesis (ECT)

Everything feasibly computable in the physical

world is feasibly computable by a (probabilistic) Turing

machine

Page 3: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

So the ECT is false … what more evidence could anyone want?

Building a QC able to factor large numbers is damn hard! After 16 years, no fundamental obstacle has been found, but who knows?

Can’t we “meet the physicists halfway,” and show computational hardness for quantum systems closer to what they actually work with now?

FACTORING might be have a fast classical algorithm! At any rate, it’s an extremely “special” problem

Wouldn’t it be great to show that if, quantum computers can be simulated classically, then (say) P=NP?

Page 4: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

BosonSampling (A.-Arkhipov 2011)

A rudimentary type of quantum computing, involving only non-interacting photons

Classical counterpart: Galton’s Board

Replacing the balls by photons leads to famously counterintuitive phenomena,

like the Hong-Ou-Mandel dip

Page 5: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

In general, we consider a network of beamsplitters, with n input “modes” (locations) and m>>n output modesn identical photons enter, one per input modeAssume for simplicity they all leave in different modes—there are possibilities

The beamsplitter network defines a column-orthonormal matrix ACmn, such that

nS

n

iiixX

1,Per

n

m

2PeroutcomePr SAS

where

is the matrix permanent

nn submatrix of A corresponding to S

Page 6: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

ExampleFor Hong-Ou-Mandel experiment,

02

1

2

1

2

1

2

12

1

2

1

Per1,1 outputPr2

2

In general, an nn complex permanent is a sum of n! terms, almost all of which cancelHow hard is it to estimate the “tiny residue” left over?Answer: #P-complete, even for constant-factor approx

(Contrast with nonnegative permanents!)

Page 7: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

So, Can We Use Quantum Optics to Solve a #P-Complete Problem?

Explanation: If X is sub-unitary, then |Per(X)|2 will usually be exponentially small. So to get a reasonable estimate of |Per(X)|2 for a given X, we’d generally need to repeat the optical experiment exponentially many times

That sounds way too good to be true…

Page 8: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Better idea: Given ACmn as input, let BosonSampling be the problem of merely sampling from the same distribution DA that the beamsplitter network samples from—the one defined by Pr[S]=|Per(AS)|2

Theorem (A.-Arkhipov 2011): Suppose BosonSampling is solvable in classical polynomial time. Then P#P=BPPNP

Better Theorem: Suppose we can sample DA even approximately in classical polynomial time. Then in BPPNP, it’s possible to estimate Per(X), with high probability over a Gaussian random matrix nn

CΝX 1,0~

Upshot: Compared to (say) Shor’s factoring algorithm, we get different/stronger evidence that a

weaker system can do something classically hard

We conjecture that the above problem is already #P-complete. If it is, then a fast classical algorithm for approximate BosonSampling would already have the consequence that P#P=BPPNP

Page 9: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Valiant 2001, Terhal-DiVincenzo 2002, “folklore”: A QC built of noninteracting fermions can be efficiently simulated by a classical computer

Related Work

Knill, Laflamme, Milburn 2001: Noninteracting bosons plus adaptive measurements yield universal QC

Jerrum-Sinclair-Vigoda 2001: Fast classical randomized algorithm to approximate Per(A) for nonnegative A

Gurvits 2002: O(n2/2) classical randomized algorithm to approximate an n-photon amplitude to ± additive error (also, to compute k-mode marginal distribution in nO(k) time)

Page 10: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

BosonSampling Experiments

# of experiments > # of photons!

Last year, groups in Brisbane, Oxford, Rome, and Vienna reported the first 3-photon BosonSampling experiments, confirming that the amplitudes were given by 3x3 permanents

Page 11: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Goal (in our view): Scale to 10-30 photonsDon’t want to scale much beyond that—both because(1)you probably can’t without fault-tolerance, and (2)a classical computer probably couldn’t even verify the results!

Obvious Challenges for Scaling Up:-Reliable single-photon sources (optical multiplexing?)-Minimizing losses-Getting high probability of n-photon coincidence

Page 12: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Scattershot BosonSamplingExciting new idea, proposed by Steve Kolthammer, for sampling a hard distribution even with highly unreliable (but heralded) photon sources, like SPDCsThe idea: Say you have 100 sources, of which only 10 (on average) generate a photon. Then just detect which sources succeed, and use those to define your BosonSampling instance!Complexity analysis goes through essentially without changeIssues: Increases depth of optical network needed. Also, if some sources generate ≥2 photons, need a new hardness assumption

Page 13: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Recent Criticisms of Gogolin et al. (arXiv:1306.3995)

Suppose you ignore which actual photodetectors light up, and count only the number of times each output configuration occurs. In that case, the BosonSampling distribution DA is exponentially-close to the uniform distribution U

Response: Why would you ignore which detectors light up??The output of almost any algorithm is also gobbledygook if you ignore the order of the output bits…

Page 14: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Recent Criticisms of Gogolin et al. (arXiv:1306.3995)

OK, so maybe DA isn’t close to uniform. Still, the very same arguments we gave for why polynomial-time classical algorithms can’t sample DA, suggest that they can’t even distinguish DA from U!

Response: That’s why we said to focus on 10-30 photons—a range where a classical computer can verify a BosonSampling device’s output, but the BosonSampling device might be “faster”!(And 10-30 photons is probably the best you can do anyway, without quantum fault-tolerance)

Page 15: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

More Decisive Responses(A.-Arkhipov, arXiv:1309.7460)

Theorem: Let ACmn be a Haar-random BosonSampling matrix, where m≥n5.1/. Then with 1-O() probability over A, the BosonSampling distribution DA has Ω(1) variation distance from the uniform distribution U

Under UHistogram of (normalized) probabilities under DA

Necessary, though not sufficient, for approximately sampling DA to be hard

Page 16: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Theorem (A. 2013): Let ACmn be Haar-random, where m>>n. Then there is a classical polynomial-time algorithm C(A) that distinguishes DA from U (with high probability over A and constant bias, and using only O(1) samples)Strategy: Let AS be the nn submatrix of A corresponding to output S. Let P be the product of squared 2-norms of AS’s rows. If P>E[P], then guess S was drawn from DA; otherwise guess S was drawn from U

P under uniform distribution (a lognormal random variable)

P under a BosonSampling distributionA

AS

?22

1

n

n m

nvvP

Page 17: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Using Quantum Optics to Prove that the Permanent is #P-Complete

[A., Proc. Roy. Soc. 2011]

Valiant showed that the permanent is #P-complete—but his proof required strange, custom-made gadgets

We gave a new, arguably more transparent proof by combining three facts:(1)n-photon amplitudes correspond to nn permanents(2) Postselected quantum optics can simulate universal quantum computation [Knill-Laflamme-Milburn 2001](3) Quantum computations can encode #P-complete quantities in their amplitudes

Page 18: BosonSampling Scott Aaronson (MIT) Talk at BBN, October 30, 2013.

Open Problems

Similar hardness results for other natural quantum systems (besides linear optics)?Bremner, Jozsa, Shepherd 2010: Another system for which exact classical simulation would collapse PH

Can the BosonSampling model solve classically-hard decision problems? With verifiable answers?

Can one efficiently sample a distribution that can’t be efficiently distinguished from BosonSampling?

Prove that Gaussian permanent approximation is #P-hard (first step: understand distribution of Gaussian permanents)

Are we still sampling a hard distribution with unheralded photon losses, or Gaussian initial states?