Top Banner
Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels* Kwang-Il Choia, A.S. Pamitran a, Chun-Young Oh b, Jong-Taek Oh c,* A Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea B Refrigeration Research Institute, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea C Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea Sudheer Nandi (Ph.D.),M.Tech,MBA. Sustainable Energy . S.korea
21

Boiling heat transfer r22

Jun 24, 2015

Download

Engineering

Sudheer Nandi

Boiling heat transfer r22
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ.

Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels*

Kwang-Il Choia, A.S. Pamitran a, Chun-Young Oh b, Jong-Taek Oh c,*A Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea

B Refrigeration Research Institute, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of KoreaC Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1,

Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea

Sudheer Nandi(Ph.D.),M.Tech,MBA.

Sustainable Energy . S.korea

Page 2: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 2

• http://www.sciencedirect.com/science/article/pii/S0140700702000403#

http://www.youtube.com/watch?v=s-YmfZNKnlU

Page 3: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 3

Qualitative classification flow regimes.

MIT Department of Nuclear Science and Engineering

Page 4: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 4

Page 5: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 5

Heat transfer and flow regimes in a vertical heated channel. (Thermal non‐equilibrium ef-fects have been neglected in sketching the bulk temperature)

Page 6: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 6

Abstract• This study examined convective boiling heat transfer in horizontal minichannels using R-22, R-134a, and CO2.

• The local heat transfer coefficients were obtained for heat fluxes ranging from 10 to 40 kW , mass fluxes ranging from 200 to 600 kg , a saturation temperature of 10 °C, and quality up to 1.0.

• The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm. The section was heated uniformly by applying an electric current to the tubes directly.

• Nucleate boiling heat transfer was the main contribution, particularly at the low quality region.

• An increasing and decreasing heat transfer coefficient occurred at the lower vapor quality with increasing heat flux and mass flux.

• The mean heat transfer coefficient ratio of R-22:R-134a:CO2 was approximately 1.0:0.8:2.0. Laminar flow was observed in the minichannels.

• A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in minichannels was developed with a mean deviation of 11.21%.

Keywords: Refrigerant; R-22; R-134a; R-744; Carbon dioxide; Experiment; Heat transfer; Boiling; Micro channel; smooth tube; Horizontal tube

Page 7: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 7

Page 8: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 8

Experimental apparatus

The experimental test facility and test section.

Page 9: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 9

Experimental conditions

Page 10: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 10

Page 11: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 11

The effect of mass flux on heat transfer coefficient: (a)R-22, (b) R-134a, and (c) CO2

Page 12: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 12

The experimental data on Wojtan et al. [20] flow pattern map for R-22.

Page 13: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 13

The effect of heat flux on heat transfer coefficient: (a) R-22,(b) R-134a, and (c) CO2.

Page 14: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 14

The comparison of the heat transfer coefficientThe effect of inner tube diameter on heat transfer coefficient for R-22.

Page 15: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 15

Development of a new correlation

Page 16: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 16

Page 17: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 17

Two-phase heat transfer multiplier as a function of Diagram of the experimental heat transfer coefficient, hexp.,vs prediction heat transfer coefficient, hpred.

Heat transfer coefficient comparisonNucleate boiling contribution

Page 18: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 18

Page 19: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 19

References[1] Z.Y. Bao, D.F. Fletcher, B.S. Haynes, Flow boiling heat transfer of freon R11 and HCFC123 in narrow passages, Int. J.Heat Mass Transfer 43 (2000) 3347e3358.

[2] W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat Mass Transfer 47 (2004) 5749e5763.

[3] S.G. Kandlikar, M.E. Steinke, Predicting heat transfer during flow boiling in minichannels and microchannels, ASHRAE Trans. CH-03-13-1 (2003)

667e676.

[4] T.N. Tran, M.W. Wambsganss, D.M. France, Small circularand rectangular-channel boiling with two refrigerants, Int. J. Multiphase Flow 22 (3) (1996)

485e498.

[5] J. Pettersen, Flow vaporization of CO2 in microchannels tubes, Exp. Therm. Fluid Sci. 28 (2004) 111e121. [6] C.Y. Park, P.S. Hrnjak, Flow boiling heat transfer of

CO2 at low temperatures in a horizontal smooth tube, ASME Trans. 127 (2005) 1305e1312.

[7] Y. Zhao, M. Molki, M.M. Ohadi, S.V. Dessiatoun, Flow boiling of CO2 in microchannels (DA-00-2-1), ASHRAE Trans. (2000) 437e445.

[8] R. Yun, Y. Kim, M.S. Kim, Convective boiling heat transfer characteristics of CO2 in microchannels, Int. J. Heat. Mass Transfer 48 (2005) 235e242.

[9] S.H. Yoon, E.S. Cho, Y.W. Hwang, M.S. Kim, K. Min, Y. Kim, Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation de-

velopment, Int. J. Refrigeration 27 (2004) 111e119.

[10] A.S. Pamitran, K.I. Choi, J.T. Oh, H.K. Oh, Forced convective boiling heat transfer of R-410A in horizontal minichannels, Int. J. Refrigeration 30 (2007) 155e165.

[11] J.P. Wattelet, J.C. Chato, A.L. Souza, B.R. Christoffersen, Evaporative characteristics of R-12, R-134a, and a mixture at low mass fluxes, ASHRAE Trans.

94-2-1 (1994) 603e615.

[12] D.S. Jung, M. McLinden, R. Radermacher, D. Didion, A study of flow boiling heat transfer with refrigerant mixtures, Int. J. Heat Mass Transfer 32 (9)

(1989) 1751e1764.

[13] M.M. Shah, Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Trans. 2673 (1988) 185e196.

[14] K.E. Gungor, H.S. Winterton, Simplified general correlation for saturated flow boiling and comparisons of correlations with data, Chem. Eng. Res. 65

(1987) 148e156.

Page 20: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 20

[15] J.C. Chen, A correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322e329.

[16] C.S. Kuo, C.C. Wang, In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube, Int. J. Heat Mass Transfer 39 (1996) 2559e2569.

[17] P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Appl. Therm. Eng. 17 (8e10) (1997) 705e715.

[18] G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small diameter vertical tube with R-113, Int. J. Heat Mass Trans-

fer 25 (1982) 945e960.

[19] M.W. Wambsganss, D.M. France, J.A. Jendrzejczyk, T.N. Tran, Boiling heat transfer in a horizontal small-diameter tube, J. Heat Transfer 115 (1993) 963e975

[20] L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I e a new diabatic two-phase flow pattern map, Int. J.

Heat Mass Transfer 48 (2005)2955e2969.

[21] N. Kattan, J.R. Thome, D. Favrat, Flow boiling in horizontal tubes: part 1 e development of a diabatic two-phase flow pattern map, J. Heat Transfer 120 (1998)

140e147.

[22] D. Steiner, Heat transfer to boiling saturated liquids, in:Verein Deutcher Ingenieure (Ed.), VDI-Wa¨rmeatlas. (VDI Heat Atlas), VDI-Gessellschaft

Verfahrenstechnik und Chemieinge nieurwesen (GCV), Du¨sseldorf, Germany, 1993 (J.W. Fullarton, translator).

[23] Y.Y. Yan, T.F. Lin, Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe, Int. J. Heat Mass Transfer 41 (1998) 4183e4194.

[24] M.G. Cooper, Heat flow rates in saturated nucleate pool boiling e a wide-ranging examination using reduced properties, Advances in Heat Transfer 16 (1984)

157e239 (Academic Press).

[25] K. Stephan, M. Abdelsalam, Heat-transfer correlations for natural convection boiling, Int. J. Heat Mass Transfer 23 (1980) 73e87.

[26] D. Chisholm, A theoretical basis for the LockharteMartinelli correlation for two-phase flow, Int. J. Heat Mass Transfer 10 (1967) 1767e1778.

[27] D. Jung, Y. Kim, Y. Ko, K. Song, Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, Int. J. Refrigeration 26 (2003) 240e248.

Page 21: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 21

Thank you for listening