Top Banner
Bolt and Screw Compendium
60
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bolt and Screw Compendium

Bolt and Screw Compendium

Page 2: Bolt and Screw Compendium
Page 3: Bolt and Screw Compendium

Introduction

“Who invented the bolt, where, when and to what purpose it was invented, remainsentirely in the darkness of history” (S. Kellermann/Treue: “Die Kulturgeschichte derSchraube” (“The cultural history of bolts”); 2nd Ed. Munich, Bruckmann 1962).

“Today, in a slightly exaggerated sense, bolts hold together our entire civilization.Billions of bolts are manufactured throughout the year for the widest variety of uses.Hence it could be impulsively concluded that this omnipresent machine elementdoes not pose any problem to science and technology any more. But the fact that itis far from being so is shown by the abundance of works published on the subjectof bolts in the last two decades.”

This quote, from the introduction to the first Bolt and Screw Compendium, in thebeginning of the eighties, has not lost any of its relevance even today. Even thoughthe standard topics have been processed to the point of saturation, there are andhave always been new fields of requirement. In order to allow for the awareness inthe areas of materials and surface finishes as well as the changes in the computationalregulations, KAMAX has revised the Bolt and Screw Compendium, maintaining the usual compact form.

We hope that this booklet, like its predecessor is carried in numerous pockets, andis helpful to its user.

Troy, MI – September, 2006

Page 4: Bolt and Screw Compendium
Page 5: Bolt and Screw Compendium

Table of Contents

Page

1. Fastener Materials and Standards 6

2. Calculation of Bolted Joints 14

3. Self loosening of Bolted Joints 20

4. Tightening of Bolted Joints 23

5. Corrosion Protection and Lubrication 34

6. Durability-compatible Configuration 38

7. Miscellaneous 40

8. Formula Index 55

9. Literature 56

Page 6: Bolt and Screw Compendium

Bolt and Screw Compendium

Prop

erty

Cla

sses

Mec

hani

cal a

nd p

hysi

cal

3.6

4.6

4.8

5.6

5.8

6.8

8.8a

9.8b

10.9

12.9

char

acte

risti

csd≤

16m

mc

d>

16m

mc

Nom

inal

ten

sile

stre

ngth

Rm

nom

N/m

m2

300

400

500

600

800

800

900

1000

120

0

Min

imum

tens

ile st

reng

thR

m m

ind

eN

/mm

233

040

042

050

052

060

080

083

090

010

401

220

Vick

ers

hard

ness

HV

min

.95

120

130

155

160

190

250

255

290

320

385

F ≥

98 N

m

ax.

220f

250

320

335

360

380

435

Brin

ell h

ardn

ess

HB

min

.90

114

124

147

152

181

238

242

276

304

366

F =

30 (D

2 )m

ax.

209f

238

304

318

342

361

414

HRB

min

.52

6771

7982

89–

––

––

Rock

wel

l har

dnes

sH

RC m

in.

––

––

––

2223

2832

39

HRB

max

.95

.0f

99.5

––

––

HRC

max

.–

–32

3437

3944

Surf

ace

hard

ness

HV

0.3

––g

Low

er y

ield

str

ess

nom

inal

180

240

320

300

400

480

––

––

R eL

hin

N/m

m2

min

.19

024

034

030

042

048

0–

––

––

Stre

ss a

t 0.

2%

non

-pro

port

iona

l elo

ngat

ion

nom

inal

–64

064

072

090

010

80

R p 0

.2 i

in N

/mm

2m

in.

–64

066

072

094

011

00

Stre

ss u

nder

S p

/ReL

o. S

P/Rp

0.2

0.

940.

940.

910.

930.

900.

920.

910.

910.

900.

880.

88

proo

f lo

ad S

pN

/mm

218

022

531

028

038

044

058

060

065

083

097

0

Brea

king

tor

que

MB

Nm

min

.–

see

ISO

898

-7

1.Fa

sten

er M

ater

ials

and

Sta

ndar

ds

1.1

Mec

hani

cal a

nd p

hysi

cal c

hara

cter

isti

cs o

f fa

sten

ers

(at

room

tem

pera

ture

)(A

bstr

act

from

DIN

EN

ISO

898

-1; E

diti

on 1

1/99

)

Page 7: Bolt and Screw Compendium

6 – 7

Elon

gatio

n af

ter

frac

ture

A %

min

.25

22–

20–

–12

1210

98

Redu

ctio

n ar

ea a

fter

frac

ture

Z%

min

.–

5248

4844

Stre

ngth

und

er

The

valu

e fo

r th

e en

tire

bolt

(not

stu

d bo

lts) u

nder

bev

el t

ensi

le s

trai

n

wed

ge lo

adin

gm

ust

not

fall

belo

w t

he m

inim

um t

ensi

le s

tren

gths

giv

en a

bove

Impa

ct s

tren

gth,

KU

J m

in.

–25

–30

3025

2015

Hea

d so

undn

ess

No

rupt

ure

Min

imum

hei

ght

of

1 /2

H1

2 /3

H1

3 /4

H1

non-

deca

rb. t

hrea

d ar

ea E

Max

. dep

th o

f (c

ompl

ete

deca

rbur

izat

ion)

mm

–0.

015

Har

dnes

s af

ter

re-t

empe

ring

–M

ax. 2

0 H

V dr

op in

har

dnes

s

Surf

ace

inte

grity

In c

onfo

rman

ce w

ith IS

O 6

157-

1 or

ISO

615

7-3,

whe

reve

r ap

plic

able

aFo

r bo

lts o

f pr

oper

ty c

lass

8.8

in d

iam

eter

s d ≤

16 m

m, t

here

is a

n in

crea

sed

risk

of n

ut s

trip

ping

in t

he c

ase

of in

adve

rten

tov

er-t

ight

enin

g in

duci

ng a

load

exc

ess

of p

roof

load

. Ref

eren

ce t

o IS

O 8

98-2

is r

ecom

men

ded.

bAp

plie

s on

ly t

o no

min

al t

hrea

d di

amet

ers

d ≤

16 m

m.

cFo

r st

ruct

ural

bol

ting

the

limit

is 1

2 m

m.

dM

inim

um t

ensi

le p

rope

rtie

s ap

ply

to p

rodu

cts

of n

omin

al le

ngth

l ≥

2,5

d. M

inim

um h

ardn

ess

appl

ies

to p

rodu

cts

of le

ngth

l <

2,5

d an

d ot

her

prod

ucts

whi

ch c

anno

t be

ten

sile

-tes

ted

(e.g

. due

to

head

con

figur

atio

n).

eW

hen

test

ing

full-

size

bol

ts, s

crew

s an

d st

uds,

the

tens

ile lo

ads,

whi

ch a

re t

o be

app

lied

for

the

calc

ulat

ion

of R

msh

all m

eet

the

valu

es g

iven

in t

able

s 6

and

8.f

A ha

rdne

ss r

eact

ing

at t

he e

nd o

f bo

lts, s

crew

s an

d st

uds

shal

l be

250

HV,

283

HB

or 9

9.5

HRB

max

imum

.g

Surf

ace

hard

ness

sha

ll no

t be

mor

e th

an 3

0 Vi

cker

s po

ints

abo

ve t

he m

easu

red

core

har

dnes

s on

the

pro

duct

whe

n re

actin

gsof

bot

h su

rfac

e an

d co

re a

re c

arrie

d ou

t at

HV

0,3.

For

pro

pert

y cl

ass

10.9

, any

incr

ease

in h

ardn

ess

at t

he s

urfa

ce w

hich

indi

cate

s th

at t

he s

urfa

ce h

ardn

ess

exce

eds

390

HV

is n

ot a

ccep

tabl

e.h

In c

ases

whe

re t

he lo

wer

yie

ld s

tres

s R

eLca

nnot

be

dete

rmin

ed, i

t is

per

mis

sibl

e to

mea

sure

the

str

ess

at 0

.2%

non

-pr

opor

tiona

l elo

ngat

ion

Rp

0,2. F

or t

he p

rope

rty

clas

ses

4.8,

5.8

and

6.8

the

val

ues

for

ReL

are

giv

en f

or c

alcu

latio

n pu

rpos

eson

ly, t

hey

are

not

test

val

ues.

iTh

e yi

eld

stre

ss r

atio

acc

ordi

ng t

o th

e de

sign

atio

n of

the

pro

pert

y cl

ass

and

the

min

imum

str

ess

at 0

,2%

non

-pro

port

iopn

alel

onga

tion

Rp

0,2

appl

y to

mac

hine

d te

st s

peci

men

s. Th

ese

valu

es if

rec

eive

d fr

om t

est

of f

ull s

ize

bolts

and

scr

ews

will

var

ybe

caus

e of

pro

cess

ing

met

hod

and

size

eff

ects

.

Page 8: Bolt and Screw Compendium

Bolt and Screw Compendium

Prop

erty

M

ater

ials

and

Ch

emic

al C

ompo

siti

onTe

mpe

ring

Clas

ses

Trea

tmen

t(c

heck

ana

lysi

s)Te

mpe

ratu

re

CP

SBa

°Cm

in.

max

.m

ax.

max

.m

ax.

min

.3.

6b–

0.20

0.05

0.06

0.00

3–

4.6b

–0.

550.

050.

060.

003

4.8b

Carb

on s

teel

–0.

550.

050.

060.

003

5.6

0.13

0.55

0.05

0.06

0.00

3–

5.8b

–0.

550.

050.

060.

003

6.8b

–0.

550.

050.

060.

003

8.8c

Carb

on s

teel

with

add

itive

s (e

.g. B

oron

, Mn

or C

r)d 0.

15d

0.40

0.03

50.

035

0.00

342

5qu

ench

ed a

nd t

empe

red

Carb

on s

teel

, que

nche

d an

d te

mpe

red

0.25

0.55

0.03

50.

035

0.00

3

9.8

Carb

on s

teel

with

add

itive

s (e

.g. B

oron

, Mn

or C

r)d 0.

15d

0.35

0.03

50.

035

0.00

342

5qu

ench

ed a

nd t

empe

red

Carb

on s

teel

, que

nche

d an

d te

mpe

red

0.25

0.55

0.03

50.

035

0.00

3

10.9

ef

Carb

on s

teel

with

add

itive

s (e

.g. B

oron

, Mn

or C

r)d 0.

15d

0.35

0.03

50.

035

0.00

334

0qu

ench

ed a

nd t

empe

red

10.9

fCa

rbon

ste

el, q

uenc

hed

and

tem

pere

d0.

250.

550.

035

0.03

50.

003

Carb

on s

teel

with

add

itive

s (e

.g. B

oron

, Mn

or C

r)d 0.

20d

0.55

0.03

50.

035

0.00

342

5qu

ench

ed a

nd t

empe

red

Allo

yed

stee

l, qu

ench

ed a

nd t

empe

red

g0.

200.

550.

035

0.03

50.

003

12.9

fhi

Allo

yed

stee

l, qu

ench

ed a

nd t

empe

red

g0.

280.

500.

035

0.03

50.

003

380

1.2

Mat

eria

ls a

nd T

empe

ring

Tem

pera

ture

s fo

r Va

rious

Pro

pert

y Cl

asse

s of

fas

tene

rs.

(DIN

EN

ISO

898

-1; E

diti

on 1

1/99

)

Page 9: Bolt and Screw Compendium

8 – 9

aBo

ron

cont

ent

can

reac

h 0.

005

%, p

rovi

ded

that

non

-eff

ectiv

e bo

ron

is c

ontr

olle

d by

add

ition

of

titan

ium

and

/or

alum

iniu

m.

bFr

ee c

uttin

g st

eel i

s al

low

ed f

or t

hese

pro

pert

y cl

asse

s w

ith t

he f

ollo

win

g m

axim

um s

ulfu

r, ph

osph

orus

and

lead

con

tent

s:su

lfur:

0.34

%; p

hosp

horu

s: 0

.11%

; lea

d: 0

.35

%.

cFo

r no

min

al d

iam

eter

s ab

ove

20 m

m t

he s

teel

s sp

ecifi

ed f

or p

rope

rty

clas

ses

10.9

may

be

nece

ssar

y in

ord

er t

o ac

hiev

e su

ffic

ient

har

dena

bilit

y.d

In c

ase

of p

lain

car

bon

boro

n st

eel w

ith a

car

bon

cont

ent

belo

w 0

.25%

(lad

le a

naly

sis)

, the

min

imum

man

gane

se c

onte

ntsh

all b

e 0.

6% f

or p

rope

rty

clas

s 8.

8 an

d 0.

7% f

or 9

.8, 1

0.9

and

10.9

. e

Prod

ucts

sha

ll be

add

ition

ally

iden

tifie

d by

und

erlin

ing

the

sym

bol o

f th

e pr

oper

ty c

lass

(see

cla

use

9). A

ll pr

oper

ties

of 1

0.9

as s

peci

fied

in t

able

3 s

hall

be m

et b

y 1 0

.9, h

owev

er, i

ts lo

wer

tem

perin

g te

mpe

ratu

re g

ives

it d

iffer

ent

stre

ss r

elax

atio

n ch

arac

teris

tics

at e

leva

ted

tem

pera

ture

s (s

ee a

nnex

A).

fFo

r th

e m

ater

ials

of

thes

e pr

oper

ty c

lass

es, i

t is

inte

nded

tha

t th

ere

shou

ld b

e a

suff

icie

nt h

arde

nabi

lity

to e

nsur

e a

stru

ctur

eco

nsis

ting

of a

ppro

xim

atel

y 90

% m

arte

nsite

in t

he c

ore

of t

hrea

ded

sect

ions

for

the

fas

tene

rs in

the

“as

-har

dene

d“ c

ondi

tion

befo

re t

empe

ring.

gTh

is a

lloy

stee

l sha

ll co

ntai

n at

leas

t on

e of

the

fol

low

ing

elem

ents

in t

he m

inim

um q

uant

ity g

iven

: chr

omiu

m 0

.30%

, ni

ckel

0.3

0%, m

olyb

denu

m 0

.20%

, van

dium

0.1

0%. W

here

ele

men

ts a

re s

peci

fied

in c

ombi

natio

ns o

f tw

o, t

hree

or

four

and

have

allo

y co

nten

ts le

ss t

han

thos

e gi

ven

abov

e, t

he li

mit

valu

e to

be

appl

ied

for

clas

s de

term

inat

ion

is 7

0% o

f th

e su

m

of t

he in

divi

dual

lim

it va

lues

sho

wn

abov

e fo

r th

e tw

o, t

hree

or

four

ele

men

ts c

once

rned

.h

A m

etal

logr

aphi

cally

det

ecta

ble

whi

te p

hosp

horo

us e

nric

hed

laye

r is

not

per

mitt

ed f

or p

rope

rty

clas

s 12

.9 o

n su

rfac

es

subj

ecte

d to

ten

sile

str

ess.

iTh

e ch

emic

al c

ompo

sitio

n an

d te

mpe

ring

tem

pera

ture

are

und

er in

vest

igat

ion.

Page 10: Bolt and Screw Compendium

Bolt and Screw Compendium

1.3 Material for high-tensile bolts (DIN EN ISO 898-1)

Tensile Strength Classes Material

8.8 19 MnB 4 / 23MnB 328 B 2 / 35 B 2

10.9 19 MnB 4 / 23MnB 328 B 2

32 CrB 4

12.9 32 CrB 434 CrMo 4

Working Temperature* Tensile Strength Rm Material Head Marking

≤ 500 °C 1040 –1200 N/mm2 40 CrMoV 4-7 GB

≤ 540 °C 800 –1000 N/mm2 21 CrMoV 5-7 GA

≤ 580 °C 800 –1050 N/mm2 X 22 CrMoV 12-1 V(for Rp0,2 ≥ 600 MPa)

≤ 650 °C 900 –1150 N/mm2 X6NiCrTiMo SDVB25-15-2 / A 286

≤ 700 °C 1000 –1300 N/mm2 Nimonic 80 A SB

* Unit Temperature

1.4 Material for high temperature resistant bolts (DIN EN 10269)

Tensile Strength Rm Type of Steel* Material Material-No

> 700 N/mm2 A2 – 70 X 5 CrNi 18 12 1.4303

> 800 N/mm2 A2– 80

> 700 N/mm2 A4 – 70 X 5 CrNiMo 17 12 2 1.4401

> 800 N/mm2 A4 – 80

* as per DIN EN ISO 3506-1

1.5 Material for corrosion resistant fasteners

Page 11: Bolt and Screw Compendium

10 – 11

1.6 Materials for high-tensile bolts without heat treatment after cold forming

Tensile Strength Rm Material Annotation

800 –1000 N/mm2 10 MnSi 7 Micro-alloyed Tensile Strength Classes 800K 17 MnV 7 Steels

800 –1000 N/mm2 34 Cr 4 Pre heat treatedmaterial

1.7 Materials for Fasteners made from Aluminum Alloys

Tensile Strength Rm Material Field of Application

Rm > 320 N/mm2 EN AW 6082 Magnesium boltingRp0,2 > 290N/mm2 AlSi1MgMn Temperature load <100 °C

Without heat treatment High corrosion loadafter cold working

Rm > 380 N/mm2 EN AW 6056 Magnesium boltingRp0.2 > 350 N/mm2 AlSi6MgCuMn Aluminum bolting

With heat treatment EN AW 6013 Temperature load <150 °Cafter cold working AlMg1Si0,8CuMn High corrosion load

Page 12: Bolt and Screw Compendium

Type of Bolt Product Standard

Hexagon bolt DIN EN ISO 4014 Hexagon head boltsDIN EN ISO 4017 Hexagon head screwsDIN EN ISO 8676 Hexagon head screws,

with fine pitch threadDIN EN ISO 8765 Hexagon head bolts with

fine pitch threads

Hexagon bolt DIN EN 1662 Hexagon bolt with flange – small with flange DIN EN 1665 Hexagon bolt with flange – large

ISO 4162 Hexagon flange bolts – small

Hexalobular bolt KN 7210 Kamax Spec. KARUND – with flange external drive

DIN 34 800 Hexalobular bolts with small flange

DIN 34 801 Hexalobular bolts with large flange

Hexalobular KN 7230 Kamax Spec. KARUND – with internal drive socket cap screws

KN 7240 Cylindrical bolt for overelastic tightening with large KARUND

DIN EN ISO 14 579 (Fig.) Hexalobular socket head cap screws

DIN EN ISO 14 580 (Fig.) Hexalobular socket cheese head screws

DIN 34 802 Hexalobular bolts with large internal drive

Bolt and Screw Compendium

1.8 Types of Bolts and Associated Product Standards

Page 13: Bolt and Screw Compendium

12 – 13

Type of Bolt Product Standard

Hexagon socket head screws DIN EN ISO 4762 Hexagon socket head cap screwsDIN 6912 Hexagon socket thin head cap screws

with pilot recessDIN 7984 Hexagon socket thin head cap screws

Internal multipoint socket KN 7300 Kamax Spec. for internal drive – multipoint socket head

KN 7310 Cylindrical bolts for overelastic tightening with internal multipointsocket head

Page 14: Bolt and Screw Compendium

Bolt and Screw Compendium

2. Calculation of Bolted Joints

Generally a load carrying bolted joint is designed so that:

• the forces occurring during tightening and operation of the joint do not overstrain the components of the joint

• a minimal clamping force will be maintained during service which will guarantee the function of the joint regarding the necessary sealing force or a prevention of the opening of the joint

• the fatigue strength of the bolt will be exceeded by the cyclic load

without over sizing of the joint.

During assembly, in principle, the bolts are elongated (fSM) and the bolted parts are compressed (fPM). The load of both partners is equal in magnitude (action = reaction = FM = FSM = FPM), but the elongation/comression of the bolts and bolted components are dependent on the stiffness, and thus unequal.

Fig. 2.1 Elongation/CompressionComponents of a bolted joint before and after loading

The basic relations of load and elongation alterations of a bolted joint are clearlyshown in the joint diagram.

Page 15: Bolt and Screw Compendium

2.1 Joint Diagram

The classical form of the joint diagram, originally introduced by Roetscher, will beused here. However, through various modifications, it can also be applied to complex joints.

Fig. 2.2 Joint Diagram

The relationship between the assemblypreload and the elongation of the boltis shown in the bolt curve, which isnone other than the spring characteristicof the bolt. This analogy is valid for the joint components which experiencea compression. The slope of the curve is dependent on the material and geometry. The typicaljoint diagram is now developed byreflecting the component displacementcurve on the same coordinate system asthe bolt elongation curve and bringingthe two curves to the point of intersec-tion of the clamp load. When a work load is applied to thejoint the internal load balance will bealtered.

The load on the bolt increases, that on the components decreases. The bolt is thusfurther elongated, and the components somewhat expand because of the release. Itshould be noted that the alteration of the displacement for the bolt and the jointcomponent is the same, whereas depending on the relation of the slope (equals the

14 – 15

Clamped plates

Elongation + f

Bolt

Compression – f

+ F

– F

Change in length

Change in length

Page 16: Bolt and Screw Compendium

Bolt and Screw Compendium

ratio of the stiffness) of the curves the work load will be carried unequally. Therequirement of a minimal clamp load during operation therefore borders the bearable work load as well as the upper limit of the load capacity of the bolt.

2.2 Mechanics of Calculation

The fundamental pre-requisites for the calculation of a bolted joint according to the nominal diameter and tensile strength (PC) are:• External forces and torques• Stiffness and load introduction conditions• Minimal clamping force• Embedding• Tightening factors

First, the diameter of the bolt is estimated from tables and approximate formulae,and from these estimated measures the actual calculation in carried out. If theresults do not lie within the permissible range of stress, the diameter should bechanged and the calculation should be carried out all over again.The systematic of calculation given below refers exclusively to the linear calculationapproach according to VDI2230 (10/2001).The core point of the calculation is the principle dimensioning formula (calculationstep 6) which is shown graphically as well as a formula in the force-elongation diagram below:

Fig. 2.3Principle dimensioning formula

Basis formula:

Elongation f

Load

F

f

f f

SA

FPA

PASA

fSM fPM

F

Verf

FV

F KR

F

Mm

inF

Mm

inF

Mm

axF

Mm

axF

Sm

axF

Ker

fF

ZF

MF

AF

AF

Page 17: Bolt and Screw Compendium

Step 0At the beginning of the calculation, the required bolt diameter d and the propertyclass as well as the applicability of the calculation rules for eccentrically deformedand/or loaded joints has to be evaluated on the basis of tables or simple formula.

Step 1A tightening method should be determined. Its accuracy is reflected through the factor �A attributed to it. The method of assembly has huge influence on theassembly preload and consequently the designing of the bolted joint.

Step 2A minimal clamping force of the joint FKerf , not to be under-run at any time duringoperation is to be estimated from the working conditions. This can be deduced from the requirements regarding the sealing force of the joint, the friction, or theprevention of an opening under work load.

Step 3The load ratio � is to be calculated in order to determine the distribution of axialworking load FA between the bolt and the joint components. Smaller the ratio �, lesser additional force will be carried by the bolt. Thus � defines itself from theelastic resilience of the bolt �S and the joint parts �P, as well as the load introduction level (denoted by the factor n) and the eccentricities of the jointand work load. In general, the value of � decreases with the increase in the resilience of the bolt, as opposed to that of the deformed parts. The factor n isdependent on the given geometry, the level of load introduction level and the typeof joint. It can be defined according to VDI2230 or from a table.

Step 4Through the embedment of surfaces, the system looses partly its elastic deformati-on. This is reducing the assembly preload. Under consideration of the stiffness FZ ,the loss of preload as a result of the embedding, will be determined and used forthe calculation. Furthermore a change in the preload FVth will occur under thermalload when the components of the bolted joint do have different thermal expansioncoefficients.

16 – 17

Page 18: Bolt and Screw Compendium

Bolt and Screw Compendium

Steps 5 and 6By using the main dimensioning formula FMax = �A* [FKerf + (1- �)* FA + FZ + FVth],the maximum assembly preload as well the minimum required assembly preloadFMin = FMax / �A of the bolted joint will be calculated.

Step 7The result is to be compared against the table values for the bolt stress (FM) ) at a utilisation of the yield strength of 90% and the given friction factors. The condition FMzul ≥ FMmax or FMTab ≥ FMmax , must be fulfilled. The reference valuemust be calculated for specially designed bolts.Should the result lead to a necessary change in the bolt geometry or the ratio ofgrip length, the calculation is to be repeated right from step 2.

Step 8It should be calculated whether the allowable bolt load during operation is notexceeded through the total bolt load of FSmax = FMzul + �en* FAmax - �FVth. Thecondition �red , B < Rp0.2min should be fulfilled, where �red, B represents the compa-rative stress from maximum tensile stress and torsional stress obtained from thesmallest cross-sectional area of the bolt. The simplified formula FSmax ≤ Rp0.2min* A0is acceptable for torsion-free joints. Furthermore, a safety factor can be incorporatedfor �red, B < Rp0.2min / SF.

Step 9The acceptable alternating stress �A is relatively low for bolts as compared to theunthreaded wire. In case there is continious alternating stress, the joint should bechecked for the condition �a ≤ �AS where �AS depends on whether the bolt hashad thread rolling before or after heat treatment. The existing alternating stress �a isdetermined with respect to the tensile stress area of the bolt.

Step 10In general, the surface pressure in the joints should not exceed the allowable surfa-ce pressure of the components concerned in either the assembly state pMmax orduring operation pBmax in order to avoid a decrease in the preload by creep processes.A safety factor can be included for pG ≥ pM, Bmax .

Page 19: Bolt and Screw Compendium

Step 11The length of full thread engagement available has to be determined in order toavoid stripping of the thread(s). Related to nominal diameter and strength the minimum values can be gathered from the VDI 2230 standard.

Step 12The transverse loads working in the joint are generally transmitted by static frictionin the interfaces of the preloaded joint. Considering the number of interfaces andthe friction coefficients of the interfaces, a comparison has to be carried out betweenthe minimal residual clamp load FKRmin and the clamp load required for the trans-mission of the transverse loads FKQerf . A safety factor FKQerf < FKRmin / SF may alsobe included. If it comes to overloading of the joint, or also for the use of fittingbolts, one should avoid shearing the bolt. For that, �max = FQmax / A� ≤ �B should be valid.

Step 13The assembly torque required for the tightening of the bolts can be read from corresponding tables for 90 % bolt utilization, or can be calculated through MA = FMzul* [0.16* P + 0.58* d2* µGmin + DKm / 2* µKmin]. Additional moments in case connecting elements are used to prevent slacking and loosening have to be considered.

18 – 19

Page 20: Bolt and Screw Compendium

Bolt and Screw Compendium

3. Self loosening of bolted joints

A bolted joint with a mechanically sound design and reliable assembly does notneed a locking device in most cases. In these cases, the applied clamping forcesobstruct relative movements on the bolted joint over the entire life.

But under certain conditions, initial stress in the bolted joints can be broken down,reduced for a short time, or nullified.

1. Relaxation of bolted joint through loss of preload as a result of compression or permanent elongations, e.g. creep.

2. Dynamic load normal to the bolt axis can result in complete self-loosening of a bolt. This begins under a full preload when transverse shearing deformationoccurs as relative movement between joint components.

Page 21: Bolt and Screw Compendium

20 – 21

Mat

rix f

or S

ecur

ing

Elem

ents

for

Bol

ted

Join

tsM

echa

nica

l Saf

ety

Elem

ents

Nam

eW

orki

ngSa

fety

Har

dnes

sIn

stal

lati

onRe

cycl

e

Lubr

icat

ion

Surf

ace

of

Shel

f-lif

e

tem

p.fo

r dy

n.of

coun

t of

bol

t/be

arin

gof

pro

duct

°Clo

adbe

arin

gbe

arin

gsu

rfac

esu

rfac

esu

rfac

e

Karip

p®U

pto

yes

Mus

t be

La

rger

m

ultip

leAn

y

Min

or

unlim

ited

star

ting

less

tha

n fla

nge

lubr

icat

ion

dam

age,

te

mp.

the

tens

iledi

amet

erpo

ssib

le

not

for

st

reng

than

d sp

ace

lacq

uer

of t

he b

olt

requ

irem

ent

Kalo

k®se

rrat

ion

Upt

oye

sM

ust

be le

ssLa

rger

mul

tiple

Any

Maj

orun

limite

dst

artin

gth

an th

e te

n-fla

nge

lubr

icat

ion

dam

age,

tem

p.si

le s

tren

gth

diam

eter

poss

ible

not

for

of t

he b

olt:

and

spac

ela

cque

rm

ax. 4

0 HR

Cre

quire

men

t

Kalo

k II®

Upt

oye

sM

ust

be le

ssle

ss s

pace

mul

tiple

Any

Maj

orun

limite

dst

artin

gth

an th

e te

n-re

quire

men

tlu

bric

atio

nda

mag

e,te

mp.

sile

str

engt

hpo

ssib

leno

t fo

rof

the

bol

t:

lacq

uer

max

. 40

HRC

Plas

tic

lock

ing

-56

cond

ition

alAl

l le

ss s

pace

mul

tiple

no4

Year

sPa

tch

coat

ins

bis

hard

ness

esre

quire

men

tsda

mag

ePA

1112

0

Trilo

bula

rlo

ckin

g fe

atur

e of

U

pto

cond

ition

alTe

nsile

stre

ngth

Lock

ing

mul

tiple

Any

noun

limite

dTh

read

sth

read

form

ing

area

in

star

ting

of t

he d

rill

effe

ct o

nly

lubr

icat

ion

dam

age

conn

ectio

n w

ithte

mp.

mus

t be

less

in b

lind

poss

ible

fem

ale

thre

adth

an t

heho

le b

orin

gste

nsile

stre

ngth

of t

he b

olt

Page 22: Bolt and Screw Compendium

Bolt and Screw Compendium

Mat

rix f

or S

ecur

ing

Elem

ents

for

Bol

ted

Join

tsM

echa

nica

l Saf

ety

Elem

ents

Man

ufac

ture

r,W

orki

ngSa

fety

for

H

ardn

ess

of

Inst

alla

tion

Recy

cle

Lubr

icat

ion

Surf

ace

of

Shel

f-lif

e tr

adem

ark

tem

p.dy

n. L

oad

seal

ing

run

coun

tbo

lt/

seal

ing

run

of°C

seal

ing

run

prod

uct

MVK

,O

mni

-U

pto

150

yes

All

No

easy

secu

ring

N

o 2

–4

year

s,

red

Tech

nik

hard

ness

esad

ditio

nal

MVK

not

dam

age

less

er a

t

Prec

ote

80sp

ace

with

SM

; hi

gh

requ

irem

ents

nut

thre

ad

hum

idity

oilfr

ee

MVK

,3M

Upt

o 11

0ye

sAl

l N

oea

syse

curin

g N

o2

–4

year

s,

blue

Scot

ch g

ripha

rdne

sses

addi

tiona

lM

VK n

ot

dam

age

less

er a

t

2353

spac

ew

ith S

M;

high

requ

irem

ents

nut

thre

adhu

mid

ityoi

lfree

MVK

,O

mni

-U

pto

170

yes

All

No

easy

secu

ring

No

2–

4 ye

ars,

turq

uois

eTe

chni

kha

rdne

sses

addi

tiona

lM

VK n

ot

dam

age

less

er a

t

Prec

ote

85sp

ace

with

SM

;hi

gh

requ

irem

ents

nut

thre

adhu

mid

ityoi

lfree

Liqu

idye

sAl

so s

uita

ble

No

easy

No

adhe

sive

for

high

ad

ditio

nal

dam

age

hard

ness

essp

ace

requ

irem

ents

Page 23: Bolt and Screw Compendium

22

4. Tightening joints

The tightening methods used today are not able to measure the assembly preloaddirectly, but only as a function of the tightening torque, the elastic elongation, the tightening angle or the determination of the yield point of the bolt. The variationof the friction coefficients and the inaccuracy of the tightening methods do lead to a need for over dimensioning of the bolted joint, which is expressed by the tightening factor

�A = Fvmax / Fvmin

4.1 Torque Controlled Tightening

By tightening tests on original components, the friction coefficients are first determined,and the required torque is subsequently specified. This torque must be assigned in such a way that the elastic limit of the bolt is not exceeded even in adverse conditions e.g. low friction factor, etc. Pic 4.1. For hexagon bolts acc. DIN EN 24014and similar, the torque values are shown on table 4.1. These are valid for a stress inthe shank of 90 % of the standard minimum yield strenght according to VDI code2230. The table values represent the maximal torque values. For deviant head-geometry, the initial torque is calculated by

MA = FM(0.16*P+0.58*d2*µG+(DKm/2)*µK)

For torque-driven tightening, the designing of bolts is based on a �A of 1.8 .

Monitoring the final angle of rotation along with a given torque is recommendedfor the control of the assembly process. The tolerance range of the final angle ofrotation must be in a defined zone (window), which is established through tests. In case the final angle of rotation lies outside of this window, the driver indicates a failure.

– 23

Page 24: Bolt and Screw Compendium

Bolt and Screw Compendium

Fig. 4.1 Scatter of �FM for torque controlled tightening of bolted joints

4.2 Angle Controlled Tightening

First the joint is loaded with a snug torque until all interfaces are completely closed. Subsequently a defined angle �A will be applied, which is measured fromthe point the snug torque is achieved, with which the bolt will be tightened to or beyond the yield point.

For the control of the tightening process a tolerance range for the final torque hasto be specified. The final torque must be in this range. The big advantage of this tightening process versus torque controlled tightening is that the elongation of the bolt in the plastic area is defined over thegiven angle. The cut off torque preferably lies above the yield point. The bolt willthus be used to the full. It therefore underlies a tightening factor �A = 1.0 .

150

100

50 50

100

150

50 50

MA

max

MA

max

MK

MG

A m

ax

MG

A m

in

FF

min

FF

min

FM

max

FM

maxF [kN]M

� = 0G

�= 0,10

G

�=

0,16

G

�=

0,10

ges

�=

0,10

ges

�=

0,17

1ge

s

�=

0,17

1ge

s

�=

0,10

;

G

�=

0,10

K

�=

0,10

;

G

�=

0,10

K

�=

0,16

;G

�=

0,18

K

�=

0,16

;G

�=

0,18

K

F [kN]M

MA

min

MA

min

FM FM

MA

MGA

MA

,MK

MA

MAMA

[Nm]

MA

[Nm]

v = 0,9 v=1v = 0,9 v=1

1

23

4

Page 25: Bolt and Screw Compendium

Fig. 4.2Angle controlled tightening of bolted connections

4.3 Yield Controlled Tightening

Similar to angle controlled tightening, a snug torque will be applied until all inter-faces are completely closed. From this point, the angle and the attained torque aredynamically measured, and the respective differential ratio

�Ma/��

is calculated. This differential ratio is constant in the elastic region, and diminishesas it approaches the elastic limit of the bolt; the torque does not increase in proportion to the angle of rotation any more. When the value of the differentialratio declines to a pre determined value,

e.g. 0.5*(�Ma/��)

the assembly machine will be cut off and the tightening process is completed.

24 – 25

Angle �

Snugpoint

Pre

load

FM

50

50

100

kN

100 150grd

��A

�F

M

�F

M

FF

Rp 0,2 -Punkt

��A

�A

�F�p 0,2

Page 26: Bolt and Screw Compendium

Bolt and Screw Compendium

Fig. 4.3Yield controlled tighteningof bolted connections

The position of the cut-off in the diagram Ma/� is essentially determined throughthe tensile strength of the bolt and the friction. The assembly preload varies withthe elastic limit of the bolt and thread friction (Fig. 4.4).

Fig. 4.4Scatter of clampload due to variances of thread friction andyield point of fastener materialduring yield controlled tighteningof bolted joints

Rp 0,2 -point

Angle �D

iffer

entia

l quo

tiant

�MA

max��

�M

A�

�MA

max��

�MA��

�MA��

�MA

�M

A

�M

A

MF

max��

��

��

Cut-off point

= 0,5

= f (�)

Pre

load

MA

�F

Snugpoint

Snu

gtor

que

Snugangle

1

2

3150

150

100

100

50

50

Nm

grd

�=

0,14

ges

�=

0,10

ges

�= 0,10

G

� = 0G

�= 0,

12

G

�=

0,14

G

FM

MG

A

R p 0,2 = 1100 N/mm2

FM [kN]

MGA ,MA

[Nm]

R p 0,2 = 940 N/mm2

1

2

3

4

150

100

100

50

50

�AFMmax

66,684,1 1,26

FMmin

= = =

Page 27: Bolt and Screw Compendium

For the control of the tightening, the min. and max. values of tightening torque androtating angle of tightening are calculated, or established through tests. Recordedin diagram Ma/�, these values define a right angle, which is usually indicated by agreen window (Fig. 4.5). If the cut-off points lie within this range, the tighteningprocess is deemed OK.

Fig 4.5 “green window“ for yield controlled tightening of bolted joints

As compared to the angle control, there is the advantage that the bolts undergo a smaller plastic elongation; of course the assembly preload level is somewhatlower.

The required torque and the attained assembly preload can be estimated through multiplication of values from Table 4.1 with the following conversion factors:

FM bzw. MA = 1.1-1.3* Table value

26 – 27

MAmax

(Rp 0,2 =1100 N/mm2; �G=�K=0,14)

(Rp 0,2 =1100 N/mm2; �G=�K=0,12)

(Rp 0,2 =940 N/mm2; �G=�K=0,12)

(Rp 0,2 =940 N/mm2; �G=�K=0,10)

MAmax

MAmin

MAmin

�m

in (R

p 0,

2 =

940

N/m

m2 ; �

G=

�K=

0,14

)

�m

in (R

p 0,

2 =

940

N/m

m2 ; �

G=

�K=

0,12

)

�m

ax (R

p 0,

2 =

110

0 N

/mm

2 ; �G=

�K=

0,12

)

�m

ax (R

p 0,

2 =

110

0 N

/mm

2 ; �G=

�K=

0,10

)

Angle �

Tigh

teni

ng to

rque

MA

Snu

gtor

que

Snugangle

MF

�F

150

100

50

50 100 grd

Nm

bc

a

A'A

A''

Point Rp0.2 F mG mK

[N/mm2] [kN]

A 1020 75.3 0.120 0.120A' 960 70.2 0.125 0.134A" 1080 82.7 0.100 0.114a 870 65.4 0.110 0.130b 1200 85.2 0.140 0.100c 1000 87.2 0.080 0.140

Page 28: Bolt and Screw Compendium

Bolt and Screw Compendium

Thre

ad S

ize

Prop

erty

Asse

mbl

y Pr

eloa

d F M

[kN

] fo

r µ g

Tigh

teni

ng T

orqu

e M

A[N

m]

for

µ k=

µ gCl

ass

0.08

0.10

0.12

0.16

0.20

0.08

0.10

0.12

0.16

0.20

M6

8.8

10.7

10.4

10.2

09.6

09.0

07.7

09.0

10.1

12.3

14.1

AS=

20.1

mm

210

.915

.715

.314

.914

.113

.211

.313

.214

.918

.020

.712

.918

.417

.917

.516

.515

.513

.215

.417

.421

.124

.2M

78.

815

.515

.114

.814

.013

.112

.614

.816

.820

.523

.6A

S=

28.9

mm

210

.922

.722

.521

.720

.519

.318

.521

.724

.730

.134

.712

.926

.626

.025

.424

.022

.621

.625

.428

.935

.240

.6M

8 x

1.0

8.8

21.2

20.7

20.2

19.2

18.1

19.3

22.8

26.1

32.0

37.0

AS=

39.2

mm

210

.931

.130

.429

.728

.126

.528

.433

.538

.347

.054

.312

.936

.435

.634

.732

.931

.033

.239

.244

.955

.063

.6M

8 x

1.25

8.8

19.5

19.1

18.6

17.6

16.5

18.5

21.6

24.6

29.8

34.3

AS=3

6.6

mm

210

.928

.728

.027

.325

.824

.327

.231

.836

.143

.850

.312

.933

.632

.832

.030

.228

.431

.837

.242

.251

.258

.9M

9 x

1.0

8.8

27.7

27.2

26.5

25.2

23.7

28.0

33.2

38.1

46.9

54.4

AS=

51.0

mm

210

.940

.739

.939

.037

.034

.941

.148

.855

.968

.879

.812

.947

.746

.745

.643

.340

.848

.157

.065

.480

.693

.4M

10 x

1.0

8.8

35.2

34.5

33.7

32.0

30.2

39.0

46.0

53.0

66.0

76.0

AS=

64.5

mm

210

.951

.750

.649

.547

.044

.457

.068

.078

.097

.011

2.0

12.9

60.4

59.2

57.9

55.0

51.9

69.0

80.0

91.0

113.

013

1.0

M10

x 1

.25

8.8

33.1

32.4

31.6

29.9

28.2

38.0

44.0

51.0

62.0

72.0

AS=

61.2

mm

210

.948

.647

.546

.444

.041

.455

.065

.075

.092

.010

6.0

12.9

56.8

55.6

54.3

51.4

48.5

65.0

76.0

87.0

107.

012

4.0

4.1

Clam

p Lo

ads

and

tigh

teni

ng t

orqu

es f

or b

olts

wit

h m

etric

thr

ead

acc

DIN

13 a

ndhe

ad c

onfi

gura

tion

acc

D/E

/I 4

014

for

�=

0.9

Page 29: Bolt and Screw Compendium

28 – 29

M10

x 1

.58.

831

.030

.329

.627

.926

.336

.043

.048

.059

.068

.0A

S=

58.0

mm

210

.945

.644

.543

.441

.038

.653

.063

.071

.087

.010

0.0

12.9

53.3

52.1

50.8

48.0

45.2

62.0

73.0

83.0

101.

011

6.0

M12

x 1

.25

8.8

50.1

49.1

48.0

45.6

43.0

66.0

79.0

90.0

111.

012

9.0

AS=

92.1

mm

210

.973

.672

.170

.566

.963

.297

.011

6.0

133.

016

4.0

190.

012

.986

.284

.482

.578

.373

.911

4.0

135.

015

5.0

192.

022

2.0

M12

x 1

.58.

847

.646

.645

.543

.140

.664

.076

.087

.010

7.0

123.

0A

S=

88.1

mm

210

.970

.068

.566

.863

.359

.795

.011

2.0

128.

015

7.0

181.

012

.981

.980

.178

.274

.169

.811

1.0

131.

015

0.0

183.

021

2.0

M12

x 1

.75

8.8

45.2

44.1

43.0

40.7

38.3

63.0

73.0

84.0

102.

011

7.0

AS=

84.3

mm

210

.966

.364

.863

.259

.856

.392

.010

8.0

123.

014

9.0

172.

012

.977

.675

.974

.070

.065

.810

8.0

126.

014

4.0

175.

020

1.0

M14

x 1

.58.

867

.866

.464

.861

.558

.110

4.0

124.

014

2.0

175.

020

3.0

AS=

125

mm

210

.999

.597

.595

.290

.485

.315

3.0

182.

020

9.0

257.

029

9.0

12.9

116.

511

4.1

111.

410

5.8

99.8

179.

021

3.0

244.

030

1.0

349.

0M

14 x

2.0

8.8

62.0

60.6

59.1

55.9

52.6

100.

011

7.0

133.

016

2.0

187.

0A

S=

115

mm

210

.991

.088

.986

.782

.177

.214

6.0

172.

019

5.0

238.

027

4.0

12.9

106.

510

4.1

101.

596

.090

.417

1.0

201.

022

9.0

279.

032

1.0

M16

x 1

.58.

891

.489

.687

.683

.278

.615

9.0

189.

021

8.0

269.

031

4.0

AS=

167

mm

210

.913

4.2

131.

612

8.7

122.

311

5.5

233.

027

8.0

320.

039

6.0

461.

012

.915

7.1

154.

015

0.6

143.

113

5.1

273.

032

5.0

374.

046

3.0

539.

0M

16 x

2.0

8.8

84.7

82.9

80.9

76.6

72.2

153.

018

0.0

206.

025

2.0

291.

0A

S=

157

mm

210

.912

4.4

121.

711

8.8

112.

610

6.1

224.

026

4.0

302.

037

0.0

428.

012

.914

5.5

142.

413

9.0

131.

712

4.1

262.

030

9.0

354.

043

3.0

501.

0M

18 x

1.5

8.8

122.

012

0.0

117.

011

2.0

105.

023

7.0

283.

032

7.0

406.

047

3.0

AS=

216

mm

210

.917

4.0

171.

016

7.0

159.

015

0.0

337.

040

3.0

465.

057

8.0

674.

012

.920

4.0

200.

019

6.0

186.

017

6.0

394.

047

2.0

544.

067

6.0

789.

0

Page 30: Bolt and Screw Compendium

Bolt and Screw Compendium

Thre

ad S

ize

Prop

erty

Asse

mbl

y Pr

eloa

d F M

[kN

] fo

r µ g

Tigh

teni

ng T

orqu

e M

A[N

m]

for

µ k=

µ gCl

ass

0.08

0.10

0.12

0.16

0.20

0.08

0.10

0.12

0.16

0.20

M18

x 2

.08.

811

4.0

112.

010

9.0

104.

098

.022

9.0

271.

031

1.0

383.

044

4.0

AS=

204

mm

210

.916

3.0

160.

015

6.0

148.

013

9.0

326.

038

6.0

443.

054

5.0

632.

012

.919

1.0

187.

018

2.0

173.

016

3.0

381.

045

2.0

519.

063

8.0

740.

0M

18 x

2.5

8.8

107.

010

4.0

102.

096

.091

.022

0.0

259.

029

5.0

360.

041

5.0

AS=

193

mm

210

.915

2.0

149.

014

5.0

137.

012

9.0

314.

036

9.0

421.

051

3.0

592.

012

.917

8.0

174.

017

0.0

160.

015

1.0

367.

043

2.0

492.

060

1.0

692.

0M

20 x

1.5

8.8

154.

015

1.0

148.

014

1.0

133.

032

7.0

392.

045

4.0

565.

066

0.0

AS=

272

mm

210

.921

9.0

215.

021

1.0

200.

019

0.0

466.

055

8.0

646.

080

4.0

90.0

12.9

257.

025

2.0

246.

023

4.0

222.

054

5.0

653.

075

6.0

941.

011

00.0

M20

x 2

.58.

813

6.0

134.

013

0.0

123.

011

6.0

308.

036

3.0

415.

050

9.0

588.

0A

S=

245

mm

210

.919

4.0

190.

018

6.0

176.

016

6.0

438.

051

7.0

592.

072

5.0

838.

012

.922

7.0

223.

021

7.0

206.

019

4.0

513.

060

5.0

692.

084

8.0

980.

0M

22 x

1.5

8.8

189.

018

6.0

182.

017

3.0

164.

044

0.0

529.

061

3.0

765.

089

6.0

AS=

333

mm

210

.926

9.0

264.

025

9.0

247.

023

3.0

627.

075

4.0

873.

010

90.0

1276

.012

.931

5.0

309.

030

3.0

289.

027

3.0

734.

088

2.0

1022

.012

75.0

1493

.0M

22 x

2.5

8.8

170.

016

6.0

162.

015

4.0

145.

041

7.0

495.

056

7.0

697.

080

8.0

AS=

303

mm

210

.924

2.0

237.

023

1.0

213.

020

7.0

595.

070

4.0

807.

099

3.0

1151

.012

.928

3.0

277.

027

1.0

257.

024

2.0

696.

082

4.0

945.

011

62.0

1347

.0M

24 x

1.5

8.8

228.

022

4.0

219.

020

9.0

198.

057

0.0

686.

076

9.0

995.

011

66.0

AS=

401

mm

210

.932

5.0

319.

031

2.0

298.

028

2.0

811.

097

7.0

1133

.014

17.0

1661

.012

.938

0.0

373.

036

6.0

347.

033

0.0

949.

011

43.0

1326

.016

58.0

1943

.0M

24 x

2.0

8.8

217.

021

0.0

209.

019

8.0

187.

055

7.0

666.

076

9.0

955.

011

14.0

AS=

384

mm

210

.931

0.0

304.

029

7.0

282.

026

7.0

793.

094

9.0

1095

.013

60.0

1586

.012

.936

2.0

355.

034

8.0

331.

031

2.0

928.

011

10.0

1282

.015

91.0

1856

.0

Page 31: Bolt and Screw Compendium

30 – 31

M24

x 3

.08.

819

6.0

192.

018

8.0

178.

016

8.0

529.

062

5.0

714.

087

5.0

1011

.0A

S=

353

mm

210

.928

0.0

274.

026

7.0

253.

023

9.0

754.

089

0.0

1017

.012

46.0

1440

.012

.932

7.0

320.

031

3.0

296.

027

9.0

882.

010

41.0

1190

.014

58.0

1685

.0M

27 x

1.5

8.8

293.

028

8.0

282.

026

9.0

255.

082

2.0

992.

011

53.0

1445

.016

97.0

AS=

514

mm

210

.941

8.0

410.

040

2.0

383.

036

3.0

1171

.014

13.0

1643

.020

59.0

2417

.012

.948

9.0

480.

047

0.0

448.

042

5.0

1370

.016

54.0

1922

.024

09.0

2828

.0M

27 x

2.0

8.8

281.

027

6.0

270.

025

7.0

243.

080

6.0

967.

011

19.0

1394

.016

30.0

AS=

496m

m2

10.9

400.

039

3.0

384.

036

6.0

346.

011

49.0

1378

.015

94.0

1986

.023

22.0

12.9

468.

046

0.0

450.

042

8.0

405.

013

44.0

1612

.018

66.0

2324

.027

17.0

M27

x 3

.08.

825

7.0

252.

024

6.0

234.

022

0.0

772.

091

5.0

1050

.012

92.0

1498

.0A

S=

459

mm

210

.936

7.0

359.

035

1.0

333.

031

4.0

1100

.013

04.0

1496

.018

40.0

2134

.012

.942

9.0

420.

041

0.0

389.

036

7.0

1287

.015

26.0

1750

.021

53.0

2497

.0

Page 32: Bolt and Screw Compendium

Bolt and Screw Compendium

4.5 Tightening Torques for bolt assembly beyond yield point

The snug torques and angles of rotation in the following table are valid for bolt grip lengths from 1d to 4d which are assembled beyond yield (angle controlled and yield controlled tightening). For smaller and larger grip length,the required angle of rotation is to be determined by test on original components.In such cases, by keeping the same initial torques, rotation angles of 45° or 180°should be considered. The reusability of these bolted joints is limited.

Thread Property Initial Preload Force Tightening Torque Class Torque [kN] [Nm]

[Nm] + overelastic angle overelastic angle Rotation controlled tightening controlled tighteningAngle 90°

FMmin FMmax MAmin MAmax

8.8 8 10.5 14.5 10.0 17M 6 10.9 10 15.5 20 14.5 23.5

12.9 10 18.5 22.5 17.0 26.58.8 20 19.5 26 24.0 41

M 8 10.9 20 29 36 35.5 5712.9 20 34 41.5 41.5 658.8 40 31 41.5 47.5 81

M 10 10.9 50 45.5 57 70 11012.9 50 54 66 81 1308.8 60 48 64 85 154

M 12 x 1.5 10.9 90 71 88 125 20012.9 90 83 100 145 2308.8 100 69 91 140 240

M 14 x 1.5 10.9 150 100 125 205 33512.9 150 115 145 235 3808.8 120 95 125 215 380

M 16 x 1.5 10.9 180 135 170 310 51012.9 180 160 195 360 5858.8 140 125 165 315 555

M 18 x 1.5 10.9 210 175 220 450 74512.9 210 205 250 525 855

Page 33: Bolt and Screw Compendium

32 – 33

4.6 Recommended Values for Tightening Factors

4.7 Recommended Minimum Length of Thread Engagement for Blind-hole Threads (VDI 2230)

Tightening process Tightening factors �a Remarks

Yield point controlled, 1.18motorized or manual

Angle of rotation controlled, 1.18 Snug torque (pre-tightening) and motorized or manual angle of rotation determined

through experimentation

Elongation measurement of 1.2calibrated bolt

Hydraulic tightening 1.2 to 1.6 Long bolts: lower valuesShort bolts: higher values Established through measurement of elongation length and applied pressure

Torque controlled, 1.4 to 1.6 Determination of required torque with torque wrench or through measurement of FM on precision screwdriver with the jointdynamic torque control 1.6 to 1.8 Nominal torque determined with

the estimated friction coefficient of the particular case

Torque controlled, 1.7 to 2.5 Pre-setting of power screwdriver with mechanical screwdriver with post torque, which isImpulse controlled, 2.5 to 4,0 established from the requiredwith impact wrench torque plus post torque

Tensile Strength of Bolt 8.8 8.8 10.9 10.9Fineness of thread d/P < 9 ≥ 9 < 9 ≥ 9

AlCuMg1 F 40 1.1 d 1.4 d –

GG 22 1.0 d 1.2 d 1.4 d

St 37 1.0 d 1.25 d 1.4 d

St 50 0.9 d 1.0 d 1.2 d

C 45 V 0.8 d 0.9 d 1.0 d

Page 34: Bolt and Screw Compendium

Bolt and Screw Compendium

5. Corrosion Protection and Lubrication

5.1 Surface Coating System (Optional)Specifications as known at the time of printing.

Symbol (abbr.) Basecoat Passivation Topcoat / Sealing

Surfaces containing Cr(VI)

Zn yellow Galv. Zinc Yellow -

Zn + Metex LM Galv. Zinc (acid) Yellow Metex® LM

ZnFe black Galv. Zinc-Iron Black -

ZnNi transparent Galv. Zinc-Nickel Transparent -

ZnNi black Galv. Zinc-Nickel Black- -

DAC 320 DACROMET® 320 -

DAC 500 DACROMET® 500 -

DAC 320 + Plus L DACROMET® 320 Plus® L

Cr(VI)-free Surfaces

op thin Zinc phosphate - -

Zn transp. / Zn Thin III Galv. Zinc Thin layer Cr(III) -

Zn Thin III + V Galv. Zinc Thin layer Cr(III) Sealing

Zn Thick III Galv. Zinc Thick layer Cr(III) -

Zn Thick III + V Galv. Zinc Thick layer Cr(III) Sealing

ZnFe Pass III Galv. Zinc-Iron Containing Cr(III) -

ZnFe Pass III + V Galv. Zinc-Iron Containing Cr(III), if black Sealing if black

ZnNi Pass III Galv. Zinc-Nickel Containing Cr(III) -

ZnNi Pass III + V Galv. Zinc-Nickel Containing Cr(III), if black Sealing if black

DS (GZ) - DELTA®-Seal (GZ)

GEO 500 GEOMET® 500 -

DT/DP 100 (+ SM) DELTA®-Tone / DELTA®-Protekt KL 100 -

GEOMET + V GEOMET® 321 e.g. DACROLUB x

DT / DP 100 + DS GZ DELTA®-Tone / DELTA®-Protekt KL 100 DELTA®-Seal GZ

DT / DP 100 + Klevercol DELTA®-Tone / DELTA®-Protekt KL 100 Klevercol®

GEOBLACK GEOMET® 500 Plus ML black

DP 100 + DP 30x DELTA®-Protekt KL 100 DELTA®-Protekt VH 30x

GEO + Plus VL GEOMET® 321 Plus® VL

GEOMET + Plus x GEOMET® 321 Plus® 10 / L / ML / M

B 46 + B 18 x MAGNI B 46 MAGNI B 18 x

1 Reference values for parts in new condition (head and thread ends) to be examined individually /these values can be reduced through subsequent handling operation

Page 35: Bolt and Screw Compendium

34 – 35

Optical characteristics Layer Additional NaCl-Test Resistance to thickness lubricant DIN 50 021 chemicals 1, 2

[µm] treatment RR (WR) 1, 2 (Rim-cleanser)

Yellow ≥ 8 Necessary 144h (72h) -

Yellowish ≥ 15 TTF 600h (192h) -

Black ≥ 8 Necessary 360h (48h) -

Silver ≥ 8 Necessary 480h (240h) -

Black ≥ 8 Necessary 480h (120h) -

Silver ≥ 5 / ≥ 8 Necessary 480h / 720h No

Silver ≥ 5 / ≥ 8 - (Possible) 480h / 720h No

Silver ≥ 5 - (Possible) 720h (Yes)

Dark / black 1 - 4 Oiled 8h No

Silver ≥ 8 Necessary 96h (6h) -

Silver ≥ 8 If necessary 144h (48h) -

Silver (iridescent) ≥ 8 Necessary 168h (72h) -

Silver ≥ 8 If necessary 240h (96h) -

(Silver) ≥ 8 Necessary 240h (24h) -

Silver / black ≥ 8 If necessary 480h (120h) -

(Silver) ≥ 8 Necessary 480h (120h) -

Silver / black ≥ 8 If necessary 720h (240h) -

Silver / black ≥ 10 If necessary 120h Yes

Silver ≥ 12 - (Possible) 480 / 720h No

Silver ≥ 8 / ≥ 12 If necessary 240h / 480h No

Silver ≥ 8 / ≥ 12 - (Possible) 480h conditional

Silver / black ≥ 12 - (Possible) 480h (120h) Yes

Black ≥ 12 - (Possible) 480h (240h) Yes

Black ≥ 12 - (Possible) 720h (120h) (Yes)

Silver ≥ 12 - (Possible) 480 / 720h (Yes)

Silver-gray ≥ 12 - (Possible) 480 / 720h (Yes)

Silver-gray ≥ 12 - (Possible) 480 / 720h (Yes)

Silver-gray ≥ 12 - (Possible) 480 / 720h Yes

2 With Cr(VI)-free surfaces, a considerably stronger scaling should be accounted for, compared to surfaces containing with Cr(VI), as there's no self-healing effect

Page 36: Bolt and Screw Compendium

Bolt and Screw Compendium

5.2 Lubrication

The primary task of lubricants is to set up a defined and constant coefficient offriction. Along with this task, lubricants can also fulfill other functions (e.g. Anti-corrosion, chemical resistance, optical characteristics etc.) where applicable.

Specifications VDA 235-101/ DIN 946 / DIN EN ISO 16047According to VDA 235-101, a total friction coefficient µtot of 0.09 – 0.14 is requiredfor lubricated bolts (partial friction coefficients µK and µG between 0.08 and 0.16).The determination of the friction coefficients generally is performed according toDIN 946 and DIN EN ISO 16047 respectively.

Influencing Factors(To be considered while choosing a suitable lubricant)The friction coefficients and their range, in practice, are greatly dependant on the following factors:

• Coating system of the bolt: Type of coating, thickness of layer etc.• Bearing plates: hard (e.g. hardened steel), middle (e.g. auto-body sheet steel),

soft (e.g. Al), uncoated / KTL-coated)• Geometry of the bolt-head: Convex / Concave bearing surface,

flange diameter, etc. • Nut thread: un-coated / coated (type of coating), crimped nut, etc.• End conditions: Temperature, dampness, tightening speed,

multiple surfaces etc.

NotesThe friction-coefficient window defined in the VDA test sheet 235-101 can generally beobtained by proper lubrication. The process-safe compliance in the serial productionwith acceptable range of distribution can still be problematic (» Influencing factors).In principle, integrated lubricants are best suited for majority applications. If required, friction coefficients over 0.14 can be reached through proper lubricanttreatment or through a single coating system without additional lubricant treatment.The spread of friction coefficients increases with increase in the coefficients. Friction coefficients under 0.08 are technically quite difficult to set, and are notdesired due to the required safety against self loosening of a joint.

Page 37: Bolt and Screw Compendium

Standard Lubricants with usual areas application (Example)

36 – 37

Product name Friction Coefficients Area of application(DIN 946)

Subsequently-applied LubricantsGardorol CP 8006 or similar 0.08 – 0.14 Phosphated bolts

(Motor bolts)

Torque N Tension Fluid 0.09 – 0.14 Zinc-plated coats /galv. surface

microGLEIT DF911 / 921 0.09 – 0.14 Zinc-plated coats /galv. surface

Gleitmo® 605 0.07 – 0.14 Galvanic surfaces

Gleitmo® 2332 V 0.09 – 0.14 Application withhigh temperatures

OKS® 1700 0.09 – 0.14 Aluminum bolts /thread-forming bolts

OKS® 1765 0.08 – 0.14 Thread-forming bolts

Gleitmo® 627 0.09 – 0.14 Austenitic bolts

Integrated LubricantsTorque N Tension 11 / 15 0.08 – 0.14 / 0.12 – 0.18 Galvanic surfacesmicroGLEIT DCP 9000 0.09 – 0.14 Zinc-plated coats /

galv. surface

DACROLUB® 10 / 15 0.10 – 0.14 / 0.15 – 0.20 DACROMET® 320 /GEOMET® 321

Geomet® 500 0.12 – 0.18 -

Plus® VL 0.09 – 0.14 GEOMET® 321

Plus® L / ML / M 0.08 – 0.14 / 0.10 – 0.16 / DACROMET® 320 / 0.15 – 0.20 GEOMET® 321

DELTA®-Seal GZ 0.10 – 0.16 DELTA®-Tone / DELTA®-Protekt KL 100

DP VH 301 GZ / VH 302 GZ 0.09 – 0.14 / 0.10 – 0.16 DELTA®-Tone / DELTA®-Protekt KL 100

B 18 / B 18 N / B 18 T 0.12 – 0.18 / 0.15 – 0.21 / MAGNI B 460.18 – 0.24

Page 38: Bolt and Screw Compendium

Bolt and Screw Compendium

6. Durability-compatible Configuration

The fatigue limit of a bolted connection can be raised through the following measures:

a) Rolling of threads after heat treatment; Please note: Disassembly of residual stress occurs during a temperature load.Hence it is important to note the working temperature and thermal load duringthe coating process.

b) Cold worked bolts from annealed raw material or tensile strength class 800 K.

c) The geometery of bolts constructed according to the largest possible elastic resilience. e.g. fully threaded parts, parts, waisted shank or reduced shank, hollow shaft option of the largest possible grip length.

d) Observance of the thermal expansion of bolted parts and fastener. Choosing materials with similar coefficients of expansion if possible.

e) Usage of MJ thread with enlarged core-radius according to DIN ISO 5855 sections 1-3.

f) Equal load distribution in threads:1.) Nut materials of smaller E-modules (e.g. cast iron, Aluminum, Titanium)2.) Nut materials of lower tensile strength (Note depth of thread!)3.) Nuts designed as tensile-nuts

g) Bolt head designed for fatigue endurance (e.g. bigger radius in head-shaft transition).Avoiding metal-cutting process, especially under the bolt head.

h) Reduction of setting amount through:1.) Reduction of joint faces/clamped parts2.) Avoiding over-loading of bearing faces.

(Note surface pressure!)3.) Usage of the smoothest possible bearing areas

Page 39: Bolt and Screw Compendium

6.1 Estimation of fatigue limits (reference value)

a) Heat treated after thread rolling

�ASV = 0.75 (180/d + 52)

b) Heat treated before thread rolling

�ASG = (2 - FV / F0.2) �ASV

38 – 39

+-

+-

Page 40: Bolt and Screw Compendium

Bolt and Screw Compendium

7. Miscellaneous

7.1 Conversion tables for hardness and tensile strength

Hardness test and Conversion Cold forming material and Punching in untempered Condition

HB, HV, HRc and Tensile Strength(according to DIN 50150 Table A.1 – Oct. 2000) – values partly interpolated

Brinell Conversion∅ 2.5 [mm] ∅ 5 [mm] ∅ 10 [mm] HB HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]

0.750 1.50 3.00 415 436 44.0 1407

0.760 1.52 3.04 404 424 43.1 1367

0.770 1.54 3.08 393 413 42.1 1331

0.780 1.56 3.12 383 402 41.0 1295

0.790 1.58 3.16 373 392 40.0 1262

0.800 1.60 3.20 363 381 38.9 1225

0.810 1.62 3.24 354 372 37.9 1195

0.820 1.64 3.28 345 362 36.8 1163

0.830 1.66 3.32 337 354 35.9 1137

0.840 1.68 3.36 329 346 34.9 1111

0.850 1.70 3.40 321 337 34.2 1082

0.860 1.72 3.44 313 329 33.3 1056

0.870 1.74 3.48 306 321 32.4 1031

0.880 1.76 3.52 298 313 31.5 1005

0.890 1.78 3.56 292 307 30.6 986

0.900 1.80 3.60 285 299 29.8 960

0.910 1.82 3.64 278 292 28.9 937

0.920 1.84 3.68 272 286 27.9 918

0.930 1.86 3.72 266 279 27.1 895

0.940 1.88 3.76 260 273 26.2 876

0.950 1.90 3.80 255 268 25.2 860

0.960 1.92 3.84 249 261 24.5 837

0.970 1.94 3.88 244 256 23.4 821

Page 41: Bolt and Screw Compendium

40 – 41

Brinell Conversion∅ 2.5 [mm] ∅ 5 [mm] ∅ 10 [mm] HB HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]

0.980 1.96 3.92 239 251 – 805

0.990 1.98 3.96 234 246 – 789

1.000 2.00 4.00 229 240 – 770

1.010 2.02 4.04 224 235 – 754

1.020 2.04 4.08 219 230 – 738

1.030 2.06 4.12 215 226 – 725

1.040 2.08 4.16 211 222 – 712

1.050 2.10 4.20 207 217 – 696

1.060 2.12 4.24 202 212 – 680

1.070 2.14 4.28 198 208 – 667

1.080 2.16 4.32 195 205 – 657

1.090 2.18 4.36 191 201 – 644

1.100 2.20 4.40 187 196 – 631

1.110 2.22 4.44 184 193 – 621

1.120 2.24 4.48 180 189 – 607

1.130 2.26 4.52 177 186 – 597

1.140 2.28 4.56 174 183 – 587

1.150 2.30 4.60 170 179 – 573

1.160 2.32 4.64 167 175 – 563

1.170 2.34 4.68 164 172 – 553

1.180 2.36 4.72 161 169 – 543

1.190 2.38 4.76 158 166 – 533

1.200 2.40 4.80 156 164 – 526

1.210 2.42 4.84 153 161 – 516

1.220 2.44 4.88 150 158 – 506

Page 42: Bolt and Screw Compendium

Bolt and Screw Compendium

Hardness test and Conversion Cold forming material and Punching in tempered Condition

HB, HV, HRc and Tensile Strength(according to DIN 50150 Table B.2 – Oct. 2000) – values partly interpolated

Brinell Conversion∅ 2.5 [mm] ∅ 5 [mm] ∅ 10 [mm] HBW HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]0.720 1.44 2.88 451 458 46.2 1424

0.725 1.45 2.90 444 450 45.7 1401

0.730 1.46 2.92 438 444 45.4 1390

0.735 1.47 2.94 432 438 44.7 1365

0.740 1.48 2.96 426 432 44.3 1347

0.745 1.49 2.98 420 426 43.7 1328

0.750 1.50 3.00 415 421 43.3 1317

0.755 1.51 3.02 409 414 43.0 1294

0.760 1.52 3.04 404 409 42.4 1281

0.765 1.53 3.06 398 403 41.8 1260

0.770 1.54 3.08 393 398 41.3 1244

0.775 1.55 3.10 388 393 40.8 1238

0.780 1.56 3.12 383 388 40.4 1214

0.785 1.57 3.14 378 383 39.9 1198

0.790 1.58 3.16 373 378 39.4 1185

0.795 1.59 3.18 368 373 38.9 1168

0.800 1.60 3.20 363 368 38.4 1152

0.805 1.61 3.22 359 364 38.0 1140

0.810 1.62 3.24 354 359 37.5 1125

0.815 1.63 3.26 350 355 37.1 1113

0.820 1.64 3.28 345 350 36.5 1097

0.825 1.65 3.30 341 346 36.0 1085

0.830 1.66 3.32 337 341 35.5 1073

0.835 1.67 3.34 333 337 35.1 1060

0.840 1.68 3.36 329 333 34.6 1046

0.845 1.69 3.38 325 329 34.2 1033

Page 43: Bolt and Screw Compendium

42 – 43

Brinell Conversion∅ 2.5 [mm] ∅ 5 [mm] ∅ 10 [mm] HB HV HRc Rm1.839 [kN] 7.355 [kN] 29.42 [kN] [N/mm2]0.850 1.70 3.40 321 325 33.7 1020

0.855 1.71 3.42 317 321 33.2 1006

0.860 1.72 3.44 313 317 32.7 994

0.865 1.73 3.46 309 313 32.2 981

0.870 1.74 3.48 306 310 31.8 972

0.875 1.75 3.50 302 306 31.3 959

0.880 1.76 3.52 298 302 30.8 946

0.885 1.77 3.54 295 299 30.4 937

0.890 1.78 3.56 292 296 29.9 925

0.895 1.79 3.58 288 292 29.3 915

0.900 1.80 3.60 285 289 28.9 906

0.905 1.81 3.62 282 286 28.5 896

0.910 1.82 3.64 278 282 28.0 883

0.915 1.83 3.66 275 279 27.6 874

0.920 1.84 3.68 272 276 27.1 864

0.925 1.85 3.70 269 273 26.7 852

0.930 1.86 3.72 266 270 26.2 845

0.935 1.87 3.74 263 268 26.0 842

0.940 1.88 3.76 260 266 25.6 832

0.945 1.89 3.78 257 262 24.9 819

0.950 1.90 3.80 255 260 24.6 813

0.955 1.91 3.82 252 257 24.1 803

Page 44: Bolt and Screw Compendium

Bolt and Screw Compendium

7.2 Size limit for regular (standard) and fine threads Metric ISO-threads, size limits for regular threads, DIN 13 Part 20, Oct 1983

Sym

bol

max

.m

in.

min

.m

ax.

min

.m

in.

max

.m

in.

min

.4h

- 6

h4h

6h4g

-6g

4g6g

4e-6

e4e

6e

oute

rØ=d

3.00

02.

933

2.89

42.

980

2.91

32.

874

2.95

02.

883

2.84

4M

3 x

0.5

flank

Ø=d

22.

675

2.62

72.

600

2.65

52.

607

2.58

02.

625

2.57

72.

550

core

Ø=d

32.

387

2.32

02.

293

2.36

72.

299

2.27

32.

337

2.27

02.

243

oute

rØ=d

4.00

03.

910

3.86

03.

978

3.88

83.

838

3.94

43.

854

3.80

4M

4 x

0.7

flank

Ø=d

23.

545

3.48

93.

455

3.52

33.

467

3.43

33.

489

3.43

33.

399

core

Ø=d

33.

141

3.05

83.

024

3.11

93.

036

3.00

23.

085

3.00

22.

968

oute

rØ=d

5.00

04.

905

4.85

04.

976

4.88

14.

826

4.94

04.

845

4.79

0M

5 x

0.8

flank

Ø=d

24.

480

4.42

04.

385

4.45

64.

396

4.36

14.

420

4.36

04.

325

core

Ø=d

34.

019

3.92

83.

893

3.99

53.

903

3.86

93.

959

3.86

83.

833

oute

rØ=d

6.00

05.

888

5.82

05.

974

5.86

25.

794

5.94

05.

828

5.76

0M

6 x

1.0

flank

Ø=d

25.

350

5.27

95.

238

5.32

45.

253

5.21

25.

290

5.21

95.

178

core

Ø=d

34.

773

4.66

34.

622

4.74

74.

637

4.59

64.

713

4.60

34.

562

oute

rØ=d

7.00

06.

888

6.82

06.

974

6.86

26.

794

6.94

06.

828

6.76

0M

7 x

1.0

flank

Ø=d

26.

350

6.27

96.

238

6.32

46.

253

6.21

26.

290

6.21

96.

178

core

Ø=d

35.

773

5.66

35.

622

5.74

75.

637

5.59

65.

713

5.60

35.

562

oute

rØ=d

8.00

07.

868

7.78

87.

972

7.84

07.

760

7.93

77.

805

7.72

5M

8 x

1.25

flank

Ø=d

27.

188

7.11

37.

070

7.16

07.

085

7.04

27.

125

7.05

07.

007

core

Ø=d

36.

466

6.34

36.

300

6.43

86.

315

6.27

26.

403

6.28

06.

237

oute

rØ=d

9.00

08.

868

8.78

88.

972

8.84

08.

760

8.93

78.

805

8.72

5M

9 x

1.25

flank

Ø=d

28.

188

8.11

38.

070

8.16

08.

085

8.04

28.

125

8.05

08.

007

core

Ø=d

37.

466

7.34

37.

300

7.43

87.

315

7.27

27.

403

7.28

07.

237

oute

rØ=d

10.0

009.

850

9.76

49.

968

9.81

89.

732

9.93

39.

783

9.69

7M

10 x

1.5

flank

Ø=d

29.

026

8.94

18.

894

8.99

48.

909

8.86

28.

959

8.87

48.

827

core

Ø=d

38.

160

8.01

77.

970

8.12

87.

985

7.93

88.

093

7.95

07.

903

oute

rØ=d

11.0

0010

.850

10.7

6410

.968

10.8

1810

.732

10.9

3310

.783

10.6

97M

11 x

1.5

flank

Ø=d

210

.026

9.94

19.

894

9.99

49.

909

9.86

29.

959

9.87

49.

827

core

Ø=d

39.

160

9.01

78.

970

9.12

88.

985

8.93

89.

093

8.95

08.

903

Page 45: Bolt and Screw Compendium

44

Metric ISO-threads, size limits for regular threads, DIN 13 Part 20, Oct 1983

– 45

Sym

bol

max

.m

in.

min

.m

ax.

min

.m

in.

max

.m

in.

min

.4h

- 6

h4h

6h4g

-6g

4g6g

4e-6

e4e

6e

oute

rØ=d

12.0

0011

.830

11.7

3511

.966

11.7

9611

.701

11.9

2911

.759

11.6

64M

12 x

1.7

5fla

nkØ

=d2

10.8

6310

.768

10.7

1310

.829

10.7

3410

.679

10.7

9210

.697

10.6

42co

reØ

=d3

9.85

39.

691

9.63

59.

819

9.65

69.

602

9.78

29.

619

9.56

5

oute

rØ=d

14.0

0013

.820

13.7

2013

.962

13.7

8213

.682

13.9

2913

.749

13.6

49M

14 x

2.0

flank

Ø=d

212

.701

12.6

0112

.541

12.6

6312

.563

12.5

0312

.630

12.5

3012

.470

core

Ø=d

311

.546

11.3

6911

.309

11.5

0811

.331

11.2

7111

.475

11.2

9811

.238

oute

rØ=d

16.0

0015

.820

15.7

2015

.962

15.7

8215

.682

15.9

2915

.749

15.6

49M

16 x

2.0

flank

Ø=d

214

.701

14.6

0114

.541

14.6

6314

.563

14.5

0314

.630

14.5

3014

.470

core

Ø=d

313

.546

13.3

6913

.309

13.5

0813

.331

13.2

7113

.475

13.2

9813

.238

oute

rØ=d

18.0

0017

.788

17.6

6517

.958

17.7

4617

.623

17.9

2017

.708

17.5

85M

18 x

2.5

flank

Ø=d

216

.376

16.2

7016

.206

16.3

3416

.228

16.1

6416

.296

16.1

9016

.126

core

Ø=d

314

.933

14.7

3114

.666

14.8

9114

.688

14.6

2514

.853

14.6

5014

.587

oute

rØ=d

20.0

0019

.788

19.6

6519

.958

19.7

4619

.623

19.9

2019

.708

19.5

85M

20 x

2.5

flank

Ø=d

218

.376

18.2

7018

.206

18.3

3418

.228

18.1

6418

.296

18.1

9018

.126

core

Ø=d

316

.933

16.7

3116

.666

16.8

9116

.688

16.6

2516

.853

16.6

5016

.587

oute

rØ=d

22.0

0021

.788

21.6

6521

.958

21.7

4621

.623

21.9

2021

.708

21.5

85M

22 x

2.5

flank

Ø=d

220

.376

20.2

7020

.206

20.3

3420

.228

20.1

6420

.296

20.1

9020

.126

core

Ø=d

318

.933

18.7

3118

.666

18.8

9118

.688

18.6

2518

.853

18.6

5018

.587

oute

rØ=d

24.0

0023

.764

23.6

2523

.952

23.7

1623

.577

23.9

1523

.679

23.5

40M

24 x

3.0

flank

Ø=d

222

.051

21.9

2621

.851

22.0

0321

.878

21.8

0321

.966

21.8

4121

.766

core

Ø=d

320

.319

20.0

7820

.003

20.2

7120

.030

19.9

5520

.234

19.9

9319

.918

oute

rØ=d

27.0

0026

.764

26.6

2526

.952

26.7

1626

.577

26.9

1526

.679

26.5

40M

27 x

3.0

flank

Ø=d

225

.051

24.9

2624

.851

25.0

0324

.878

24.8

0324

.966

24.8

4124

.766

core

Ø=d

323

.319

23.0

7823

.003

23.2

7123

.030

22.9

5523

.234

22.9

9322

.918

oute

rØ=d

30.0

0029

.735

20.5

7529

.947

29.6

8229

.522

29.9

1029

.645

29.4

85M

30 x

3.5

flank

Ø=d

227

.727

27.5

9527

.515

27.6

7427

.542

27.4

6227

.637

27.5

0527

.425

core

Ø=d

325

.706

25.4

3925

.359

25.6

5325

.386

25.3

0625

.616

25.3

4925

.269

Page 46: Bolt and Screw Compendium

Bolt and Screw Compendium

Sym

bol

max

.m

in.

min

.m

ax.

min

.m

in.

max

.m

in.

min

.4h

- 6

h4h

6h4g

-6g

4g6g

4e-6

e4e

6e

oute

rØ=d

8.00

07.

910

7.86

07.

978

7.88

87.

838

7.94

47.

854

7.80

4M

8 x

0.75

flank

Ø=d

27.

513

7.45

07.

413

7.49

17.

428

7.39

17.

457

7.39

47.

357

core

Ø=d

37.

080

6.98

86.

951

7.05

86.

968

6.92

97.

024

6.93

26.

895

oute

rØ=d

8.00

07.

888

7.82

07.

974

7.86

27.

794

7.94

07.

828

7.76

0M

8 x

1.0

flank

Ø=d

27.

350

7.27

97.

238

7.32

47.

253

7.21

27.

290

7.21

97.

178

core

Ø=d

36.

773

6.66

36.

622

6.74

76.

637

6.59

66.

713

6.60

36.

562

oute

rØ=d

9.00

08.

888

8.82

08.

974

8.86

28.

794

8.94

08.

828

8.76

0M

9 x

1.0

flank

Ø=d

28.

350

8.27

98.

238

8.32

48.

253

8.21

28.

290

8.21

98.

178

core

Ø=d

37.

773

7.66

37.

622

7.74

77.

637

7.59

67.

713

7.60

37.

562

oute

rØ=d

10.0

009.

888

9.82

09.

974

9.86

29.

794

9.94

09.

828

9.76

0M

10 x

1.0

flank

Ø=d

29.

350

9.27

99.

238

9.32

49.

253

9.21

29.

290

9.21

99.

178

core

Ø=d

38.

773

8.66

38.

622

8.74

78.

637

8.59

68.

713

8.60

38.

562

oute

rØ=d

10.0

009.

868

9.78

89.

982

9.84

09.

760

9.93

79.

805

9.72

5M

10 x

1.2

5fla

nkØ

=d2

9.18

89.

113

9.07

09.

160

9.08

59.

042

9.12

59.

050

9.00

7co

reØ

=d3

8.46

68.

343

8.30

08.

438

8.31

58.

272

8.40

38.

280

8.23

7

oute

rØ=d

12.0

0011

.888

11.8

2011

.974

11.8

6211

.794

11.9

4011

.828

11.7

60M

12 x

1.0

flank

Ø=d

211

.350

11.2

7511

.232

11.3

2411

.249

11.2

0611

.290

11.2

1511

.172

core

Ø=d

310

.773

10.6

5910

.616

10.7

4710

.633

10.5

9010

.713

10.5

9910

.556

oute

rØ=d

12.0

0011

.868

11.7

8811

.972

11.8

4011

.760

11.9

3711

.805

11.7

25M

12 x

1.2

5fla

nkØ

=d2

11.1

8811

.103

11.0

5611

.160

11.0

7511

.028

11.1

2511

.040

10.9

93co

reØ

=d3

10.4

6610

.333

10.2

8610

.438

10.3

0510

.258

10.4

0310

.270

10.2

23

oute

rØ=d

12.0

0011

.850

11.7

6411

.968

11.8

1811

.732

11.9

3311

.783

11.6

97M

12 x

1.5

flank

Ø=d

211

.026

10.9

3610

.886

10.9

9410

.904

10.8

5410

.959

10.8

6910

.819

core

Ø=d

310

.160

10.0

129.

962

10.1

289.

980

9.93

010

.093

9.94

59.

895

oute

rØ=d

14.0

0013

.888

13.8

2013

.974

13.8

6213

.794

13.9

4013

.828

13.7

60M

14 x

1.0

flank

Ø=d

213

.350

13.2

7513

.232

13.3

2413

.249

13.2

0613

.290

13.2

1513

.172

core

Ø=d

312

.773

12.6

5912

.616

12.7

4712

.633

12.5

9012

.713

12.5

9912

.556

oute

rØ=d

14.0

0013

.850

13.7

6413

.968

13.8

1813

.732

13.9

3313

.783

13.6

97M

14 x

1.5

flank

Ø=d

213

.026

12.9

3612

.886

12.9

9412

.904

12.8

5412

.959

12.8

6912

.819

core

Ø=d

312

.160

12.0

1211

.962

12.1

2811

.980

11.9

3012

.093

11.9

4511

.895

Metric ISO-threads, size limits for fine pitch threads, DIN 13 Part 21, Oct 1983

Page 47: Bolt and Screw Compendium

46

Sym

bol

max

.m

in.

min

.m

ax.

min

.m

in.

max

.m

in.

min

.4h

- 6

h4h

6h4g

-6g

4g6g

4e-6

e4e

6e

oute

rØ=d

16.0

0015

.888

15.8

2015

.974

15.8

6215

.794

15.9

4015

.828

15.7

60M

16 x

1.0

flank

Ø=d

215

.350

15.2

7515

.232

15.3

2415

.249

15.2

0615

.290

15.2

1515

.172

core

Ø=d

314

.773

14.6

5914

.616

14.7

4714

.633

14.5

9014

.713

14.5

9914

.556

oute

rØ=d

16.0

0015

.850

15.7

6415

.968

15.8

1815

.732

15.9

3315

.783

15.6

97M

16 x

1.5

flank

Ø=d

215

.026

14.9

3614

.886

14.9

9414

.904

14.8

5414

.959

14.8

6914

.819

core

Ø=d

314

.160

14.0

1213

.962

14.1

2813

.980

13.9

3014

.093

13.9

4513

.895

oute

rØ=d

18.0

0017

.850

17.7

6417

.968

17.8

1817

.732

17.9

3317

.783

17.6

97M

18 x

1.5

flank

Ø=d

217

.026

16.9

3616

.886

16.9

9416

.904

16.8

5416

.959

16.8

6916

.819

core

Ø=d

316

.160

16.0

1215

.962

16.1

2815

.980

15.9

3016

.093

15.9

4515

.895

oute

rØ=d

18.0

0017

.820

17.7

2017

.962

17.7

8217

.682

17.9

2917

.749

17.6

49M

18 x

2.0

flank

Ø=d

216

.701

16.6

0116

.541

16.6

6316

.563

16.5

0316

.630

16.5

3016

.470

core

Ø=d

315

.546

15.3

6915

.309

15.5

0815

.331

15.2

7115

.475

15.2

9815

.238

oute

rØ=d

20.0

0019

.850

19.7

6419

.968

19.8

1819

.732

19.9

3319

.783

19.6

97M

20 x

1.5

flank

Ø=d

219

.026

18.9

3618

.886

18.9

9418

.904

18.8

5418

.959

18.8

6918

.819

core

Ø=d

318

.160

18.0

1217

.962

18.1

2817

.980

17.9

3018

.093

17.9

4517

.895

oute

rØ=d

20.0

0019

.820

19.7

2019

.962

19.7

8219

.682

19.9

2919

.749

19.6

49M

20 x

2.0

flank

Ø=d

218

.701

18.6

0118

.541

18.6

6318

.563

18.5

0318

.630

18.5

3018

.470

core

Ø=d

317

.546

17.3

6917

.309

17.5

0817

.331

17.2

7117

.475

17.2

9817

.238

oute

rØ=d

22.0

0021

.850

21.7

6421

.968

21.8

1821

.732

21.9

9321

.783

21.6

97M

22 x

1.5

flank

Ø=d

221

.026

20.9

3620

.886

20.9

9420

.904

20.8

5420

.959

20.8

6920

.819

core

Ø=d

320

.160

20.0

1219

.962

20.1

2819

.980

19.9

3020

.093

19.9

4519

.895

oute

rØ=d

22.0

0021

.820

21.7

2021

.962

21.7

8221

.682

21.9

2921

.749

21.6

49M

22 x

2.0

flank

Ø=d

220

.701

20.6

0120

.541

20.6

6320

.563

20.5

0320

.630

20.5

3020

.470

core

Ø=d

319

.546

19.3

6919

.309

19.5

0819

.331

19.2

7119

.475

19.2

9819

.238

oute

rØ=d

24.0

0023

.850

23.7

6423

.968

23.8

1823

.732

23.9

3323

.783

23.6

97M

24 x

1.5

flank

Ø=d

223

.026

22.9

3122

.876

22.9

9422

.899

22.8

4422

.959

22.8

6422

.809

core

Ø=d

322

.160

22.0

0721

.952

22.1

2821

.975

21.9

2022

.093

21.9

4021

.885

oute

rØ=d

24.0

0023

.820

23.7

2023

.962

23.7

8223

.682

23.9

2923

.749

23.6

49M

24 x

2.0

flank

Ø=d

222

.701

22.5

9522

.531

22.6

6322

.557

22.4

9322

.630

22.5

2422

.460

core

Ø=d

321

.546

21.3

6321

.299

21.5

0821

.325

21.2

6121

.475

21.2

9221

.228

Metric ISO-threads, size limits for fine pitch threads, DIN 13 Part 21, Oct 1983

– 47

Page 48: Bolt and Screw Compendium

Bolt and Screw Compendium

7.3 GO Screw ring gage measurement acc. DIN/ISO 1502 edition 01/12.96th

read

sm

in.

Flan

k-Ø

Flan

k-Ø

Tigh

teni

ngco

re-Ø

oute

r-Ø

(tol

eran

cew

ear

limit

torq

ue

ball

cont

act

Test

dim

ensi

on

Test

Dim

ensi

on

(tol

eran

cein

µm

)N

m m

ax.

M (t

ol. i

n µm

)M

wor

n ou

tin

µm

)

M6

-6h

6.08

15.

348

±7

5.36

40.

220.

620

5.59

2 ±

75.

608

4.91

7M

8-6

h8.

099

7.18

77.

202

0.51

0.72

57.

5416

±

77.

5576

6.64

7M

8 x

1.0

-6h

8.08

17.

348

±7

7.36

40.

510.

620

7.59

3 ±

77.

609

6.91

7M

10-6

h10

.119

59.

018

±9

9.03

91.

00.

837

9.47

8 ±

99.

499

8.37

9M

10 x

1.0

-6h

10.0

819.

348

±7

9.36

41.

00.

620

9.59

34 ±

79.

6094

8.91

7M

10 x

1.2

5-6

h10

.099

9.18

79.

202

1.0

0.72

59.

5424

±7

9.55

848.

647

±7

M12

-6h

12.1

375

10.8

55±

910

.876

1.73

1.10

11.2

68

±9

11.2

8910

.106

±9

M12

x 1

.0-6

h12

.081

11.3

48±

711

.364

1.73

0.62

011

.593

711

.609

610

.917

±7

M12

x 1

.25

-6h

12.1

0111

.180

±9

11.2

011.

730.

725

11.5

368

±9

11.5

578

10.6

47±

9M

12 x

1.5

-6h

12.1

195

11.0

18±

911

.039

1.73

0.83

711

.478

911

.499

710

.376

±9

M14

-6h

14.1

555

12.6

93±

912

.714

2.7

1.11

213

.310

913

.331

711

.835

±9

M14

x 1

.0-6

h14

.081

13.3

48±

713

.364

2.7

0.62

013

.593

713

.609

712

.917

±7

M14

x 1

.5-6

h14

.119

513

.018

±9

13.0

392.

70.

837

12.4

791

±9

13.5

001

12.3

76±

9M

16-6

h16

.155

514

.693

±9

14.7

144.

11.

112

15.3

113

±9

15.3

323

13.8

35±

9M

16 x

1.0

-6h

16.0

8115

.348

±7

15.3

644.

10.

620

15.5

938

±7

15.6

098

14.9

17±

7M

16 x

1.5

-6h

16.1

195

15.0

18±

915

.039

4.1

0.83

715

.479

915

.500

414

.376

±9

M18

-6h

18.1

915

16.3

68±

916

.389

5.8

1.35

017

.180

917

.201

415

.294

±9

M18

x 1

.5-6

h18

.119

517

.018

±9

17.0

395.

80.

837

17.4

795

±9

17.5

005

16.3

76±

9M

18 x

2.0

-6h

18.1

555

16.6

93±

916

.714

5.8

1.11

217

.311

917

.332

715

.835

±9

M20

-6h

20.1

915

18.3

68±

918

.389

81.

3519

.181

±9

19.2

0217

.294

±9

M20

x 1

.5-6

h20

.119

519

.018

±9

19.0

398

0.83

719

.479

919

.500

618

.376

±9

M20

x 2

.0-6

h20

.155

518

.693

±9

18.7

148

1.11

219

.312

±9

19.3

3317

.835

±9

M22

-6h

22.1

915

20.3

68±

920

.389

10.6

1.35

21.1

814

±9

21.2

024

19.2

94±

9M

22 x

1.5

-6h

22.1

195

21.0

18±

921

.039

10.6

0.83

721

.479

921

.500

720

.376

±9

M22

x 2

.0-6

h22

.155

520

.693

±9

20.7

1410

.61.

112

21.3

122

±9

21.3

332

19.8

35±

9M

24-6

h24

.227

522

.043

±9

22.0

6413

.81.

773

22.8

653

±9

22.8

863

20.7

52±

9M

24 x

1.5

-6h

24.1

195

23.0

18±

923

.039

13.8

0.83

723

.479

923

.500

822

.376

±9

M24

x 2

.0-6

h24

.155

522

.693

±9

22.7

1413

.81.

112

23.3

123

±9

23.3

333

21.8

35±

9

Test

dim

ensi

ons

for

wea

r-lim

its

Page 49: Bolt and Screw Compendium

48

thre

ads

min

.Fl

ank-

ØFl

ank-

ØTi

ghte

ning

Kern

-Øou

ter-

Ø(t

oler

ance

wea

r lim

itto

rque

ball

cont

act

Test

dim

ensi

onTe

st D

imen

sion

(Tol

eran

zin

µm

)N

m m

ax.

M (t

ol. i

n µm

)M

wor

n ou

tin

µm

)

M6

-6g

6.05

55.

322

±7

5.33

80.

220.

620

5.56

75.

582

4.89

7M

8-6

g8.

071

7.15

77.

174

0.51

0.72

57.

5136

±7

7.52

966.

619

±7

M8

x 1.

0-6

g8.

055

7.32

77.

338

0.51

0.62

07.

567

±7

7.58

36.

891

±7

M10

-6g

10.0

875

8.98

99.

007

1.0

0.83

79.

446

±9

9.46

78.

344

±9

M10

x 1

.0-6

g10

.055

9.32

79.

338

1.0

0.62

09.

5674

±7

9.58

348.

891

±7

M10

x 1

.25

-6g

10.0

719.

158

±7

9.17

41.

00.

725

9.51

44±

79.

5304

8.61

7M

12-6

g12

.103

510

.821

±9

10.8

421.

731.

1011

.233

911

.254

910

.072

±9

M12

x 1

.0-6

g12

.055

11.3

22±

711

.338

1.73

0.62

011

.567

711

.583

610

.891

±7

M12

x 1

.25

-6g

12.0

7311

.152

±9

11.1

731.

730.

725

11.5

088

±9

11.5

298

10.6

19±

9M

12 x

1.5

-6g

12.0

875

10.9

86±

911

.007

1.73

0.83

711

.446

911

.467

710

.344

±9

M14

-6g

14.1

175

12.6

55±

912

.676

2.7

1.11

213

.272

913

.293

711

.797

±9

M14

x 1

.0-6

g14

.055

13.3

22±

713

.338

2.7

0620

13.5

677

±7

13.5

837

12.8

71±

7M

14 x

1.5

-6g

14.0

875

12.9

86±

913

.007

2.7

0.83

713

.447

913

.468

114

.344

±9

M16

-6g

16.1

175

14.6

55±

914

.676

4.1

1.11

215

.273

915

.294

313

.797

±9

M16

x 1

.0-6

g16

.055

15.3

22±

715

.338

4.1

0.62

015

.567

715

.583

814

.891

±7

M16

x 1

.5-6

g16

.087

514

.986

±9

15.0

074.

10.

837

15.4

471

±9

15.4

681

12.3

44±

9M

18-6

g18

.149

516

.326

±9

16.3

475.

81.

350

17.1

384

±9

17.1

594

15.2

52±

9M

18 x

1.5

-6g

18.0

875

16.9

86±

917

.007

5.8

0.83

717

.447

917

.468

516

.344

±9

M18

x 2

.0-6

g18

.117

516

.655

±9

16.6

765.

81.

112

17.2

737

±9

17.2

947

15.7

97±

9M

20-6

g20

.149

518

.326

±9

18.3

478

1.35

19.1

39±

919

.160

17.2

52±

9M

20 x

1.5

-6g

20.0

875

18.9

86±

919

.007

80.

837

19.4

476

±9

19.4

686

18.3

44±

9M

20 x

2.0

-6g

20.1

175

18.6

55±

918

.676

81.

112

19.2

74±

919

.295

17.7

97±

9M

22-6

g22

.149

520

.326

±9

20.3

4710

.61.

3521

.139

921

.160

419

.252

±9

M22

x 1

.5-6

g22

.087

520

.986

±9

21.0

0710

.60.

837

21.4

47±

921

.468

720

.344

±9

M22

x 2

.0-6

g22

.117

520

.655

±9

20.6

7610

.61.

112

21.2

742

±9

21.2

952

19.7

97±

9M

24-6

g24

.179

521

.995

±9

22.0

1613

.81.

776

22.8

172

±9

22.8

382

20.7

04±

9M

24 x

1.5

-6g

24.0

875

22.9

86±

923

.007

13.8

0.83

723

.447

923

.468

822

.344

±9

M24

x 2

.0-6

g24

.117

522

.655

±9

22.6

7613

.81.

112

23.2

743

±9

23.2

953

21.7

97±

9

Test

dim

ensi

ons

for

wea

r-lim

its

– 49

Page 50: Bolt and Screw Compendium

Bolt and Screw Compendium

7.4 Tolerance symbols and toleranced propertiesTo

lera

nces

for

for

m a

nd p

osit

ion

(Sum

mar

y of

IN IS

O 1

101)

Tole

ranc

e sy

mbo

l and

Ex

ampl

es f

or a

pplic

atio

nto

lera

nced

cha

ract

eris

tic

Tole

ranc

e zo

neDi

agra

m s

peci

ficat

ions

Expl

anat

ion

Stra

ight

ness

of a

line

Ever

y ge

nera

trix

mus

t lie

at

adi

stan

ce o

f t

= 0.

03m

m b

etw

een

two

para

llel p

lane

s.

Even

ness

of a

n ar

eaTh

e to

lera

nced

are

a m

ust

lie a

t a

dist

ance

of

0.05

mm

bet

wee

n tw

opa

ralle

l pla

nes.

Roun

dnes

s of

the

circ

umfe

renc

e of

a c

ylin

der,

The

tole

ranc

ed c

ircum

fere

ntia

l lin

e of

eve

ry

disc

, con

e et

c.cr

oss-

sect

ion

perp

endi

cula

r to

the

axi

s m

ust

lie a

t a

radi

al d

ista

nce

of t

- 0

.02m

m b

etw

een

two

conc

entr

ic c

ircle

s.

Cylin

dric

al f

orm

The

tole

ranc

ed c

ylin

der

shel

l mus

t lie

be

twee

n tw

o co

axia

l cyl

inde

rs t

hat

have

a

radi

al d

ista

nce

of t

= 0

.05.

Form

Page 51: Bolt and Screw Compendium

50 – 51

Tole

ranc

e sy

mbo

l and

Ex

ampl

es f

or a

pplic

atio

nto

lera

nced

cha

ract

eris

tic

Tole

ranc

e zo

neDi

agra

m s

peci

ficat

ions

Expl

anat

ion

The

tole

ranc

ed p

rofil

e m

ust,

in e

very

sec

tion

plan

e pa

ralle

l to

the

draw

ing

plan

e (in

whi

chth

e pr

ofile

is t

oler

ance

d), l

ie b

etw

een

two

clad

ding

line

s w

hose

dis

tanc

e th

roug

h th

eci

rcle

is li

mite

d by

the

dia

met

er t

= 0

.08

mm

.Th

e ce

nter

s of

the

se c

ircle

s lie

on

the

geo-

met

rical

ly p

erfe

ct a

rea.

Line

for

mof

an

arbi

trar

y lin

e (p

rofil

e)

Form

Area

for

mof

an

arbi

trar

y su

rfac

e ar

ea

The

tole

ranc

ed p

rofil

e m

ust,

in e

very

sec

tion

plan

e pa

ralle

l to

the

draw

ing

plan

e (in

whi

chth

e pr

ofile

is t

oler

ance

d) b

etw

een

two

clad

ding

line

s w

hose

dis

tanc

e th

roug

h th

eci

rcle

is li

mite

d by

the

dia

met

er t

= 0

.01

to0.

05 m

m. T

he c

ente

rs o

f th

ese

circ

les

lie o

nth

e ge

omet

rical

ly p

erfe

ct a

rea.

The

tole

ranc

ed a

rea

mus

t lie

bet

wee

n tw

ocl

addi

ng a

reas

, who

se d

ista

nce

thro

ugh

the

sphe

re is

lim

ited

by th

e di

amet

er t

= 0.

03 m

m.

The

cent

ers

of t

hese

sph

eres

lie

on t

he g

eo-

met

rical

ly p

erfe

ct a

rea.

Ref.

arro

w

tole

ranc

ed

elem

ent

ref.

lett

er

(if n

eces

sary

)

Refe

renc

e le

tter

Ref.

tria

ngle

Ref.

elem

ent

Tole

ranc

e sy

mbo

l

Tole

ranc

e va

lue

(t)

Sym

bol f

orm

ax. m

ater

ial

cond

ition

Theo

retic

ally

exac

t m

ass.

Ref.

to a

xis

and

cent

er p

lane

Ref.

to li

ne

Page 52: Bolt and Screw Compendium

Bolt and Screw Compendium

Tole

ranc

e sy

mbo

l and

Ex

ampl

es f

or a

pplic

atio

nto

lera

nced

cha

ract

eris

tic

Tole

ranc

e zo

neDi

agra

m s

peci

ficat

ions

Expl

anat

ion

Para

llelis

mof

a li

ne (a

xis)

to

The

tole

ranc

ed u

pper

bor

e ax

is m

ust

lie

a re

fere

nce

line

(axi

s)w

ithin

a c

ylin

der

para

llel t

o th

e re

fere

nce

axis

A, o

f di

amet

er t

= 0

.1 m

m.

Perp

endi

cula

rity

of a

n ar

ea t

o a

refe

renc

e ar

ea

The

tole

ranc

ed a

rea

mus

t lie

bet

wee

n tw

o (o

f a li

ne …

acc

ordi

ng t

o th

e ex

ampl

epl

anes

whi

ch a

re p

aral

lel t

o ea

ch o

ther

and

fo

r „i

nclin

atio

n“)

perp

endi

cula

r to

the

ref

eren

ce a

rea

„A“,

at a

dis

tanc

e of

t =

0.0

8mm

.

Incl

inat

ion

(Ang

ular

ity)

of a

line

(axi

s) t

o a

refe

renc

e ar

ea

The

tole

ranc

ed b

ore

axis

mus

t lie

at a

dist

ance

(of

a re

fere

nce

area

....a

ccor

ding

to

of o

f t =

0.1

mm

bet

wee

n tw

o pl

anes

par

alle

lth

e ex

ampl

e fo

r 'p

erpe

ndic

ular

ity')

to e

ach

othe

r and

incl

ined

at

a ge

omet

rical

lype

rfec

t an

gle

of 6

0˚ t

o th

e re

fere

nce

area

A.

of a

n ar

ea t

o a

refe

renc

e ar

eaTh

e to

lera

nced

are

a m

ust

lie b

etw

een

two

plan

es p

aral

lel t

o th

e re

fere

nce

area

at

a di

stan

ce o

f t

= 0.

01 m

m.

PositionDirection

Page 53: Bolt and Screw Compendium

52 – 53

Tole

ranc

e sy

mbo

l and

Ex

ampl

es f

or a

pplic

atio

nto

lera

nced

cha

ract

eris

tic

Tole

ranc

e zo

neDi

agra

m s

peci

ficat

ions

Expl

anat

ion

Posi

tion

Th

e to

lera

nced

axi

s of

the

hole

mus

t lie

with

inof

line

s (a

xes)

cro

ss-c

onne

cted

a

cylin

der o

f dia

met

er t

= 0.

05m

m, w

hose

axi

sw

ith e

ach

othe

r or

to

one

or m

ore

lies

on t

he g

eom

etric

ally

per

fect

pos

ition

refe

renc

e el

emen

ts(w

ith f

ram

ed d

imen

sion

s).

Axia

l Run

-out

Th

e to

lera

nced

axi

s of

the

rig

ht c

ylin

der

(con

cent

ricity

) of

an a

xis

to a

of

the

sha

ft m

ust

lie w

ithin

a c

ylin

der

of

refe

renc

e ax

isdi

amet

er t

= 0

.03

mm

, coa

xial

to

a re

fere

nce

axis

Axia

l Run

-out

Fo

r ro

tatio

n ar

ound

the

ref

eren

ce a

xis

A,

the

late

ral r

un-o

ut m

ay n

ot e

xcee

d th

e va

lue

of t

= 0

.02

mm

, mea

sure

d pa

ralle

l an

d at

an

arbi

trar

y di

stan

ce f

rom

the

re

fere

nce

axis

A.

Radi

al R

un-o

utFo

r ro

tatio

n ar

ound

the

ref

eren

ce a

xis

A-B,

of a

cyl

inde

r sh

ell t

o a

the

tole

ranc

ed c

ircum

fere

ntia

l lin

e of

eve

ry

(ref

eren

ce) p

ivot

perp

endi

cula

r cr

oss-

sect

ion

of t

he s

haft

's m

iddl

e cy

linde

r mus

t lie

bet

wee

n tw

o co

ncen

tric

circ

les

at a

rad

ial d

ista

nce

of t

= 0

.1 m

m.

Sym

met

ry

The

tole

ranc

ed c

ente

r pla

ne o

f the

nut

mus

t

of a

cen

ter

plan

e to

alie

bet

wee

n tw

o pa

ralle

l pla

nes

whi

ch h

ave

refe

renc

e ce

nter

pla

nea

dist

ance

of

t =

0.08

mm

, and

are

ord

ered

sy

mm

etric

ally

to

the

refe

renc

e ce

nter

pla

neA

of b

oth

the

oute

r ar

eas.

Place Run-outPosition

Page 54: Bolt and Screw Compendium

Bolt and Screw Compendium

Lengths1 mm = 0.03937014 inches (Zoll) 1 inch = 25.399956 mm1 m = 3.280851 feet (Fuß) 1 foot = 12 inch = 304.799472 mm1 m = 1.093616 yards 1 yard = 3 feet = 0.914398 m1 km = 0.621372 engl. Meile 1 mile = 1760 yards = 1.609341 km1 km = 0.539614 Seemeile 1 nautc. mile = 1.853178 kmAreas1 mm2 = 0.00155001 sq. in. (Zoll) 1 sq. inch = 6.451578 cm2

1 m2 = 19.76398328 sq. feet 1 sq. foot = 144 sq. inch = 929.0272 cm2

1 m2 = 1.19599596 sq. yards 1 sq. yard = 9 sq. feet = 8361.2448 cm2

1 a = 100 m_ = 0.024711 arces 1 arces = 4840 sq. yards = 40.4684 a1 ha = 100 a = 2.471063 arces1 km2 = 100 ha = 0.3861 sq. miles 1 sq mile = 640 arces = 2.59 km2

Volumes1 cm3 = 0.061024 cubic inch 1 cubic inch = 16.386979 cm3

1 dm3 = 0.035315 cubic feet 1 cubic foot = 28.3167 dm3

1 m3 = 1.307957 cubic yard 1 cubic yard = 0.764551 m3

1 m3 = 0.353148 Register tons 1 register ton = 100 cubic feet = 2.83167 m3

1 l = 0.220097 gallons (UK) 1 gallon (US) = 0.83268 gal (UK)1 l = 0.264323 gallons (US) 1 gallon (US) = 3.78324 l1 hl = 100 lForces Masses1 kg = 2.20462 lbs (pounds) 1 lb = 0.453592 kg1 kp = 9.80665 N 1 lbf = 4.44822 N1 N = 0.224809 lbf 1 fi lb = 1.35582 J1 J = 0.737561 ft lb 1 btu = 1.05506 kJOther dimensions1 Nm = 1 Joule = 0.737456 ft-lbs 1 ft-lb = 1.35582 Nm1 Nm = 8.8495 lbs-in 1 lb-in = 0.113 Nm1 N/mm2 = 1 MPa = 0.0069 psi1 atm = 1.01325 bar1 l/100 km = 235.1 miles/gallon (US) 100 miles/gallon (US) = 0.4254 l/100 km

7.5 Conversion of German and English Units of Measurements

Page 55: Bolt and Screw Compendium

54

8. Formula Index

At Shearing area at lateral loadA0 Smallest applicable cross-sectional area of the boltd Diameter of boltd2 Thread diameter of boltFA Axial forceFKerf Clamping force required for fulfillment of the functionFKR Residual clamping force at working jointFM Assembly preloadFMmin Minimum required assembly preloadFMmax Maximum assembly preloadFMTab Tabular value of assembly pre loadFMzul Acceptable assembly preloadFPA Fraction of the axial force which alters the load of the deformed partsfPA Elastic deformation of parts through FPA

fPM Elastic deformation of parts through FM

FPM Assembly preload in deformed partsFQ Radial / Shearing forceFS Bolt forceFSA Additional axial bolt forcefSA Elongation of bolt through FSA

fSM Elongation of bolt through FM

FSM Assembly pre-stressing load in the boltFVth Change in preload due to temperatureFZ Loss in preload due to activationHB Brinell hardnessHRc Rockwell hardnessHV Vickers hardnessMA Initial torque at assembly to achieve FM

MG Part of initial torque operative in threadMK Moment of friction in the head or nut bearingn Force transmission factorP PitchpB Surface pressure in working statepG Marginal surface pressurepM Surface pressure in mounting stateRm Ultimate tensile strength of the bolt

– 55

Page 56: Bolt and Screw Compendium

RP0.2min 0.2%-Yield point of boltSF Safety factorsred,B Equivalent stress under working load�P Elastic resilience of joined components�S Elastic resilience of the bolt� Utilisation factor of yield pointa Alternating cyclic stress of boltA Tightening factorAS Stress amplitude of the endurance limit related to AS

Torsional stressB Shearing strength�G Coefficient of friction of the thread surface�K Coefficient of friction of the underhead bearing surface� Ratio of force �en Ratio of force during centric tension and eccentric

force transmission � Angle of rotation

9. Literature

Systematisch Berechnung hochbeanspruchter Schraubenverbindungen, VDI-Richtlinie 2230, (October 2001)

Kübler, K.H. und Mages, W.: Handbuch der hochfesten Schrauben. 1. Auflage,Giradet Buchverlag 1986

Westphal, Knut, „Keine Patentlösung in Sicht – Neue Cr(VI) – freie Zinklamellen-systeme für Verbindungselemente der Automobilindustrie, MO – Metalloberfläche5/2002, S. 20 – 23

Wiegand, Kloos, Thomala: Schraubenverbindungen, Springer Verlag, 4. Auflage 1988

Kayser, Klaus: High tensile bolted joints, Verlag Moderne Industrie, 1993

DIN EN ISO 898-1; Mechanische Eigenschaften von Verbindungselementen ausKohlenstoffstahl und legiertem Stahl, (November 1999)

DIN 50150, Umwerten von Härtewerten, (October 2000)

Bolt and Screw Compendium

Page 57: Bolt and Screw Compendium

56 – 57

Note

Page 58: Bolt and Screw Compendium

Note

Page 59: Bolt and Screw Compendium
Page 60: Bolt and Screw Compendium

KAMAX-WerkeRudolf Kellermann GmbH & Co. KG

Dr. Rudolf-Kellermann-Straße 2D-35315 Homberg/Ohm

Telefon +49 (0) 66 33/79-4 11Fax +49 (0) 66 33/79-4 13

www.kamax.de

KAMAX L.P. 500 W. Long Lake Road Troy, Michigan 48098-4599/USA Phone +1 (248) 879-0200

Fax +1 (248) 879-5850 e-mail [email protected]