Top Banner
Academic Year 2013-14 School of Industrial Engineering Lecture Notes for Energy Systems and Low Carbon Technologies Boilers prof. Stefano Consonni Department of Energy
58
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: boilers_2013.pdf

Academic Year 2013-14

School of Industrial Engineering

Lecture Notes for Energy Systems and Low Carbon Technologies

Boilers

prof. Stefano Consonni

Department of Energy

Page 2: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

2 Physical process

combustion

fuel

oxidizing agent

flue gases

heat transfer

heat carrier

(cold)

heat carrier

(hot)

The physical process includes two steps:

1) combustion

2) heat transfer

Physically simultaneous.

Page 3: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

3 example: fireplace and stove

a simple fireplace… …and a more evolved stove.

Page 4: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

4 example: heat recovery fireplace

Page 5: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

5 Steam Generators

Steam generators and heat recovery system include many subsystems:

1. furnace and combustion system,

2. boiler or steam generating bank,

3. steam superheaters/reheater,

4. economizer,

5. steam drum,

6. attemperator and steam temperature control system,

7. air heater,

8. fuel handling system,

9. flue gas treatment systems

10. ash handling system

11. gas-side cleaning equipment

12. ducts, fans, etc.

Page 6: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

6 Steam Generators

Steam generators can be classified by various criteria:

1.Fuel (gaseous, liquid, solid)

2.Circulation method (natural, forced, once through)

3.Main heat transfer process (radiation, convection, indirect heating)

4.End use (heating, industrial process, electric utility)

5.Capacity

Page 7: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

7 Small capacity boilers

smoke tube boiler - single pass -

Page 8: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

8 Small capacity boilers

Smoke tube boilers

P evap. < 15 bar

Page 9: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

9 Smoke tube boiler

http://www.boiler.de/eng/steamboiler/system.html

why the number of tubes of 2nd pass > 3rd pass ?

Page 10: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

10 Smoke tube boiler

Smoke-tube boiler with wet end plate

to the stack

Page 11: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

11 Smoke tube boiler

different views of a smoke tube boiler: internal and external

Page 12: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

12 Water tube boiler

Page 13: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

13 Water tube boiler

air

flue gases

Page 14: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

14 Membrane walls of combustion chamber

Most of the heat transfer takes place by RADIATION

Page 15: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

15 Boiler casing

Page 16: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

16 Convective section

Convection heat transfer becomes the dominant heat transfer mode for gas temperatures below 900-1000°C Given the small gas-side heat transfer coefficient and the relatively small ΔT between the gas and steam/water, it requires large heat transfer areas

Page 17: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

17 Diathermic oil boilers – ORC

- In case of small size applications, water does not work very well since

small scale steam turbines are characterized by low efficiency (size of

the blades) and excessive complexity (multi-stage expansion).

- A solution use of Organic Rankine Cycle where high-molecular-

mass organic fluids are utilized. Their thermodynamic properties

guarantee the absence of moisture during and at the end of the

expansion.

- But these organic fluids have a low decomposition temperature

they can not exchange heat directly with the flue gases need to

exchange with an intermediate heat transfer fluid. Diathermic oils suit

this necessity properly, as:

• they are thermally stable

• they are not chemically aggressive

• they do not change phase in the range of working temperatures

( safety)

• they can bare high temperatures being at low levels of pressure

Page 18: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

18 Diathermic oil boilers

Elementary setup for diathermic oil boiler Organic Rankine Cycle

Page 19: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

19 Diathermic oil boilers

Organic Rankine Cycle

Page 20: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

20 Spiral tubes

Page 21: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

21 Small capacity boilers - pellet

smoke tube water tube

Page 22: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

22 Large boilers for power production

Page 23: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

23 Large water tube boiler with membrane walls

550 MW Radiant boiler for pulverized coal.

Page 24: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

24 Large water tube boiler with membrane walls

Economizer with

steel finned tubes

Page 25: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

25 Heating surface configuration

Page 26: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

26 Natural Circulation

R = Circulation factor

Ratio between

Water mass flow rate in the downcomer

and

Steam mass flow rate at risers outlet

Page 27: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

27 Boiling conditions

R = Circulation factor

Ratio between

Water mass flow rate in the downcomer

and

Steam mass flow rate at risers outlet

Page 28: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

28 Boiling conditions

Page 29: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

29 Forced/Assisted Circulation

Once through

Assisted/Forced circulation

Natural circulation

Assisted/Forced circulation

Page 30: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

30 Steam Drum

Vertical cyclone separator

Page 31: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

31 Water drum with riser tubes

Page 32: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

32 Supercritical boilers

Increasing efficiency requires to produce steam at supercritical pressure (>220 bar) in a once through boiler instead of natural circulation boilers used for subcritical power plants.

A critical aspect of this class of boilers is that in case of unbalanced flow rates among different pipes thermal stress may arise in pipes with the lower heat transfer coefficient (the ones with the lower flow rates)

Page 33: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

33 Circulation systems

Page 34: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

34 Closed domes for coal storage

Page 35: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

35 Coal-fired boiler

vibrating grate

traveling grate

Page 36: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

36 Coal-fired boiler

Page 37: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

37 Pulverizer

the oldest pulverizer design: ball–and-tube

horizontal high speed pulverizer

Page 38: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

38 Pulverizer

vertical air swept wheel pulverizer grinding mechanism

pulverized coal recirculation

Page 39: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

39 Ljungstrom air pre-heater

Page 40: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

40 Membrane walls with burner housings

Page 41: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

41 Conventional Burners

Cell Burners Circular Burners

Page 42: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

42

S type burner: larger swirl components and better secondary air control

Conventional Burners

Page 43: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

43 Low NOx burners (3rd generation)

Page 44: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

44

Low NOX burner

Staged combustion

Reburning

Low NOX burner

Page 45: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

45 Combustion chamber

Page 46: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

46

CAMINO

~ LP IP HPLP VHP

RH2

SH

preriscaldatore aria

ARIA

CROSSOVER, 3 bar

Turbina T/pompa

TURBOPOMPA DI ALIMENTO

RIGENERATORI HPRIGENERATORI LP

POMPA ESTRAZ.CONDENSATO

Trafil.

0.05 bar CONDEN- SATORE

580 °C, 26 bar

580 °C, 90 bar

580 °C, 300 bar

polverino di carbone

315 °C

SCR

high dust

iniezione di ammoniaca

ESP

scamb.coda

FGD

calce / calcare

gesso

Trafila-

menti

DEGASATORE

RH1

Plant configuration

Page 47: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

47 Waste-to-Energy plant

Membrane walls covered with refractories

Convective section

Open passes

Page 48: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Waste Combustion – grate furnace 48

1

2

3

4

5

6

7

8

9

1 FEED HOPPER

2 FEEDER

3 GRATE

4 ASH DISCHARGER SCORIE

6 STEAM HETAED AIR PREHEATER

7 UNDERFIRE AIR

8 FLUE GASES RECIRCULATION

9 OVERFIRE AIR

5 FURNACE

Fonte: Martin Gmbh

Page 49: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Waste handling system 49

Fonte: Martin Gmbh

Page 50: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Sistema di combustione

The grate is designed to support and to transport the refuse while simultaneously stoking or mixing the refuse during the combustion process

Different types of grate depending on fuel LHV and manufacturer:

• horizontal/inclined

• stationary or moving

• Water or air cooled

• reciprocating, roller, travelling, vibrating, etc.

Combustion Grate 50

Page 51: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Sistema di combustione Vibrating Grate 51

Page 52: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Sistema di combustione Travelling Grate 52

Page 53: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Sistema di combustione

“Reverse Acting” Grate

Gravity

Thrust of moving bars

Mixing of waste bed

Fonte: Martin Gmbh

Reciprocating Grate 53

Page 54: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Sistema di combustione

Fonte: Martin Gmbh

Grate furnace 54

Page 55: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Combustion air distribution 55

SA: secondary air

PA: primary air

Fonte: Chungen Yin,, Lasse A. Rosendahl, Søren K. Kær 2008

Page 56: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

56

Primary air

Fonte: Martin Gmbh

Underfire air distribution

Page 57: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

57

4 nozzles rows 2 nozzles rows

Fonte: Martin Gmbh

Overfire air distribution

Secondary air

Page 58: boilers_2013.pdf

AY 2013-14 – Steam Generators – prof. S. Consonni

Sistema di combustione

Fonte: Martin Gmbh

From grate end

T = 300°C

T = 90°C

Water level= air seal for combustion

chamber To vibrating conveyor

Bottom ashes discharger 58