Top Banner
Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
33

Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Jan 14, 2016

Download

Documents

Piers Carson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Bonding & dynamics of CN-Rg and C2-Rg complexes

Jiande Han, Udo Schnupf, Dana Philen

Millard Alexander (U of Md)

Page 2: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Unusual properties of C2-Rg complexes

Theory predicts linear equilibrium structure.The potential energy surfaces do not showsecondary minima for the T-shaped geometry(complete disagreement with the pair potentialmodel)

Data for matrix isolated C2-Xe indicateschemical bond formation

Page 3: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
Page 4: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
Page 5: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Probe laser

Fluorescence dispersed by0.25 m monochromator

Pulsed valve

C2Cl4+Rg

193 nm Photolysis

Experimentaltechnique

Page 6: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

43172.5 43190.0 43207.5 43225.0

Fluo

resc

ence

Int

ensi

ty

Energy /cm-1

ba

** cd

R(0) 0-0

R(0) 1-1

R(0) 2-2

Laser excitation spectrum of the D1+-X1+

transitions of C2 and C2-Ne

Page 7: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

43218.0 43219.0 43220.0 43221.0 43222.0 43223.0

Energy /cm -1

exp.

calc.

1357P(J)

R(J)* C2 P(1)

Rotationally resolved spectrum of C2-Ne band a

B’=0.091 cm-1

B”=0.100 cm-1

Rigid rotorparallel bandsimulation

Page 8: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

43225.0 43226.0 43227.0 43228.0 43229.0 43230.0 43231.0

Energy /cm-1

exp.

calc.

1 3 5R(J)P(J)

Q(J)

7

Rotationally resolved spectrum of C2-Ne band b

B’=0.108 cm-1

B”=0.100 cm-1

Rigid rotorperpendicular band simulation

Page 9: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

+

+

±

±

±

-01

2

+

+

-01

2

R(0

)

R(1

)

P(1

)

R(1

)

Q(2

)

Q(1

)

P(2

)

12

3

J

a b

C2-Ne

X

1g j=0

1uD j=1

K=1

K=0

K=0R

(2)

Page 10: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Main results for C2-Ne

Coriolis interaction between K=0 and K=1 levelsinfluences rotational constants. Deperturbationyields B’=0.100 cm-1 for both manifolds.

E(K=1)>E(K=0) shows that C2(D)-Ne has a linearequilibrium geometry. The barrier to internalrotation is 15 cm-1.

B”(exp)=0.100 cm-1, B”(theory)=0.0996 cm-1

Electronically excited state is slightly moredeeply bound, D0’=D0”+9.7 cm-1

(D0”(theory)=31.6 cm-1)

Page 11: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

LIF was not observed from C2-Ar, probablydue to electronic predissociation

CN-Rg examined as the predissociationscan be followed easily using OODRtechniques

Bonding for CN-Xe appears to be unusuallystrong

Page 12: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

0

5000

10000

15000

20000

25000

30000

35000

0.9 1.1 1.3 1.5 1.7

r /Å

A2

X2+

B2+

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

100

1

2

CN

Complexes detected via the B-X andA-X transitions of CN

E(cm-1)

Page 13: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

JCP 100, 5387 (1994)

Page 14: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

387.6 387.8 388 388.2 388.4

R(0)

R(1)

P(1)

b1

b2

b3

b4

a3

a2

a1

Wavelength /nm

Laser excitation spectrum of the CN-ArB-X transition

A-X

flu

ore

scen

ce i

nte

nsi

ty

Page 15: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

cm-1

Band a3

B’=0.080 cm-1

B”=0.069 cm-1

T=3 K

E=-6.4 cm-1

|P|=1

Rotationally resolved band of CN-Ar

Rigid rotorsimulation

Page 16: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

-2.0 -1.0 0.0 1.0 2.0 3.0

Relative energy /cm-1

B’=0.075

B”=0.067

T=3 K

E=-10.6cm-1

|P|=0

Band a2

Rigid rotor simulation

Rotationally resolved band of CN-Ar

Page 17: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

14350 14400 14450 14500 14550

Energy /cm-1

CN-Ar Fluorescence depletion

CN LI F

detect

B2+

A2

X2

pumpprobe23/2

21/2

Fluorescence depletion spectrum for the A-X 3-0 band of CN-Ar

Page 18: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

14398 14444 14490 14536 14582

Energy /cm-1

CN Q1(3/2)

CN(j=3/2)+Ar

112 cm-1

CN(X)+Ar

CN(A,j=3/2)+Ar

CN(B)

Q1(3/2)

Action spectrum for CN-Ar A23/2-Xprovides a direct measurement of D0”

h1

h2

B-X

flu

ore

scen

ce

Energy h1 /cm-1

Page 19: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

CN(X)-Ar

Experiment yields D0”=112±1 cm-1, B0”=0.068 cm-1

Best available ab initio potential energy surfacepredicted D0”=62.5 cm-1, B0”=0.062 cm-1

New surfaces were generated for the X and B states

Method: state averaged RHF-CASSCF-RSPT2 Counterposie corrected

Basis set: aug-pvtz with mid-bond functions

Code: MOLPRO

Page 20: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

U

R /a

u

/degrees

Potential energy surface for CN(X)-Ar

C

NAr

r

R

Jacobi coordinates

The global minimum is atE=-138.9 cm-1, Re=7.23 au, e=46.8º

Page 21: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

U

/degrees

R /a

u

Potential energy surface for CN(B)-Ar

The global minimum is atE=-256.4 cm-1, Re=6.75 au, e=180º

C N Arr

R

Page 22: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Zero-point wavefunctions for CN-Ar

X B

Predicted red shift of origin = 70 cm-1 (not observed)

Good agreement with X state D0 and B0

D0=115 cm-1

B0=0.070

D0=185 cm-1

B0=0.080

(Millard Alexander / HIBRIDON)

Page 23: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Adiabatic bender curves for CN(B)-Ar

High density of vibronically excited states,intensity calculations needed for assignment

MHA / HIBRIDON

Page 24: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Excited state wavefunctions for CN(B)-Ar

MHA / HIBRIDON

Page 25: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

400 450 500 550 600 650 700 750 800

9-4

8-3

9-5

9-3

8-49-2

CN A-X

Wavelength /nm

18970 18984 18998 19012 19026

Energy /cm-1

Dispersed fluorescence CN B-A 9-9 LIF

t=200 ns

Detection of the CN(A) fragment followingCN(B,v=0)-Ar CN(A) + Ar predissociation

Page 26: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

-5 10 -7 0 5 10-7 1 10-6 1.5 10 -6 2 10-6 2.5 10 -6 3 10-6

Time /s

IF maximum at 800 ns

A-X

Flu

o res

cenc

e I n

tens

i ty

Fluorescence from CN(A) followingpredissociation of CN(B)-Ar

Radiativelifetime of

CN(B) is 60 ns

?!

Page 27: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

385.5 386.0 386.5 387.0 387.5 388.0 388.5

1

2

34

CNCN-Kr

Wavelength /nm

Figure 3. Action spectrum of the CN-Kr B-X bands

A-X

Flu

ores

cenc

e In

tens

ity

Laser excitation spectrum of the B-X systemof CN-Kr

No red shifted bands

Emission from CN(A)v=9 and 8

30 cm-1 stretch progression

Page 28: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

JCP 100, 5387 (1994)

Page 29: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

385.5 386 386.5 387 387.5 388 388.5

1

2

3

4

CNCN-Xe

Wavelength /nm

A-X

Flu

o res

cenc

e In

tens

i ty

Laser excitation spectrum of the B-X systemof CN-Xe

No red shifted bands

Emission from CN(A)v=9 and 8

39 cm-1 stretch progression

Page 30: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

Conclusions for CN-Kr, Xe

It is expected that linear CN(B)-Kr, Xe potentialsare much more deeply bound than typical vander Waals wells (stabilized by charge transfercontributions).

Spectra show blue shifted bands with typical vdWvibrational frequencies - implies that the Franck-Condon factors do not provide access to the mostdeeply bound levels.

Contrast between gas-phase and matrix data forCN-Xe shows that many-body forces are importantin the matrix environment.

Page 31: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

A2+-X2 spectrum of matrix isolated OH-Xe

Emission spectrum of OHXe red shifted by >8000 cm-1

Page 32: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

32433.7 32467.5 32501.2 32535.0

Energy /cm-1

*

**

P1(3/2)

Q1(3/2)

R1(3/2)

OH-Xe

A2+-X2 spectrum of gas phase OH-Xe

Blue-degradedcontours (B’>B”)

26 cm-1 stretchprogression

Low resolutionemission spectrumis the same as thatfor free OH

Page 33: Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)

-5 10 -7 0 5 10-7 1 10-6 1.5 10 -6 2 10-6 2.5 10 -6

Time /s

Fluorescence decay lifetimes for OH(A)and OH(A)-Xe

OH

OHXe

OH(A)Xe OH(X) + Xe ?