Top Banner
Ultimate Cold-Electron Bolometer with Strong Electrothermal Feedback Leonid Kuzmin Chalmers University of Technology Bolometer Group Bolometer Group Björkliden - 20 Through the thorns to the stars! Igenom törnen mot stjärnorna! Через тернии к звездам!
20

Bolometer Group

Feb 02, 2016

Download

Documents

korbin

Through the thorns to the stars! Igenom törnen mot stjärnorna! Через тернии к звездам !. Bolometer Group. Chalmers University of Technology. Ultimate Cold-Electron Bolometer with Strong Electrothermal Feedback. Leonid Kuzmin. Björkliden - 2004. Outline. Cold-Electron Bolometer (CEB) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bolometer Group

Ultimate Cold-Electron Bolometer

with Strong Electrothermal Feedback

Leonid Kuzmin

Chalmers University of TechnologyBolometer GroupBolometer Group

Björkliden - 2004

Through the thorns to the stars!

Igenom törnen mot stjärnorna!

Через тернии к звездам!

Page 2: Bolometer Group

OutlineOutline

Cold-Electron Bolometer (CEB) Comparison with TESNEP with background loadGeneral Ultimate NEP formulaExperimentsPossible developmentsConclusions

Page 3: Bolometer Group

Noise Equivalent power less than 10-20 W/Hz1/2 !?

Wavelengths: submillimeter/infrared bands: 40-500 m.

100x100 pixel detector arrays !?

Readout electronics with multiplexing (SQUID?)

Ideal detector: counting individual photons and providing some energy discrimination !?

Detector requrements Detector requrements for future space telescopesfor future space telescopes

SPIRIT, SPECS, …SPIRIT, SPECS, …

Page 4: Bolometer Group

Cold-Electron Bolometer (CEB) Cold-Electron Bolometer (CEB) withwith Capacitive Coupling and Capacitive Coupling and Thermal Isolation by Tunnel JunctionsThermal Isolation by Tunnel Junctions

Page 5: Bolometer Group

 

Current responsivity:  

CEB with Electrothermal Feedback (ETF)CEB with Electrothermal Feedback (ETF)

[ ],1)1(

//

ωτω iL

L

G

TI

CiGG

TI

P

IS

coolphecooli ++

∂∂=

++

∂∂=

∂=

Λ−

- effective time constant  ( ~10 ns)

1>>= −phecool GGL - ETF gain

)1(0 += Lττ

- e-ph time constant (~ 10 s at 100 mK)pheGC −Λ=0τ

Page 6: Bolometer Group

CEB. Cooling Thermal ConductanceCEB. Cooling Thermal Conductance

P0= 0

Tph

P0=0.1 pW

Te

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Temperature(K)

Te

Page 7: Bolometer Group

Output PowerOutput Power

0

0.5

1

1.5

0 0.5 1 1.5

Pcool z Ps

Outputpower

Pe-ph

Ps = Pcool + Pe-ph

Outputpower

Pbias0

Saturation Power Psat = 1 pW

Saturation Power Psat > 100 pW

(corresponds to Tc=1.2 K)

Signal Power, Ps (pW)

TES

CEB

Ptot=Pbias+Ps

-Pbiasz Ps

Page 8: Bolometer Group

TES and CEB. Operating TemperatureTES and CEB. Operating Temperature

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5

Signal Power, P (pW)

TES - "Tc -detector"

CEB - "0 -detector"

NEPe-ph

2 = 4kTe

2G

Tbath

dc bias heating

cooling

Tc

Page 9: Bolometer Group

Turning Point from ”Heating” to ”CoolingTurning Point from ”Heating” to ”Cooling

Te could be decreased bydirect electron cooling (!) :

P0 - removed by SIN junctions

Te cool << Te = 230 mK

P0

Tph

Te100 mK 230 mK

time

Pbias - heating!

P0

TphTe100 mK 230 mK

time

Transition Edge Sensor (TES)

Te should be even more increased bydc bias heating (!) :

Ptotal = P0 +Pbias , Pbias = Pmax signalTe heat > Te = 230 mK

0 0

? ?Te heat

Te cool

Page 10: Bolometer Group

Electron-Phonon NoiseElectron-Phonon NoiseEquilibrium case:  

 NEPe-ph2 = 4 kBT2 Ge-ph = 20 kBV T6

V- volume

 Nonequilibrium case: (Jochum et al. – 1998)

 

NEPe-ph2 = 10 kBV (Tph

6 + Te6)

Direct electron cooling

Te = (Tph5 + P

V)1/5

Page 11: Bolometer Group

SIN junction noiseSIN junction noise

For strong electron cooling: Pcool >> Pe-ph  

NEPshot = ( 2 P0 kB Te )1/2

P0 – background power load

For P0 = 0.1 pW, Te = 50 mK, NEPshot = 4*10 –19 W/Hz1/2

22

22 2 ω

ωωω δδδδ PS

IPSINEP

IISIN +−=

Shot noise Correlation term Heat flow noise

Page 12: Bolometer Group

General Ultimate NEP FormulaGeneral Ultimate NEP Formula

NEPshot = ( 2 P0 Equant )1/2

P0 – background power load

Equant – energy level of P0 quantization

Equant = kB Te - normal metal absorber

Equant = - superconducting absorber

Kuzmin, Madrid - 2003General NEPshot - dominates

Page 13: Bolometer Group

NEP e-ph.NEP e-ph. Normal metalNormal metal and and SuperconductingSuperconducting absorbers absorbers

Page 14: Bolometer Group

Limit NEP for different bolometersLimit NEP for different bolometers

NEPshot = ( 2 P0 Equant )1/2

CEB: P0 = 10 fW, Te = 50 mK,

NEPshot = 1*10 –19 W/Hz1/2

TES: P0 = 10 fW, Te = 500 mK,

NEPshot = 4*10 –19 W/Hz1/2

Kinetic Ind. Det: P0 = 10 fW, = 2 K (Al,

00eV) NEPshot = 7*10 –19 W/Hz1/2

Page 15: Bolometer Group

General Limit NEP formulaGeneral Limit NEP formulaSystems with linear on T thermal conductance- Spider-web TES with conductance through the legs- CEB with cooling through SIN tunnel junctions (weak dependence on T: G ~T1/2), …

NEPshot = 2 P0 Equant

Systems with dominant e-ph thermal conductance (strong nonlinearity on T: Ge-ph ~T4 )

- all bolometers on plane substrates with e-ph conductance- antenna-coupled TES on chip, - NHEB with Andreev mirrors …

NEPshot e-ph = 10 P0 Equant

Page 16: Bolometer Group

Electron Cooling and NEP measurementsElectron Cooling and NEP measurements I. Agulo, L. Kuzmin and M. TarasovI. Agulo, L. Kuzmin and M. Tarasov

Strip width0m

Page 17: Bolometer Group

Attowatt NEP in dc experimentsAttowatt NEP in dc experiments

Page 18: Bolometer Group

Both, Quasiparticle multiplier, 1987 Both et al., Quasiparticle transistor, 1999

Page 19: Bolometer Group

Cascade Quasiparticle Amplifier Cascade Quasiparticle Amplifier and CEBand CEB

A

Page 20: Bolometer Group

Conclusions:Conclusions:We propose the

-- simplest-- smallest (< 2 m) -- coldest (Te < Tph) -- fastest(~ 10 ns) --- most sensitive (under real background Po) -- not saturated (up to Tc of electrodes, >100 pW)-- ideal ”0-detector” (could not be better!) -- easy multiplied on plane substrate (for large arrays)-- easy amplified by Cascade Quasiparticle Amplifier-- easy multiplexed by SQUIDs-- easy fit in any experiment (from submm to near-IR)

Cold-Electron Bolometer with Strong Electrothermal Feedback