Top Banner
Technische Universit ¨ at Berlin Fakult¨atII Institut f¨ ur Mathematik Black box factorization of multivariate polynomials Bachelorarbeit zur Erlangung des Grades Bachelor of Science im Studiengang Mathematik vorgelegt von Sascha Timme (Matrikelnummer 348922) Berlin, August 2015 Erstgutachter: Prof. Dr. Peter B¨ urgisser Zweitgutachter: Prof. Dr. Martin Skutella
66

Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Aug 27, 2019

Download

Documents

dinhtu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Technische Universitat Berlin

Fakultat II

Institut fur Mathematik

Black box factorization of multivariate polynomials

Bachelorarbeit

zur Erlangung des Grades

Bachelor of Science

im Studiengang Mathematik

vorgelegt von

Sascha Timme

(Matrikelnummer 348922)

Berlin, August 2015

Erstgutachter: Prof. Dr. Peter Burgisser

Zweitgutachter: Prof. Dr. Martin Skutella

Page 2: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig und eigenhandig sowie

ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgefuhrten

Quellen und Hilfsmittel angefertigt habe.

Die selbstandige und eigenstandige Anfertigung versichert an Eides statt:

Berlin, den 31. August 2015

ii

Page 3: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Deutsche Zusammenfassung

Das Thema dieser Arbeit ist ein von Kaltofen und Trager [13] entwickelter Monte

Carlo Algorithmus zur Faktorisierung multivariater Polyonome, die durch eine black

box gegeben sind. Dabei ist die black box eines Polynoms f ∈ k[X1, . . . , Xn] uber

einem Korper k ein Programm, welches als Eingabe p1, . . . , pn ∈ k hat und den Wert

f(p1, . . . , pn) ausgibt:

-p1, . . . , pn ∈ k f(p1, . . . , pn)-

Das bemerkenswerte an dem Algorithmus ist, dass die Laufzeit polynomiell in dem

Grad des Eingabepolynoms, der Anzahl der black box Aufrufe und der Anzahl der

Unbekannten ist. Zum Verstandnis des Algorithmus werden in dieser Arbeit zunachst

die wesentlichen theoretischen Grundlagen erarbeitet. Diese sind Hensel Lifting und eine

effektive Version von Hilberts Irreduzibilitatstheorem.

Dabei ist Hensel Lifting ein Verfahren mit dem die Faktorisierung eines Polynoms uber

einem vollstandigen lokalen noetherschen Ring aus der Faktorisierung im Quotientenring

bezuglich des maximalen Ideals rekonstruiert werden kann. Dafur werden zunachst die

Konzepte eines bewerteten Rings und der Vervollstandigung eines Rings prasentiert.

Ein besonderes Augenmerk liegt dabei auf der Vervollstandigung von noetherschen

Ringen bezuglich eines maximalen Ideals. Mit Hilfe dieser Konzepte wird dann rein

algebraisch die Taylorentwicklung eines Polynoms hergeleitet und anschließend eine

algebraische Version des (mehrdimensionalen) Newton-Verfahrens uber bestimmten

bewerteten Ringen entwickelt. Dieses hat wie die aus der Analysis bekannte Variante

des Newtons-Verfahrens fur einen geeigneten Startwert eine quadratische Konvergenz.

Zusatzlich kann jedoch auch garantiert werden, dass die Jacobi Matrix in allen Itera-

tionsschritten invertierbar bleibt. Anschließend wird das Konzept der Resultante und

der Sylvester Matrix zweier Polynome prasentiert. Mit diesem wird dann das Hensel

Lifting als ein Spezialfall des Newton-Verfahrens uber vollstandigen lokalen noetherschen

Ringen hergeleitet und ein Hensel Lifting Algorithmus fur noethersche Ringe entwickelt.

Zudem wird eine von Kaltofen entwickelte effektive Version von Hilberts

Irreduzibilitatstheorem prasentiert. Mit Hilfe dieses Ergebnisses wird dann gezeigt,

dass fur ein multivariates Polynoms uber einem perfekten Korper durch eine bestimmte

iii

Page 4: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

iv

Substitution ein bivariates Polynom konstruiert werden kann, welches mit kontrollier-

barer hoher Wahrscheinlichkeit das gleiche Faktorisierungsmuster wie das ursprungliche

multivariate Polynom aufweist.

Abschließend wird der detaillierte Faktorisierungsalgorithmus prasentiert und die

Korrektheit, die Fehlschlagswahrscheinlichkeit und die polynomielle Laufzeit des

Algorithmus bewiesen.

iv

Page 5: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Contents

Deutsche Zusammenfassung iii

1 Introduction 1

1.1 The problem of factoring polynomials . . . . . . . . . . . . . . . . . . . . 1

1.2 The representation problem . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Black box factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Hensel lifting 7

2.1 Valuation on a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Taylor’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Newton iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Sylvester matrix and resultant . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Hensel lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Evaluations of multivariate polynomials 41

3.1 Effective Hilbert irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Factor degree pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Black box factorization 53

5 Closing remarks 57

Bibliography 59

v

Page 6: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das
Page 7: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Chapter 1

Introduction

1.1 The problem of factoring polynomials

The problem of factoring polynomials is centuries old. In 1673 Newton already taught

about computing factors of polynomials and this method was subsequently

published in his Arithmetica Universalis [17]. In 1882 Kronecker [14] reduced the prob-

lem of factoring multivariate polynomials over finite extensions of the rational numbers

(algebraic number fields) to factoring univariate polynomials over the integers, for which

he then applied Newton’s method. But implementations in early computer programs

showed that these algorithms are not very practical for large problems which van der

Waerden already discussed in his influential text Modern Algebra [18] in 1953. A the-

oretical and practical breakthrough was achieved by Elwyn Berlekamp during his time

as a mathematical researcher at Bell Labs. He invented in 1967 [2] and improved in

1970 [3] an algorithm to factor univariate polynomials over finite fields. This algorithm

was remarkable in several aspects. Firstly, it factors polynomials in time proportional

to the cube of the input degree and was therefore the first algorithm which was suitable

for use in applications. This also gave the first evidence that the problem of factoring

polynomials is not as hard as the problem of factoring integers. In addition Berlekamp

introduced the concept of probabilistic algorithms. He discovered that if one allows an

algorithm to make random choices, e.g. pick a randomly chosen element out of a set,

the algorithm could be sped up exponentially. The downside of this randomization is

that the algorithm can fail or return a wrong result. If one can prove that the algorithm

returns the correct output with a controllable high probability, it is called a Monte Carlo

algorithm. In practice the performance of randomized algorithms to factor univariate

polynomials over finite fields is far superior to any known deterministic algorithm.

The progress in factoring polynomials over finite fields suggested to apply these al-

gorithms to the problem of factoring polynomials with integer coefficients. The idea is

to factor the polynomial over a suitable finite field and then to reconstruct the integral

factors from the modular images. One approach is to consider a finite field with a suf-

ficiently large characteristic and another one is to make use of the Chinese remainder

1

Page 8: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2 1. INTRODUCTION

theorem and to consider different modular images. Another approach was introduced

by Zassenhaus [21] in 1969. He pointed to the p-adic numbers and “Hensel’s Lemma”,

which were introduced by Hensel [8] in 1908. The described procedure is now called

Hensel lifting and one of the standard techniques in computer algebra. But actually

Gauß has preempted them all. In his Nachlass we can find an explicit description of a

lifting procedure modulo prime powers 1, which is the core idea of Hensel’s procedure.

While the algorithm introduced by Zassenhaus has for most of the input polynomials a

polynomially runtime, for some polynomials the algorithm has an exponential complex-

ity due to “combinatorial explosion” in the lifting procedure. Nevertheless, the algorithm

works well in practice and is implemented in many computer algebra systems. In 1982

A. Lenstra, H. Lenstra and L. Lovasz [16] published a remarkable algorithm, called

LLL algorithm, in which they solved the combinatorial explosion problem in the case

of rational coefficients. This led to the development of algorithms to factor univariate

polynomials over algebraic number fields in polynomial time [15].

1.2 The representation problem

In order to compute with polynomials we have to answer the question of how we uniquely

represent a polynomial in our computer program. We call this the data structure or rep-

resentation of a polynomial. For a polynomial the list of all terms with total degree less

or equal than the degree of the polynomial is the dense representation of this polynomial.

Consider the polynomial

f = X3 + 2Y 2 − Z2 ∈ Q[X,Y, Z] . (1.1)

It has the dense representation

f = 1 ·X3 + 0 ·X2Y + 0 ·X2Z + +0 ·X2 + 0 ·XY 2 + 0 ·XY Z + 0 ·XY

+ 0 ·XZ2 + 0 ·XZ + 0 ·X + 0 · Y 3 + 0 · Y 2Z + 2 · Y 2 + 0 · Y Z2

+ 0 · Y Z + 0 · Y + 0 · Z3 + (−1) · Z2 + 0 · Z + 0 · 1 .

All algorithms so far assumed that the input polynomial has as a representation the

dense representation. In 1985 Kaltofen [11] showed that the problem of factoring a mul-

tivariate polynomial can be reduced to the problem of factoring an univariate polynomial

in polynomial time in the length of the dense representation. Therefore we can factor a

multivariate polynomial over an algebraic number field in polynomial time in the length

of its dense representation. But is this a satisfying result? Even for our previous poly-

nomial (1.1) the dense representation has already 20 entries. In fact a polynomial in n

indeterminates and with total degree d has

σn,d :=

(n+ d

n

)1more details can be found in [19], p. 460

Page 9: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

1.2. THE REPRESENTATION PROBLEM 3

terms of total degree less than or equal d. Since σn,d grows exponentially it follows

that the length of the dense representation of a multivariate polynomial also grows

exponentially! Thus the problem of factoring multivariate polynomials is obviously not

satisfactorily solved.

Can we get a better result if we consider another representation? A more concise

and readable representation is the sparse representation of a polynomial as in (1.1). It

consists in general of a list of coefficients and exponents (ak, ek,1, . . . , ek,n) of the non-

zero terms of the polynomial. We also have to consider the degree of the polynomial

in the length of the sparse representation. Thus the convention is that the length of a

list entry (ak, ek,1, . . . , ek,n) is the sum of the lengths of the exponents and the length

of ak. While this representation is elegant and the natural mathematical notation; it is

unfortunately less suitable for computation.

A powerful technique to overcome this hurdle is to consider another representation

called the black box representation. The black box representation Bf of a polynomial

f ∈ k[X1, . . . , Xn] is a program which accepts inputs p1, . . . , pn ∈ k and returns the

value f(p1, . . . , pn):

-p1, . . . , pn ∈ k f(p1, . . . , pn)-

The black box representation has several advantages. At first it is easy to construct

from a sparse representation of a polynomial the corresponding black box. With sparse

interpolation techniques, e.g. [1], it is also possible to get the sparse representation

of a polynomial from a given black box in polynomial time. Furthermore, there are no

constraints to the computation of the return value. For example there can be advantages

if the polynomial is the determinant of a matrix. With the black box representation it

would then be possible to use fast determinant algorithms to compute the return value.

Moreover, it is possible that the black box representation uses even less memory space

than the corresponding sparse representation.

With the framework of a black box representation it is now possible to solve several

problems. This includes the factorization and gcd of multivariate polynomials in random

polynomial time in the length of the total degree, number of variables and number of

calls to the black box. Efficient Monte Carlo algorithms for some problems (including

factorization and gcd) were introduced in an remarkable paper by Kaltofen und Trager

[13] in 1990. The black box factorization algorithm proposed in this paper, and the

necessary theoretical background, is the topic of this thesis.

Page 10: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

4 1. INTRODUCTION

1.3 Black box factorization

We want to have a first glimpse on the factorization algorithm to motivative the following

theoretical chapters.

Assume we have a multivariate polynomial f ∈ k[X1, . . . , Xn] over a field k with char-

acteristic 0 and write he11 · · ·herr for the factorization of f . The factorization algorithm

has as its input the black box Bf and it returns the multiplicities e1, . . . , er and the

following program.

For input p1, . . . , pn ∈ k it returns the values h1(p1, . . . , pn), . . . , hr(p1, . . . , pn).

-p1, . . . , pn

h1(p1, . . . , pn)-

h2(p1, . . . , pn)-...

hr(p1, . . . , pn)-

Figure 1.1: Output program

Furthermore, we assume that we can efficiently factor polynomials in k[X1, X2].

The algorithm combines two ideas. The first idea is to use an effective version of the

Hilbert irreducibility theorem which was first stated and proved by Hilbert [9] in 1892.

The theorem states that for an irreducible polynomial g(X,Y ) ∈ Q[X,Y ], for almost

all a ∈ Q, the polynomial g(a, Y ) ∈ Q[Y ] is also irreducible. This can be generalized

for irreducible multivariate polynomials g ∈ Q[X1, . . . , Xn, Y ] such that for almost all

a1, . . . , an ∈ Q the evaluation g(a1, . . . , an, Y ) remains irreducible in Q[Y ]. We need

to quantify the “for almost all’ part, i.e., an effective version, of the theorem and we

have to be able to apply the theorem not only to polynomials over Q. Unfortunately

there is no known effective univariate version and the statement is clearly not applicable

for important fields like finite fields or the complex numbers. But the situation can be

rescued. In 1985 Kaltofen [10] constructed a substitution such that for an irreducible

multivariate polynomial over a perfect field k the resulting bivariate polynomial remains

irreducible with a controllable high probability. As a consequence for a multivariate

polynomial f ∈ k[X1, . . . , Xn] we can create a bivariate polynomial f2 ∈ k[X1, X2]

such that each irreducible factor hi of f has with a high probability a corresponding

irreducible factor g2,i of f2.

The second idea could be interpreted as an ansatz in homotopy continuation methods.

We can construct a bivariate polynomial f ∈ k[X1, Y ] such that for p1, . . . , pn ∈ k and

a known α ∈ k we have f(α, 1) = f(p1, . . . , pn) and f(X1, 0) = f2(X1, 0). Since we can

efficiently compute the factors g2,i of f2 we have a factorization of f2(X1, 0). With this

factorization we can reconstruct the factors gi of f with the by Zassenhaus introduced

Hensel lifting. By construction we have then gi(α, 1) = hi(p1, . . . , pn).

Page 11: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

1.3. BLACK BOX FACTORIZATION 5

This causes the following structure of this thesis. At first we derive the Hensel lifting

algorithm in chapter 2 and then an effective version of Hilbert’s irreducibility theorem

in chapter 3. Finally we formulate the detailed black box factorization algorithm in

chapter 4.

Page 12: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das
Page 13: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Chapter 2

Hensel lifting

Assume we want to factor the bivariate polynomial

f(X,Y ) = Y 3 + (X − 1)Y 2 + (−X + 1)Y − 1 ∈ Q[X][Y ] .

The homotopy continuation ansatz is to transform this problem into a simpler one which

we can easily solve, i.e., an univariate factorization problem. Hence consider

f(0, Y ) = Y 3 − Y 2 + Y − 1 ∈ Q[Y ]

and in fact we can see that f(0, Y ) = (Y 2+1)(Y−1). Thus we are looking for polynomials

g(X,Y ) = Y 2 + g1(X)Y + g0(X) and h(X,Y ) = Y + h0(X)

such that f(X,Y ) = g(X,Y )h(X,Y ), g(0, Y ) = Y 2 + 1 and h(0, Y ) = Y − 1. This is the

same as solving the (non-linear) system of polynomial coefficient equations

1 = 1 · 1 (Y 3)

X − 1 = g1 + h0 (Y 2)

−X + 1 = g1h0 + g0 (Y )

−1 = g0h0 (1)

in Q[X].

A well-known method in numerical analysis to solve a system of non-linear functions

is the Newton iteration (or Newton’s method). It states

Let F : Rn → Rn be a differentiable function and x(0) ∈ Rn a suitable start approxi-

mation such that ‖F (x(0))‖ ≤ ε < 1 and JF (x(0)) invertible. Define the iteration

x(k+1) := x(k) − JF(x(k)

)−1F(x(k)

)(if well defined) then ‖F (x(k))‖ ≤ ε2k and ‖F ( lim

k→∞x(k))‖ = 0

7

Page 14: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

8 2. HENSEL LIFTING

If we were now able to give a corresponding method in our algebraic setting we could

solve our system of coefficient equations and in fact this is possible. In order to do this

we have to answer the following questions:

1. Can we define a notion of “closeness” or even a metric space over rings / modules?

2. Can we even define a notion of convergence? Do we also have a quadratic conver-

gence?

3. Can we replace the analytical derivation?

4. Can we formulate an algebraic version of Taylor’s formula?

5. What is a suitable initial approximate solution?

6. Can we guarantee that the Jacobian remains invertible?

7. Is the result also unique?

We will derive the Hensel lifting theorem for polynomials over an arbitrary Noetherian

ring, although we only apply it in the concrete case that we have multivariate polynomials

over a field of characteristic 0. I chose this approach because I derived on my own an

algebraic version of the multivariate Newton iteration and the Hensel lifting theorem

and it felt “natural” to make this in a more general setting. A drawback is that I needed

some advanced results from commutative algebra in section 2.1 so that this thesis is not

self-contained. But we will, as often as possible, refer to the concrete case of polynomial

rings.

2.1 Valuation on a ring

First, all rings in this thesis are assumed to be commutative with identity 1.

We start with the fundamental question when two elements are “close”. If not other

mentioned we follow Bourbaki [5] in this section.

Definition 2.1 (Valuation). Let A be a ring and Γ a totally ordered abelian groupwritten multiplicatively. A valuation is a surjective map ν : A 7→ Γ ∪ {0} =: Γ0 whichsatisfies for all a, b ∈ A:

(1) ν(ab) = ν(a)ν(b) (multiplicative)

(2) ν(a+ b) ≤ max {ν(a), ν(b)} (ultra-metric inequality)

(3) ν(1) = 1 and ν(a) = 0 if and only if a = 0

A valuation is called discrete if Γ is isomorph to Z.

Remark 2.2. Q>0 with the usual multiplication is an example for Γ.

Remark 2.3. From the definition it follows that A has to be an integral domain.

Page 15: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.1. VALUATION ON A RING 9

Remark 2.4. It is possible to give a equivalent definition (and more common definition)for a valuation with a totally ordered additive abelian group Γ adjoined with∞. In thiscase we have for all a, b ∈ A:

(1) ν(ab) = ν(a) + ν(b) (additive)

(2) ν(a+ b) ≥ inf {ν(a), ν(b)}

(3) ν(1) = 0 and ν(a) =∞ if and only if a = 0

Remark 2.5. If a ∈ A such that an = 1 for some integer n ≥ 1, we have ν(an) = ν(a)n = 1by (1) and since Γ is a totally ordered multiplicative group we have ν(a) = 1 for everyvaluation ν on A. In particular ν(−1) = 1 and thus ν(−a) = ν(a) for all a ∈ A. Since fora ∈ A we have 0 = ν(0) = ν(a+ (−a)) ≤ max{ν(a), ν(−a)} = max{ν(a), ν(a)} by (2) itfollows ν(a) ≥ 0 for all a ∈ A. If a ∈ A is not zero then ν(a)ν(a−1) = ν(aa−1) = ν(1) = 1and thus ν(a−1) = 1/ν(a).

Now we consider an important valuation, the m-adic valuation. Let A be a ring,

m ⊂ A a proper ideal. The sequence (mn)n≥0 of additive subgroups of A is called the

m-adic filtration of A. Then the order function ω : A→ N ∪ {∞}, a 7→ ω(a) with

ω(a) = n ⇔ a ∈ mn and a /∈ mn+1 (2.1)

ω(a) =∞⇔ a ∈⋂n≥0

mn (2.2)

is well defined.

The fact that the mn are additive subgroups of A implies that for a, b ∈ A

ω(a+ b) ≥ inf{ω(a), ω(b)} . (2.3)

Since A is an integral domain it follows for a, b 6= 0 with a ∈ mr, a /∈ mr+1 and b ∈ ms,

b /∈ ms+1 that ab /∈ mr+s+1 but ab ∈ mr+s and thus

ω(a+ b) = ω(a) + ω(b) . (2.4)

Consider now the map

ν : A→ {2−k | k ∈ N} ∪ {0}, a 7→ 2−ω(a) ,

then it follows from the equations (2.1) - (2.4) that, if⋂n≥0 m

n = {0}, ν is a valua-

tion map on A, called the m-adic valuation of A. In the concrete case of multivariate

polynomials over a field this is clearly satisfied for every m.

A theorem from Krull [6] states that the ideal⋂n≥0 m

n is {0} if A is a Noetherian

ring and no element of 1 + m is a divisor of 0 in A. In particular this is satisfied by

Noetherian local rings.

Example 2.6. Let A = Q[X] and m = (X). Then the order function is

ω(a) = n⇔ a ≡ 0 mod Xn and a 6≡ 0 mod Xn+1

ω(0) = 0

Page 16: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

10 2. HENSEL LIFTING

With ν as the m-adic valuation we have

ν(X − 1) = 1, ν(X) =1

2and ν(X6 −X3) =

1

8.

Lemma 2.7 ([6]). Let A be a ring, Γ a totally ordered abelian group written multi-plicatively and ν : A 7→ Γ0 a valuation map. Then for a1, . . . , an ∈ A

ν( n∑j=1

aj

)≤ max

1≤j≤nν(aj) . (2.5)

Moreover, equality holds if there exists only a single index i such thatν(ai) = max1≤j≤n ν(aj).In particular we have for a, b ∈ A with ν(a) 6= ν(b) that ν(a+ b) = max{ν(a), ν(b)}.

Proof. The inequality (2.5) follows with axiom (2) easily by induction over n. Now ifthere exists only a single index i such that ν(ai) = max1≤j≤n ν(aj) then it follows withx :=

∑j 6=i ai and y :=

∑nj=1 aj by (2.5) that ν(x) < ν(ai) and ν(y) ≤ ν(ai). Assume

ν(y) < ν(ai). Since ai = y − x it follows that ν(ai) ≤ max{ν(y), ν(x)} < ν(ai). This isclearly a contradiction. Hence ν(y) = ν(ai).

Now consider again general valuations ν : A 7→ Γ0 on a ring A. For a = (ai) ∈ An

define

‖a‖ν := max1≤i≤n

ν(ai) . (2.6)

Then

d : An ×An → Γ0, (a, b) 7→ ‖a− b‖ν (2.7)

is an ultra-metric on An.

Proof. For a, b, c ∈ An we have d(a, b) = ‖a− b‖ν = maxi ν(ai−bi) ≥ 0 and d(a, b) = 0if and only if a− b = 0. Obviously d(a, b) = d(b, a) and

d(a, c) = ‖a− c‖ν = ‖a− b+ b− c‖ν= max

iν(ai − bi + bi − ci)

≤ maxi

max{ν(ai − bi), ν(bi − ci)}

= max{‖a− b‖ν , ‖b− c‖ν} = max{d(a, b), d(b, c)}

If we identify Am,n with Amn then (2.7) is also a metric on Am,n. For C = (ci,j) ∈ Am,n

we set ‖C‖ν := max1≤i≤m1≤j≤n

ν(ci,j).

Therefore every valuation ν induces a metric and thus a topology on the A-module

An, n ∈ N≥1. If ν is the m-adic valuation on A then the topology on An, induced by

(2.7), is called the m-adic topology and we write ‖ · ‖m instead of ‖·‖ν .

Now we introduce the concept of the completion of a ring which will prove to be

very useful. Following Eisenbud [7] the completion Am of A with respect to the m-adic

Page 17: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.1. VALUATION ON A RING 11

filtration is the inverse limit of the factor groups A/mi. This is by definition a subgroup

of the direct product

Am := lim←−A/mi = {a = (a1, a2, . . . ) ∈

∏i∈N

A/mi | aj ≡ ai mod mi for all j > i} .

Since each of the A/mi is a ring, Am is also a ring. Am has a filtration by ideals

mi := {a = (a1, a2, . . . ) ∈ Am | aj = 0 for all j ≤ i}

and from the definitions it follows immediately that Am/mi∼= A/mi. If the canonical

inclusion map A→ Am, a 7→ (a+ m, a+ m2, . . . ) is an isomorphism we shall say that A

is complete with respect to m.

Proposition 2.8. Let A = k[X1, . . . , Xn] be the polynomial ring in n indeterminatesover a field k and m = (X1, . . . , Xn) an ideal of A. Then the completion of A withrespect to m satisfies

Am∼= k[[X1, . . . , Xn]],

where k[[X1, . . . , Xn]] denotes the ring of formal power series in n indeterminates.

Proof. With the maps

ϕi : k[[X1, . . . , Xn]]→ k[X1, . . . , Xn]/mi , f 7→ f + mi

we get the canonical map

ϕ : k[[X1, . . . , Xn]]→ Am ⊂∏i

k[X1, . . . , Xn]/mi,

f 7→ (ϕ1(f), ϕ2(f), . . . ) = (f + m, f + m2, . . . ).

On the other hand we have that for each (f1 + m, f2 + m2, . . . ) ∈ Am for all j > i

fj = fi + (terms of degree > i) .

Thus the map

ψ : Am → k[[X1, . . . , Xn]], (f1 + m, f2 + m2, . . . ) 7→ f1 + (f2 − f1) + (f3 − f2) + . . .

is well defined and one checks immediately that ϕ ◦ ψ = id and ψ ◦ ϕ = id.

Remark 2.9. Furthermore, m1 = m = (X1, . . . , Xn) since k[[X]]/m ∼= k[X]/m ∼= k.

Remark 2.10. k[[X1, . . . , Xn]] is also a unique factorization domain.

A useful property of the completion is that it inherits the Noetherian property of A.

Lemma 2.11. Let A be a Noetherian ring and m an ideal of A. Then the completionAm of A with respect to the m-adic filtration is also a Noetherian ring.

Proof. [6]

Thus if A is a Noetherian ring then mn = mn1 for all n ∈ N and we will briefly write m

instead of m1 and mn instead of mn.

Page 18: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

12 2. HENSEL LIFTING

Assume now that A is a Noetherian ring with ideal m. We want to determine when the

m-adic valuation on the completion Am is well defined, i.e.⋂n≥0 m

n = {0}. By Krull’s

theorem this condition is satisfied if Am is a local ring. Remember that a characterization

of a local ring B is that for every element b ∈ B is b or 1− b a unit.

Lemma 2.12. Let A be a ring, m ⊂ A an ideal and a ∈ A. For positive integers i and j

a unit in A/mi ⇐⇒ a unit in A/mj .

Proof. Let a be a unit in A/mi and first assume i ≥ j. Then there exists a b ∈ A suchthat ab ≡ 1 mod mi and since mj ⊂ mi we have ab ≡ 1 mod mj .

Now assume i < j and without loss of generality i = 1 and j = 2k for some integer k.Then there exists a b0 ∈ A such that ab0 ≡ 1 mod m. Now we can recursively define asequence (bl) ⊂ A such that for l ≥ 1

bl ≡ 2bl−1 − ab2l−1 mod m2l . (2.8)

We claim that then abl ≡ 1 mod m2l for all l ≥ 0. We prove the claim by induction overl. The induction start is already done and for the induction step (l − 1→ l) consider

1− abl(2.8)≡ 1− a(2bl−1 − ab2l−1) ≡ 1− 2abl−1 + a2b2l−1 ≡ (1− abl−1)2 ≡ 0 mod m2l .

Hence abk ≡ 1 mod mj .

Remark 2.13. Equation (2.8) gives an algorithm to efficiently compute the inverse of anelement.

Lemma 2.14. Let A be a ring with maximal ideal m and Am its completion. Thena = (a1, a2, . . . ) ∈ Am is a unit if and only if a1 6= 0.

Proof. If a1 6= 0 each ai is a unit in A/m and therefore a unit in A/mi by lemma 2.12.Now it follows from aj ≡ ai mod mi for all j > i that a−1

j ≡ a−1i mod mi for all j > i

and we conclude that b := (a−11 , a−1

2 , . . . ) ∈ Am is the inverse of a.

Now suppose that a ∈ Am is a unit. Then there exists a b ∈ Am such that ab = 1 andin particular a1b1 = 1 and thus a1 6= 0.

Hence the completion of a ring with respect to a maximal ideal is a local ring and we

can conclude

Lemma 2.15. Let A be a Noetherian ring with maximal ideal m. Then the completionAm of A with respect to the m-adic filtration is a Noetherian local ring with maximalideal m.

Proof. Since m is a maximal ideal Am/m ∼= A/m is a field and hence m a maximal ideal.Moreover, if a = (a1, a2, . . . ) ∈ Am not in m, a1 6= 0 and by lemma 2.14 a unit. Thisshows that Am is a local ring and Am is also Noetherian by lemma 2.11.

Remark 2.16. In particular k[[X1, . . . , Xn]] is a complete Noetherian local ring by ourlemma and proposition 2.8.

Page 19: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.1. VALUATION ON A RING 13

The completion Am of a Noetherian ring A with respect to a maximal ideal m has

therefore the m-adic topology. Now we show that this notion of completion coincides

with the notion of a complete metric space in the sense that every Cauchy sequence in

Am converges in Am.

Since Am is a metric space, a series (a1, a2, . . . ) ⊂ Am converges in the m-adic topol-

ogy to an element a ∈ Am if for every integer n there is an integer i(n) such that

‖a− ai(n)‖m ≤ 2−n. This is equivalent to that for every integer n there is an integer i(n)

such that a − ai(n) ∈ mn. Let (ai) ⊂ Am be a Cauchy sequence in the m-adic topology.

This means that for every integer n there exists an integer N such that

ai − aj ∈ mn for all i, j ≥ N .

This implies that for every integer n there exists an integer N such that ai ≡ aN mod m

for i ≥ N and it follows immediately immediately that every Cauchy sequence converges

in Am. Thus Anm is also complete since every sequence Anm is Cauchy if and only if the

coordinate sequences (a(i)j ) are Cauchy.

We have seen that every Noetherian local ring yields in a natural way a valuation, the

m-adic valuation. But it is of course possible to define valuations on other rings as well.

This leads to the following definition.

Definition 2.17 (Valuation ring). Let A be an integral domain and k its field of frac-tions. A is a valuation ring (or valued ring) if there exists a totally ordered multiplicativeabelian group Γ and a valuation ν : k 7→ Γ0 such that A = {ν(x) ≤ 1 |x ∈ k}. By defi-nition, a field is not a valuation ring.

If ν is a discrete valuation A is called a discrete valuation ring.

Remark 2.18. It’s again possible to give an equivalent definition for a valuation with atotally ordered additive abelian group Γ adjoined with ∞. Then the valuation ring isdefined as A := {ν(x) ≥ 0 |x ∈ k}.Remark 2.19. Let A be an integral domain and ν : A 7→ Γ0 a valuation map. Denoteby k the field of fractions of A and let a/b be an element of k. Then ν can easily beextended to a valuation of k with ν(a/b) := ν(a)/ν(b) and A is a subring of the valuationring Aν = {ν(x) ≤ 1 |x ∈ k}.

Example 2.20. Let k[[X]] be the ring of formal power series in one indeterminate overa field k. From proposition 2.8 it follows that k[[X]] is a complete Noetherian local ringwith maximal ideal m = (X). We claim that k[[X]] with the m-adic valuation ν is avaluation ring.The field of fractions of k[[X]] is k((X)) = {f/g | f, g ∈ k[[X]] with g 6= 0} and we canextend the m-adic valuation to k((X)) with ν(f/g) := ν(f)/ν(g) = 2−(ω(f)−ω(g)). Thenthe corresponding valuation ring is

{f/g ∈ k((X)) | ν(f/g) ≤ 1} = {f/g ∈ k((X)) | ω(f)− ω(g) ≥ 0} .

For f/g ∈ k((X)) with ν(f/g) ≤ 1 we can assume that gcd(f, g) = 1. Hence theonly case that, at the first sight, f/g is not in k[[X]] is ω(f) ≥ ω(g) = 0. Butthen g has a non-zero constant coefficient g0 and by lemma 2.14 g is a unit in k[[X]].Therefore f/g = (fg−1)/(gg−1) = fg−1 ∈ k[[X]] and k[[X]] is a valuation ring.

Page 20: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

14 2. HENSEL LIFTING

A valuation ring has the following useful property.

Lemma 2.21. Let A be a valuation ring with valuation map ν. Then a ∈ A is a unitif and only if ν(a) = 1.

Proof. Let a ∈ A be a unit. Then there exists a−1 ∈ A and ν(a) = 1/ν(a−1). Sincea ∈ A, ν(a) ≤ 1 implies ν(a−1) ≥ 1 and with a−1 ∈ A it follows ν(a−1) = 1 and thusν(a) = 1.Now let a be in A with ν(a) = 1. Denote by k the field of fractions of A and interpreta as an element of k. Then there exists a−1 ∈ k and ν(a−1) = 1/ν(a) = 1. Thereforea−1 ∈ A and a is a unit.

But this statement is not only true for valuation rings but also for Noetherian local

rings A with maximal ideal m and the m-adic valuation. Consider a ∈ A. Then ν(a) = 1

if and only if a /∈ m and a characterization of a local ring is that every element not in m

is a unit.

This property yields also to the following valuable statement.

Lemma 2.22. Let A be a ring with valuation map ν such that a ∈ A is a unit if andonly if ν(a) = 1. Let a, b ∈ A with ν(b − a) < 1. Then a is a unit if and only if b is aunit.

Proof. It is sufficient to show that ν(a) = 1 if and only if ν(b) = 1. If ν(a) = 1 then

ν(b) = ν(a+(b−a))2.5= max{ν(a), ν(b−a)} = 1 and by an analogous argument it follows

that ν(a) = 1 if ν(b) = 1.

2.2 Taylor’s formula

As a next step we derive an algebraic version of Taylor’s formula (following Bourbaki’s

[4] neat derivation) and introduce the concept of a formal derivative as an replacement

for the analytical derivative. But at first we have to fix some multi-index notation.

Let n ∈ N, α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn and X = (X1, . . . , Xn) and

Y = (Y1, . . . , Yn) two families of indeterminates. We set X + Y := (X1 + Y1, . . . ,

Xn + Yn), Xα := X1α1 · . . . ·Xn

αn , α! := α1!α2! . . . αn!, |α| := α1 + α2 + . . . + αn and(αβ

):=(α1

β1

). . .(αnβn

)where

(αiβi

)denotes the binomial coefficient.

Lemma 2.23 (Multi-index binomial theorem). Let n ∈ N, X = (X1, . . . , Xn) andY = (Y1, . . . , Yn) two families of indeterminates and α ∈ Nn. Then

(X + Y )α =∑

0≤β≤α

β

)XβY α−β .

Page 21: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.2. TAYLOR’S FORMULA 15

Proof. We have

(X + Y )α =

n∏i=0

(Xi + Yi)αi

=n∏i=0

αi∑βi=0

(αiβi

)Xβii Y

αi−βii

=( α1∑β1=0

(α1

β1

)Xβ1

1 Y α1−β11

)· · ·( αn∑βn=0

(αnβn

)Xβnn Y αn−βn

n

).

Now we can expand and rearrange the product:

=

α1∑β1=0

· · ·αn∑βn=0

(α1

β1

). . .

(αnβn

)Xβ1

1 . . . Xβnn Y α1−β1

1 . . . Y αn−βnn

=∑

0≤β≤α

β

)XβY α−β .

Definition 2.24. Let n be an integer, A an integral domain and X = (X1, . . . , Xn)and Y = (Y1, . . . , Yn) two families of indeterminates. For f ∈ A[X] = A[X1, . . . , Xn]we can consider f(X + Y ) as a polynomial in A[X][Y ] and denote for all α ∈ Nn by∆αf ∈ A[X] the coefficient of Y α in f(X + Y ).

Remark 2.25. From the definition of ∆αf it follows immediately that ∆α ∈ End(A[X])where A[X] is considered as an A-module.

Example 2.26. Consider again our example

f(X,Y ) = Y 3 + (X − 1)Y 2 + (−X + 1)Y − 1

= Y 3 +XY 2 − Y 2 −XY + Y − 1 .

Then

f(X + Z1, Y + Z2) = (Y + Z2)3 − (Y + Z2)2 + (X + Z1)(Y + Z2)2 + (Y + Z2)

− (X + Z1)(Y + Z2)− 1

= Z32 + Z2

2Z1 + (3Y +X − 1)Z22 + (2Y − 1)Z1Z2

+ (3Y 2 + 2XY − 2Y −X + 1)Z2 + (Y 2 − Y )Z1

+ Y 3 +XY 2 − Y 2 −XY + Y − 1

Hence, ∆0,1f(X,Y ) = 3Y 2 + 2XY − 2Y −X + 1 and ∆1,1f(X) = 2Y − 1.

In the following all summations are about Nn. Let f ∈ A[X] = A[X1, . . . , Xn] be a

multivariate polynomial and by definition

f(X + Y ) =∑α

∆αf(X)Y α . (2.9)

If we substitute X 7→ a and Y 7→X − a for a ∈ An we have

Page 22: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

16 2. HENSEL LIFTING

f(X) =∑α

∆αf(a)(X − a)α . (2.10)

Since for g ∈ A[X]

(fg)(X + Y ) =

(∑α

∆αf(X)Y α

)∑β

∆βg(X)Y β

=∑γ

∑α+β=γ

∆αf(X)∆βg(X)

Y γ

we have

∆γ(fg)(X) =∑

α+β=γ

∆αf(X)∆βg(X) . (2.11)

Now let Z = (Z1, . . . , Zn) be another family of indeterminates. Then we have

f(X + Y +Z) = f(X + (Y +Z))

=∑α

∆αf(X)(Y +Z)α (2.12)

and on the other hand

f(X + Y +Z) =∑β

∆βf(X + Y )Zβ

=∑β

[∑γ

∆γ(∆βf(X))Y γ

]Zβ

=∑β,γ

(∆γ∆βf)(X)Y γZβ . (2.13)

By the multi-index binomial theorem 2.23 it follows

(Y +Z)α =∑

0≤β≤α

β

)Y α−βZβ =

∑γ+β=α

(γ + β

β

)Y γZβ =

∑γ+β=α

(γ + β)!

γ!β!Y γZβ .

Hence (2.12) becomes∑α

∆αf(X)(Y +Z)α =∑α

∆αf(X)∑

γ+β=α

(γ + β)!

γ!β!Y γZβ

=∑γ,β

(γ + β)!

γ!β!∆γ+βf(X)Y γZβ

and with (2.13) we get

∆γ∆βf =(γ + β)!

γ!β!∆γ+βf . (2.14)

Before we proceed we have to introduce the concept of the formal derivative of a poly-

nomial as a replacement of the analytical derivative.

Page 23: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.2. TAYLOR’S FORMULA 17

Definition 2.27 (Formal derivative). Let A be a (commutative) ring, n a positiveinteger and X = (X1, . . . , Xn) a family of indeterminates. For α = (αi) ∈ Nn the map

Di : A[X]→ A[X], Xα 7→

αiX

αi−1i

∏1≤j≤ni 6=j

Xαjj , αi > 0

0 , αi = 0

(2.15)

is an A-linear ring homomorphism. For a polynomial f ∈ A[X] Dif is the formal partialderivative of f . It follows from (2.15) that DiDj = DjDi for any 1 ≤ i, j ≤ n. Thus forβ = (βi) ∈ Nn

Dβ : A[X]→ A[X], Xα 7→

{α!

(α−β)! , α ≥ β0 , else

(2.16)

is a well defined A-linear ring homomorphism. Dβf is called the formal derivative of f .

Remark 2.28. For a polynomial f ∈ A[X] the formal derivative coincides with the knownanalytical derivative. Moreover, computing rules like the product and chain rule alsohold for the formal derivative.

Remark 2.29. We shall write, if it is more suitable, analog to the usual notation ∂f/∂Xi

instead of Dif .

Lemma 2.30. Let be n be a positive integer and X = (X1, . . . , Xn) a family of inde-terminates. Then for all f ∈ A[X] and α = (αi) ∈ Nn it holds

Dαf = α!∆αf .

Proof. The lemma is proven by induction over the length of α. Thus let |α| = 1. Thenthere exists an index i ∈ {1, . . . , n} such that α = ei with αi = 1 and αj = 0 for allj 6= i. Now define for an arbitrary β ∈ Nn

p := Xβii and q :=

∏i 6=j

Xβjj .

By construction, pq = Xβ and with (2.11) we get

∆αXβ = ∆eipq

= ∆eip ·∆0q + ∆0p ·∆eiq . (2.17)

Now we have

p(X + Y ) = (Xi + Yi)βi =

βi∑k=0

(βik

)Xβi−ki Y k

i

and

q(X + Y ) =∏j 6=i

(Xj + Yj)βj =

∏j 6=i

βj∑k=0

(βjk

)Xβj−ki Y k

j .

Thus

∆eip =

{βiX

βi−1i βi > 0

0 βi = 0and ∆0q =

∏j 6=i

(Xj)βj = q .

Page 24: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

18 2. HENSEL LIFTING

Since Yi doesn’t appear in q(X + Y ) we have ∆eiq = 0. With (2.17) it follows that

∆αXβ = ∆eiXβ =

βiXβi−1i

∏j 6=i

(Xj)βj , βi > 0

0 , βi = 0

= DeiXβ = ∆αXβ .

Since ∆α ∈ End(A[X]) it follows that ∆αf = Dαf = α!Dαf.

Now let us assume that our induction hypothesis holds for m ∈ N and let α ∈ Nnwith |α| = m+ 1. Notice that we obtain for β,γ ∈ Nn by (2.14)

(γ!∆γ)(β!∆β) = (γ + β)!∆γ+β ∈ End(A[X]) . (2.18)

Then there exists i ∈ {1, . . . , n} such that α− ei ∈ Nn and by (2.18) we obtain

α!∆α = ((α− ei) + ei)!∆(α−ei)+ei = (α− ei)!∆(α−ei) ◦ ei!∆ei .

Therefore it follows together with the induction hypothesis:

α!∆αf = ((α− ei)!∆(α−ei) ◦ ei!∆ei)f

= (α− ei)!∆(α−ei)(ei!∆eif)

= (α− ei)!∆(α−ei)(Deif)

= D(α−ei)(Deif)

= Dαf

Now everything is in place to formulate Taylor’s formula in our algebraic setting.

Theorem 2.31 (Taylor’s formula). LetA be an integral domain, n ∈ N,X = (X1, . . . , Xn)a family of indeterminates and f ∈ A[X]. Then we have for another family of indeter-minates Y = (Y1, . . . , Yn)

f(X + Y ) =∑α

1

α!(Dαf)(X)Y α

and for a ∈ An

f(X) =∑α

1

α!(Dαf)(a)(X − a)α .

Proof. By (2.9) f(X + Y ) =∑α

∆αf(X)Y α and by lemma 2.30 it follows the first

statement. By (2.10) f(X) =∑α

∆αf(a)(X − a)α and again by lemma 2.30 it follows

the second statement.

Finally, in preparation for the Newton iteration, we formulate a version of Taylor’s

formula for systems of polynomials.

Corollary 2.32. Let A be an integral domain, n a positive integer, X = (X1, . . . , Xn)

a family of indeterminates and F (X) =

[f1(X)

...fn(X)

]∈ A[X]n a system of polynomials. For

Page 25: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.3. NEWTON ITERATION 19

a ∈ An we have

F (X) = F (a) + JF (a) · ( ~X − ~a) +∑|α|≥2

1

α!DαF (a)(X − a)α .

where JF is the Jacobian of F and ~X and ~a indicate that X and a should be interpretedas vectors.

Proof. For a ∈ An and fi ∈ A[X] we have, by Taylor’s formula 2.31,

fi(X) =∑α

1

α(Dαfi)(a)(X − a)α

= fi(a) +∑|α|=1

(Dαfi)(a)(X − a)α +∑|α|≥2

1

α(Dαfi)(a)(X − a)α

= fi(a) +

n∑j=1

(Djfi)(a)(Xj − aj) +∑|α|≥2

1

α(Dαfi)(a)(X − a)α .

Hence

F (X) = F (a) + JF (a) · ( ~X − ~a) +∑|α|≥2

1

α!

Dαf1(a)(X − a)α

...Dαfn(a)(X − a)α

= F (a) + JF (a) · ( ~X − ~a) +

∑|α|≥2

1

α!DαF (a)(X − a)α .

2.3 Newton iteration

Now that we have derived an algebraic version of Taylor’s formula and introduced a

metric space on rings with a valuation we are ready to state an algebraic version of

the multi-dimensional Newton iteration. I developed this based on a one-dimensional

version of the Newton Iteration in Modern Computer Algebra [20].

In this section let X = (X1, . . . , Xn) be a family of indeterminates and A a ring with

valuation map ν such that for all a ∈ A ν(a) ≤ 1 and that a is a unit if and only if

ν(a) = 1. This condition is satisfied for each valuation ring by lemma 2.21, but also

for every Noetherian local ring A with maximal ideal m and equipped with the m-adic

valuation. Moreover, we abbreviate the elements (a1, . . . , an) ∈ An as a and identify

the A-module An and the cartesian product An with each other and use a suitable

interpretation for a. In particular for f ∈ A[X] we denote with f(a) the evaluation of f

at (a1, . . . , an). Furthermore let ‖·‖ν be the ultra-metric induced by ν which we defined

in (2.6) and (2.7). Notice that ν(a) and ‖a‖ν coincide for a ∈ A.

Page 26: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

20 2. HENSEL LIFTING

At first we note the following useful estimate.

Lemma 2.33. For C ∈ Am,n and a ∈ An we have ‖Ca‖ν ≤ ‖C‖ν ‖a‖ν

Proof. Let C = (ci,j) ∈ An,n be a matrix and a ∈ An. Then

‖Ca‖ν = max1≤i≤m

(∑j=1

ci,jaj

)≤ max

1≤i≤mmax

1≤i≤m1≤j≤n

ν(ci,jaj)

= max1≤i≤m1≤j≤n

ν(ci,j)ν(aj) ≤ max1≤i≤m1≤j≤n

ν(ci,j) max1≤j≤n

ν(aj) = ‖C‖ν ‖a‖ν .

The construction of the Newton iteration is mostly identical to the analytical version.

Lemma 2.34. Let F ∈ A[X]n be a system of polynomials. For all a, b ∈ An with‖b− a‖ν ≤ ε we have

‖F (b)− F (a)− JF (a)(b− a)‖ν ≤ ε2 .

Proof. By corollary 2.32 to Taylor’s formula we have

F (b) = F (a) + JF (a) · (b− a) +∑|α|≥2

1

α!DαF (a)(b− a)α

and therefore

‖F (b)− F (a)− JF (a)(b− a)‖ν =∥∥∥∑|α|≥2

1

α!DαF (a)(b− a)α

∥∥∥ν. (2.19)

To prove the lemma we now look at the right side of equation (2.19). From ‖b− a‖ν ≤ εit follows that for i = 1, . . . , n, ν(bi − ai) ≤ ε and thus for all α ∈ Nn with |α| ≥ 2

ν((b− a)α) = ν( n∏i=1

(bi − ai)αi)

=

n∏i=1

ν(bi − ai)αi ≤ ε2 .

Hence ∥∥∥∑|α|≥2

1

α!DαF (a)(b− a)α

∥∥∥ν≤ ε2

and the lemma follows.

A notable difference to the analytical case is that we can guarantee that the Jacobian

of a system remains invertible.

Lemma 2.35. Let F ∈ A[X]n be a system of polynomials, a ∈ An such that‖det(JF (a))‖ν = 1 and b ∈ An with ‖b− a‖ν < 1. Then

‖det(JF (b))‖ν = 1 .

Page 27: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.3. NEWTON ITERATION 21

Proof. det(JF (X)) is a polynomial in A[X] and therefore there exists a finite indexfamily I ⊂ Nn such that det(JF (X)) =

∑α∈I cαX

α with cα ∈ A. Now we have

det(JF (b)) =∑α∈I

cαbα =

∑α∈I

cα (a+ (b− a))α

and by the multi-index binomial theorem 2.23

=∑α∈I

( ∑0≤β≤α

β

)aβ(b− a)α−β

)=∑α∈I

cαaα

︸ ︷︷ ︸det(JF (a))

+∑α∈I

∑0≤β<α

β

)aβ(b− a)α−β .

Since ‖det(JF (a))‖ν = 1 and∥∥∥∑α∈I

∑0≤β<α

β

)aβ(b− a)α−β

∥∥∥ν≤ max

α∈Imax

0≤β<αν

(cα

β

)aβ(b− a)α−β

)≤ max

α∈Imax

0≤β<αν(

(b− a)α−β)

|α−β|>0 ∧ ‖b−a‖ν<1< 1

we conclude ‖det(JF (b))‖ν = 1 by lemma 2.7.

Now assume that for a system of polynomials F ∈ A[X]n we have an approximation

a ∈ An with ‖F (a)‖ν ≤ ε < 1. If additionally the Jacobian of F , JF , is invertible in a

we get ∥∥(a− JF (a)−1F (a))− a∥∥ν

=∥∥−JF (a)−1F (a)

∥∥ν≤ ‖F (a)‖ν ≤ ε (2.20)

by lemma 2.33. With b := a − JF (a)−1F (a) we have then found a suitable b for

lemma 2.34 and we can formulate the following theorem:

Theorem 2.36 (Quadratic Convergence). Let F ∈ A[X]n be a system of polynomials,a ∈ An an approximation of F with ‖F (a)‖ν ≤ ε < 1 and ‖det(JF (a))‖ν = 1. Thenb := a− JF (a)−1F (a) is well defined and

‖b− a‖ν ≤ ε , ‖F (b)‖ν ≤ ε2 and ‖det(JF (b))‖ν = 1 .

Proof. Since ‖det(JF (a))‖ν = 1 it follows by lemma 2.21 that det(JF (a)) is a unitin A. Hence JF (a) is invertible and b well defined.

By (2.20) ‖b− a‖ν ≤ ε < 1 and thus ‖det(JF (b))‖ν = 1 by lemma 2.35. Finally weobtain by lemma 2.34

ε2 ≥ ‖F (b)− F (a)− JF (a)(b− a)‖ν=∥∥F (b)− F (a)− JF (a)(a− JF (a)−1F (a)− a)

∥∥ν

=∥∥F (b)− F (a) + JF (a)JF (a)−1F (a)

∥∥ν

(2.21)

= ‖F (b)‖ν .

Page 28: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

22 2. HENSEL LIFTING

Remark 2.37. Instead of computing JF (a)−1 it is sufficient to compute J∗ such that‖J∗JF (a)− In‖ν ≤ ε2 and to set b = a − J∗F (a). By lemma 2.33 we have‖(J∗JF (a)− In)F (a)‖ν ≤ ε2 and the inequality (2.21) would then be

‖F (b) + J∗JF (a)F (a)− F (a)‖ν ≤ ε2

and on the other hand

‖F (b) + J∗JF (a)F (a)− F (a)‖ν ≤ max{‖F (b)‖ν , ε2} .

Hence ‖F (b)‖ν ≤ ε2.

We have seen how we can get from an approximate solution a with ‖F (a)‖ν ≤ ε < 1

and ‖det(JF (a))‖ν to a better approximation b with ‖F (b)‖ν ≤ ε2 and ‖b− a‖ν ≤ ε.

The following theorem shows that b is even unique.

Theorem 2.38 (Uniqueness). Let F ∈ A[X]n be a system of polynomials, a ∈ An suchthat ‖F (a)‖ν = ε < 1 and ‖det(JF (a))‖ν = 1. If there exists b and b∗ ∈ An such that

‖b− a‖ν ≤ ε‖F (b)‖ν ≤ ε2 and

‖b∗ − a‖ν ≤ ε‖F (b∗)‖ν ≤ ε2

then‖b∗ − b‖ν ≤ ε

2 .

Proof. By corollary 2.32 to Taylor’s formula we have

F (b∗) = F (b) + JF (b) · (b∗ − b) +∑|α|≥2

1

α!DαF (b)(b∗ − b)α (2.22)

and by lemma 2.34 ∥∥∥∑|α|≥2

1

α!DαF (b)(b∗ − b)α

∥∥∥ν≤ ‖b∗ − b‖2ν . (2.23)

Since‖b− a‖ν ≤ ε < 1 it follows ‖det(JF (b))‖ν = 1 by lemma 2.35. Hence det(JF (b))is a unit in A and JF (b) is invertible. Now it follows with (2.22)

‖b∗ − b‖ν =∥∥∥JF (b)−1

(F (b∗)− F (b)−

∑|α|≥2

1

α!DαF (b)(b∗ − b)α

)∥∥∥ν

≤∥∥∥F (b∗)− F (b)−

∑|α|≥2

1

α!DαF (b)(b∗ − b)α

∥∥∥ν

≤ max{‖F (b∗)‖ν , ‖F (b)‖ν ,

∥∥∥∑|α|≥2

1

α!DαF (b)(b∗ − b)α

∥∥∥ν

}(2.23)

≤ max{ε2, ε2, ‖b∗ − b‖2ν

}.

Page 29: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.3. NEWTON ITERATION 23

Since ‖b∗ − b‖ν = ‖b∗ − a− (b− a)‖ν ≤ max{‖b∗ − a‖ν , ‖b− a‖ν} ≤ ε < 1 it fol-lows that ‖b∗ − b‖2ν < ‖b∗ − b‖ν . Therefore we conclude

‖b∗ − b‖ν ≤ max{ε2, ε2, ‖b∗ − b‖2ν

}≤ ε2

The previous results combined now yield the Newton iteration.

Theorem 2.39 (Newton iteration). Let F ∈ A[X]n be a system of polynomials,a(0) ∈ An such that

∥∥F (a(0))∥∥ν≤ ε < 1 and

∥∥det(Jf (a(0)))∥∥ν

= 1. Define the sequence

(a(k)) bya(j+1) := a(j) − JF (a(j))−1F (a(j)), j ≥ 0 .

For all positive integers k we have∥∥∥F (a(k))∥∥∥ν≤ ε2k ,

∥∥∥det(JF (a(k)))∥∥∥ν

= 1 and∥∥∥a(k) − a(0)

∥∥∥ν≤ ε . (2.24)

Furthermore, a(k) is unique, i.e., for all b ∈ An with ‖F (b)‖ν ≤ ε2k

and∥∥b− a(0)

∥∥ν≤ ε

we have ∥∥∥b− a(k)∥∥∥ν≤ ε2k . (2.25)

Proof. The statement (2.24) follows immediately by induction over k by theorem 2.36and (2.25) by theorem 2.38.

Remark 2.40. This algebraic version of the Newton iteration is even stronger than theanalytical version since we can guarantee that the Jacobian remains invertible!

Since the proof was constructive we can formulate the following Newton iteration

algorithm:

Algorithm 2.41 Newton iteration

Input: F ∈ A[X1, . . . , Xn]n and its Jacobian JF ∈ A[X1, . . . , Xn]n,n, a(0) ∈ An suchthat

∥∥F (a(0))∥∥ν≤ ε < 1 and

∥∥det(JF (a(0)))∥∥ν

= 1 and D ∈ N.

Output: a ∈ An such that ‖F (a)‖ν ≤ εD and ‖det(JF (a))‖ν = 1

r := dlog2Defor k := 1, . . . , r do

Compute J (k) ∈ An,n such that∥∥J (k)JF (a(k−1))− In

∥∥ν≤ ε2k

a(k) := a(k−1) − J (k)F (a(k−1))end forreturn a(r)

Theorem 2.42. The Newton iteration algorithm 2.41 works correctly, its output isunique and it needs at most O((log2(D) + 1)n3) arithmetic operations.

Proof. The correctness and uniqueness follows by theorem 2.39 and remark 2.37. Thedominant step for the complexity is the computation of J (k). The cost to compute J (k)

is bounded by the number of operations necessary to compute the inversion of JF (a(k)).Since this needs at most O(n3) arithmetic operations the statement follows.

Page 30: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

24 2. HENSEL LIFTING

Finally we state that if A is a complete Noetherian local ring and ν the m-adic valu-

ation, the Newton iteration always converges to a unique limit.

Corollary 2.43. Let A be a complete Noetherian local ring with maximal ideal m andequipped with the m-adic valuation. If for a system of polynomials F ∈ A[X]n ana = (ai) ∈ An exists such that

‖F (a)‖m < 1 and ‖ det(JF (a))‖m = 1

then there exists an unique a ∈ An such that

F (a) = 0 , det(JF (a)) unit and ‖a− a‖m < 1 .

Proof. With a(0) := a the sequence

a(k+1) := a(k) − JF (a(k))−1F (a(k)) , k ≥ 0 (2.26)

is well defined and a Cauchy sequence as, by theorem 2.39, for i = 1, . . . , n and allintegers N

a(j)i − a

(k)i ∈ mN for all j, k > dlog2Ne.

Define a := lima(i) ∈ A. By theorem 2.39 a is unique, F (a) = 0, det(JF (a)) a unit and‖a− a‖m < 1.

Remark 2.44. Remember that ‖F (a)‖m < 1 if and only if fi(a) ≡ 0 mod m for 1 ≤ i ≤ nand ‖ det(JF (a))‖m = 1 if and only if det(JF (a)) is a unit.

2.4 Sylvester matrix and resultant

This section is based on Chapter 6 in Modern Computer Algebra [19]. Let us now take

a look at our original problem. We want to factor the polynomial

f(X,Y ) = Y 3 + (X − 1)Y 2 + (−X + 1)Y − 1 ∈ Q[X][Y ]

and already derived that this is equivalent to a solution g1, g0, h0 ∈ Q[X] such that

F (h0, g1, g0) =

g1 + h0 − (X − 1)

g1h0 + g0 − (−X + 1)

g0h0 − (−1)

= 0 .

Since f(0, Y ) = (Y 2 + 1)(Y − 1) we have

F (−1, 0, 1) =

−XX0

.

If we now interpret f, g1, g0 and h0 as elements of Q[[X]] F is a system over the complete

Noetherian local ring Q[[X]] with maximal ideal m = (X). Then ‖F (−1, 0, 1)‖m = 1/2

and if JF (−1, 0, 1) is invertible we can obtain a solution for F by Newton iteration.

Page 31: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.4. SYLVESTER MATRIX AND RESULTANT 25

Consider the Jacobian of F

JF (h0, g1, g0) =

1 1 0

g1 h0 1

g0 0 h0

and in particular JF (−1, 0, 1) =

1 1 0

0 −1 1

1 0 −1

.

JF (−1, 0, 1) is invertible and we can apply the Newton iteration to obtain a unique

solution. Since our initial approximation is a factorization of f(0, Y ) can we maybe give

a general condition such that the Jacobian of our initial solution is invertible?

Let k be a field and g, h ∈ k[X] univariate polynomials with deg(g) = n and

deg(h) = m. Then for d ∈ N

k<d[X] := {f ∈ k[X] | deg(f) < d}

is the vector space of polynomials over k with degree less than d. We define the linear-

combination map as

ϕg,h : k<m[X]× k<n[X]→ k<n+m[X], (s, t) 7→ sg + th . (2.27)

Since ϕg,h is a linear mapping between vector spaces there exists a transformation

matrix of ϕg,h, which we now want to determine. Choose {Xm−1, . . . , X, 1} as a mono-

mial basis for k<m[X] and analog bases for k<n[X] and k<n+m[X]. Consider at first the

mapping

ϕg : k<m[X]→ k<n+m[X], s 7→ sg .

Let s be in k<m[X] with s =m−1∑i=0

siXi and write g =

n∑j=0

gjXj . Then

sg =

(m−1∑i=0

siXi

)g =

m−1∑i=0

si(gXi

)and if we interpret g as an element in k<n+m[X] it has the coordinate vector

[0, . . . , 0, gn, . . . , g0]T ∈ kn+m

and gXi, 1 ≤ i < m,

[0, . . . , 0︸ ︷︷ ︸m−1−i

, gn, . . . , g0, 0, . . . , 0︸ ︷︷ ︸i

]T ∈ kn+m

Page 32: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

26 2. HENSEL LIFTING

Now we can obtain the (n+m)×m transformation matrix of ϕg by

gn 0 . . . 0

gn−1 gn. . .

...... gn−1

. . . 0...

. . .. . . gn

.... . .

. . . gn−1

g1. . .

. . ....

g0 g1. . .

...

0 g0. . .

......

. . .. . . g1

0 . . . 0 g0

.

We can analogous obtain the (n+m)× n transformation matrix of

ϕh : k<n[X]→ k<n+m[X], t 7→ th .

The transformation matrix of ϕg,h is thus

gn 0 . . . 0 hm 0 . . . . . . 0

gn−1 gn. . .

... hm−1 hm. . .

...... gn−1

. . . 0... hm−1

. . .. . .

......

. . .. . . gn

.... . .

. . .. . . 0

.... . .

. . . gn−1...

. . .. . .

. . . hm

g2. . .

. . .... h1

. . .. . .

. . . hm−1

g1 g2. . .

... h0 h1. . .

. . ....

g0 g1. . .

... 0 h0. . .

. . ....

0 g0. . . g2

.... . .

. . .. . .

......

. . .. . . g1

.... . .

. . . h1

0 . . . 0 g0 0 . . . . . . 0 h0

. (2.28)

For the construction of (2.28) we did not use the fact that k is a field. Therefore we can

give the following more general definition.

Definition 2.45 (Sylvester matrix and resultant). Let A be a commutative ring andg, h ∈ A[X] two polynomials with g =

∑ni=0 giX

i and h =∑m

i=0 hiXi. Then the

(n+m)× (n+m) matrix (2.28) is the Sylvester matrix of g and h denoted by Syl(g, h).The determinant of Syl(g, h) is called the resultant of g and h denoted byres(g, h).

Example 2.46. We continue our example. Consider the initial factorization

f(0, Y ) = Y 3 − Y 2 + Y − 1 = (Y 2 + 1)(Y − 1) ∈ Q[[X]][Y ] .

Page 33: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.4. SYLVESTER MATRIX AND RESULTANT 27

Then

Syl(Y 2 + 1, Y − 1) =

1 1 00 −1 11 0 −1

and res(Y 2 + 1, Y − 1) = 2 .

Notice that Syl(Y 2 + 1, Y − 1) and JF (−1, 0, 1) coincide!

Let g and h be univariate polynomials over a (commutative) ring A. With the Sylvester

matrix we can reformulate the linear-combination mapping ϕg,h as the corresponding

linear transformation mapping:

Φg,h : Am ×An → An+m,

sm−1

...s0

, tn−1

...t0

7→ Syl(g, h)

sm−1

...s0

tn−1

...t0

(2.29)

With the linear combination mapping ϕg,h and the Sylvester matrix we can now prove

(based on [19]) the following astonishing theorem which links the questions whether g

and h are strongly relatively prime to the resultant of g and h.

Theorem 2.47. Let A be a (commutative) ring and g, h ∈ A[X] univariate polynomials

with g =n∑i=0

giXi and h =

m∑i=0

hiXi such that gn and hm are units in A. Let ϕg,h be the

linear combination mapping

ϕg,h : A<m[X]×A<n[X]→ A<n+m[X], (s, t) 7→ sg + th.

Then the following statements are equivalent:

(1) There exists (s, t) ∈ A<m[X]×A<n[X] such that sg + th = 1

(2) ϕg,h is an isomorphism

(3) res(g, h) is a unit in A

Proof. Let Φg,h be defined as in (2.29). Then

ϕg,h isomorphism ⇐⇒ Φg,h isomorphism

⇐⇒ Syl(g, h) invertible

⇐⇒ res(g, h) = det(Syl(g, h)) unit in A .

This shows the equivalence of (2) and (3). Now let ϕg,h be an isomorphism. Thenϕ−1g,h(1) = (s, t) such that sg + th = 1. Hence (2) implies (1).

Finally let (s, t) ∈ A<m[X] × A<n[X] such that sg + th = 1. We claim that thenexists (sk, tk) ∈ A<m[X] × A<n[X] such that skg + tkh = Xk for 0 ≤ k < n + m.We prove this by induction over k. For k = 0 set s0 = s and t0 = t. Now assumethe induction hypothesis holds for some k − 1 < n + m − 1. Then there exists(sk−1, tk−1) ∈ A<m[X]×A<n[X] such that sk−1g + tk−1h = Xk−1 and

Xk = (sk−1g + tk−1h)X = sk−1Xg + tk−1Xh .

Page 34: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

28 2. HENSEL LIFTING

Since hm is a unit there exists a ∈ A such that sk−1X = ah + sk with deg(sk) < m.Then

Xk = sk−1Xg + tk−1Xh

= sk−1Xg + tk−1Xh− ahg + ahg

= (sk−1X − ah)g + (tk−1X + ag)h

= skg + (tk−1X + ag)h

Now deg(skg) < n+m and deg((tk−1X+ag)h) ≤ deg(tk−1X+ag)+m. Since k < n+mis deg(tk−1X+ag)+m < n+m and hence deg(tk−1X+ag) < n. With tk := tk−1X+agit follows the hypothesis.

As a result there exists for 0 ≤ k < n + m (sk, tk) ∈ A<m[X] × A<n[X] such thatϕg,h(sk, tk) = Xk and therefore is ϕg,h surjective and hence an isomorphism whichcompletes the proof.

Remark 2.48. The equivalence of (2) and (3) is valid for any g, h ∈ A[X].

Definition 2.49. Let A be a ring and g and h ∈ A[X] polynomials with deg(g) = nand deg(h) = m. If there exists s ∈ A<m[X] and t ∈ A<n[X] such that sg + th = 1 wecall g and h strongly relatively prime.

Remark 2.50. If A[X] is a unique factorization domain and g and h are strongly relativelyprime then g and h are also relatively prime in the sense that gcd(g, h) = 1. Supposethis were not the case, then gcd(g, h) divides 1 = sg + th. Since gcd(g, h) it not a unitand A an integral domain this is a contradiction. If A[X] is a principal ideal domainthen, by Bezout’s identity, relatively prime g and h are also strongly relatively prime.

We can also obtain the following useful corollary

Corollary 2.51. Let A be an unique factorization domain and g, h ∈ A[X]. Thenres(g, h) 6= 0 if and only if gcd(g, h) constant.

Proof. Let k be the field of fractions of A. Then k[X] is a principal ideal domain. Henceg, h are strongly relatively prime in k if and only if gcd(g, h) = 1 in k by Bezout’sidentity. Thus res(g, h) is a unit, i.e. res(g, h) 6= 0, if and only if gcd(g, h) = 1 in k bytheorem 2.47. Since gcd(g, h) = 1 in k if and only if gcd(g, h) constant in A we concludethe proof.

With the resultant we have a powerful (theoretical) tool to determine whether two

polynomials are (strongly) relatively prime. In the following we are particularly inter-

ested whether polynomials g, h ∈ A[X] remain (strongly) relatively prime in A/m for

some proper ideal m. Since res(g, h) is a polynomial in A[X] one might assume that there

is no difference whether we first include g, h in A/m and then compute the resultant or

include res(g, h) in A/m. But consider the following example

Example 2.52. For g = Y 2X3 −X and h = Y X + 1 ∈ Q[Y ][X] and m = (Y ) we have

Syl(g, h) =

Y 2 Y 0 00 1 Y 00 0 1 Y−1 0 0 1

and Syl(g, h) = Syl(−X, 1) =[−1].

Page 35: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.4. SYLVESTER MATRIX AND RESULTANT 29

Hence res(g, h) = Y 2(Y + 1) ≡ 0 mod Y but res(g, h) ≡ −1 mod Y .

The reason is that the Sylvester matrices are rather different. Thus we have to find a

sufficient condition that ensures that the resultants coincide. But at first we need some

notation.

Definition 2.53. For a polynomial f ∈ A[X] denote by lt(f) the leading term of f , i.e.the term with highest degree of f . Moreover, denote by lc(f) the leading coefficient off , i.e. the coefficient of the monomial of lt(f).

Lemma 2.54. Let A be a integral domain, m ⊂ A a proper ideal and g, h ∈ A[X]non-zero polynomials. If lc(g) and lc(h) are units in A then

res(g mod m, h mod m) ≡ res(g, h) mod m .

Proof. Since lc(g) and lc(h) are units in A it follows that deg(g) = deg(g mod m) anddeg(h) = deg(h mod m). The construction of Syl(g, h) depends on the degree of g andh. Thus Syl(g, h) and Syl(g mod m, h mod m) have the same size. Since the resultant isa polynomial in the coefficients of g and h the statement follows.

For the case that A is an Noetherian domain we can now give the following useful

connection between (strongly) relatively prime polynomials.

Corollary 2.55. Let A be a Noetherian domain with maximal ideal m, Am its com-pletion and g, h ∈ A[X] non-zero polynomials with lc(g) and lc(h) not in m. Then thefollowing statements are equivalent:

(1) gcd(g mod m, h mod m) /∈ m

(2) g and h are relatively prime in A/m[X]

(3) g and h are strongly relatively prime in A/mk[X] for all k ∈ N≥1

(4) g and h are strongly relatively prime in Am[X]

Proof. Since m is a maximal ideal, A/m is a field and thus lc(g) and lc(h) are units inA/m. This also implies the equivalence of (1) and (2).

Moreover, A/m[X] is a principal ideal domain. Therefore g and h are relatively primein A/m if and only if g and h are strongly relatively prime in A/m by Bezout’s iden-tity. By theorem 2.47 it follows that g and h are relatively prime in A/m if and onlyif res(g, h) is a unit in A/m. Let k be a positive integer. By lemma 2.54 we haveres(g mod mk, h mod mk) ≡ res(g, h) mod mk and by lemma 2.12 res(g, h) unit in A/mif and only if res(g, h) unit in A/mk. This combined implies the equivalence of (2) and(3). From the construction of Am it follows immediately the equivalence of (3) and(4).

Page 36: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

30 2. HENSEL LIFTING

2.5 Hensel lifting

The content of this section was derived on my own. In example 2.46 we have seen that

the Jacobian of our initial approximation and the Sylvester matrix of the polynomials of

the corresponding factorization of f(0, Y ) coincide. This is in fact always the case and

therefore the Jacobian is invertible if and only if the polynomials of the corresponding

factorization are strongly relatively prime by our previous result. This can be seen as

follows:

Let A be a complete Noetherian local ring with maximal ideal m, f ∈ A[X] a monic

polynomial and write f =∑d−1

i=0 fiXi+Xd. Let m and n be positives integers such that

n + m = d. Assume we want to determine polynomials g =∑n−1

i=0 giXi + Xn ∈ A[X]

and h =∑m−1

i=0 hiXi +Xm ∈ A[X] such that

f =

d−1∑i=0

fiXi +Xd =

(n−1∑i=0

giXi +Xn

)(m−1∑i=0

hiXi +Xm

)= gh .

This yields n+m equations (with gn = 1 and hm = 1 for convenience)

fk =∑i+j=k

gihj , 0 ≤ k < n+m

which is equivalent to finding roots for n+m polynomials

Fk :=∑i+j=k

GiHj − fk ∈ A[H,G] , 0 ≤ k < n+m

where (H,G) := (Hm−1, . . . ,H0, Gn−1, . . . , G0) is a family of indeterminates and Gn = 1

and Hn = 1. Now we can define

F :=

Fm+n−1

...

F0

∈ A[H,G]m+n . (2.30)

Thus the problem of determining monic polynomials g ∈ A[X], deg(g) = n, and

h ∈ A[X], deg(h) = m, such that f = gh is equivalent to determining (h, g) ∈ Am+n

such that

F (h, g) = 0 .

Now assume we have an approximate solution (h, g) ∈ Am+n with ‖F (h, g)‖m < 1. By

corollary 2.43 we can obtain a unique solution to (2.30) via Newton iteration if JF (h, g)

is invertible. Therefore we take a closer look at the Jacobian

JF (H,G) =

(∂Fm+n−1

∂Hi

)m>i≥0

(∂Fm+n−1

∂Gj

)n>j≥0

......(

∂F0∂Hi

)m>i≥0

(∂F0∂Gj

)n>j≥0

.

Page 37: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.5. HENSEL LIFTING 31

For 0 ≤ k < m+ n and 0 ≤ i < m we have

∂Fk∂Hi

=∂

∂Hi

( ∑i+j=k

GiHj − fk

)

=∑i+j=k

∂(GiHj)

∂Hi

=

min{m,k}∑j=max{0,−n+k}

∂(Gk−jHj)

∂Hi=

Gk−i , max{0,−n+ k} ≤ i ≤ min{m, k}

0 , else

and by an analogous computation for 0 ≤ j < n

∂Fk∂Gj

=

Hk−j , max{0,−m+ k} ≤ j ≤ min{n, k}

0 , else.

In particular

∂Fm+n−1

∂Hi...

∂F0∂Hi

=

0...0

1

Gn−1

...G0

0...0

m− 1− i

}i

and

∂Fm+n−1

∂Gj...

∂F0∂Gj

=

0...0

1

Hm−1

...H0

0...0

n− 1− j

}j

Hence

JF (h, g) = Syl(g, h) (2.31)

and thus JF is invertible if and only if res(g, h) is a unit in A. To obtain a unique

solution for F it is therefore sufficient that we have strongly relatively prime polynomials

g, h ∈ A[X] such that f ≡ gh mod m by theorem 2.47!

Proposition 2.56 (Hensel lifting). Let A be a complete Noetherian local ring withmaximal ideal m and f ∈ A[X] a non-zero polynomial with lc(f) /∈ m. If there existsg, h ∈ A[X] such that g and h are strongly relatively prime and

f ≡ gh mod m

then there exists unique strongly relatively prime polynomials g and h ∈ A[X] such that

f = gh andg ≡ g mod m

h ≡ h mod m. (2.32)

Proof. Since lc(f) /∈ m we have also lc(g) /∈ m and lc(h) /∈ m. Thus lc(f), lc(g) and lc(h)are units in A. Therefore we assume without loss of generality that f, g and h are monic(see remark 2.58 for details) and write g =

∑n−1i=0 giX

i+Xn and h =∑m−1

i=0 hiXi+Xm.

Page 38: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

32 2. HENSEL LIFTING

Now we can construct system (2.30) with F ∈ A[H,G]m+n. As f ≡ gh mod m,F has an approximate solution (h, g) := (hm−1, . . . , h0, gn−1, . . . , g0) ∈ Am+n with‖F (h, g)‖m < 1 and JF (h, g) = Syl(g, h) by (2.31). Furthermore, g and h are stronglyrelatively prime and thus res(g, h) = det(JF (h, g)) is a unit by theorem 2.47. Thus allconditions for the corollary 2.43 to the Newton iteration are satisfied. Therefore thereexists a unique (h, g) = (hm−1, . . . , h0, gn−1, . . . , g0) ∈ Am+n such that

F (h, g) = 0, det(Jf (h, g)) unit and ‖(h, g)− (h, g)‖m < 1.

Define the polynomials

g :=

n−1∑i=0

giXi +Xn and h :=

m−1∑i=0

hiXi +Xm .

Then g and h satisfy (2.32) and since det(Jf (h, g)) = res(g, h), g and h are stronglyrelatively prime by theorem 2.47.

Remark 2.57. We call the polynomials g and h lifted.

Remark 2.58. Since lc(f), lc(g) and lc(h) are units we can write lc(f)f ′ = f ,lc(g)g′ ≡ g mod m and lc(h)h′ ≡ h mod m with monic polynomials f ′, g′ and h′. Itis therefore sufficient to apply our lifting procedure to the monic polynomials such thatwe obtain lifted polynomial g′ and h′ and then to return lc(g)g and lc(h)h.

For the rest of this section let f ∈ A[X] be a monic polynomial with deg(f) = n. We

have seen that it is possible to lift a factorization f ≡ gh mod m with strongly relatively

prime polynomials g, h ∈ A[X] uniquely to a factorization f = gh with g, h ∈ A[X]. To

be useful in practice we have to generalize the statement in such a way that we can lift

strongly relatively prime monic polynomials g1, . . . , gr ∈ A[X] with deg(gi) = ni and

f ≡r∏i=1

geii mod m, ei ≥ 1 (2.33)

to unique polynomials g1, . . . , gr ∈ A[X] such that

f =∏ri=1 g

eii and gi ≡ gi mod m , i = 1, . . . , r .

We make the generalization in two steps. First we consider the case that ei = 1 for

i = 1, . . . , n and then the general case (2.33).

Therefore suppose that f ≡∏ri=1 gi mod m with gi =

∑ni−1j=0 gi,jX

j +Xni . If we define

the families of indeterminates Gi := (Gi,ni−1, . . . , Gi,0) for i = 1, . . . , r we can extend

our system (2.30) to

F (1) :=

F

(1)n−1...

F(1)0

∈ A[Gr, . . . ,G1]n (2.34)

where (again with Gi,ni = 1)

F(1)k :=

∑k1+...+kr=k

G1,k1 · · ·Gr,kr − fk , 0 ≤ k < n .

Page 39: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.5. HENSEL LIFTING 33

Define gi := (gni−1, . . . , g0) ∈ Ani then∥∥∥F (1)(gr, . . . , g1)∥∥∥m< 1

Hence we can uniquely lift the g1, . . . , gr if the Jacobian JF (1)(gr, . . . , g1) is invertible.

Therefore now we take a closer look at the Jacobian of F (1).

Lemma 2.59. Let F (1) ∈ A[Gr, . . . ,G1]n be the system (2.34) and set

Gi :=

ni−1∑j=0

Gi,jXj +Xni ∈ A[Gi][X] , i = 1, . . . , r .

Thendet (JF (1)) = δ

∏1≤i<j≤r

res(Gi, Gj)

where δ ∈ {−1, 1}.

Proof. First we show that res(Gi, Gj) divides det (JF (1)) for 1 ≤ i < j ≤ r. The idea is to

construct maps ϕ(i,j) and ψ(i,j) with det(Jψ(i,j)

)= res(Gi, Gj) such that

F (1) = ϕ(i,j) ◦ ψ(i,j) and then to make use of the chain rule.

We fix 1 ≤ i < j ≤ r and without loss of generality we assume i = 1 and j = 2. Forthe product G1G2 we can construct analogous to (2.30) the system

H(1,2) :=

H

(i,j)n2+n1−1

...

H(i,j)0

∈ A[G2,G1]n2+n1 .

where (with G1,n1 = G2,n2 = 1)

H(1,2)k :=

∑k1+k2=k

G1,k1G2,k2 ∈ A[G2,G1] , 0 ≤ k < n2 + n1 .

Notice that by constructionJH(1,2) = Syl(G2, G1) . (2.35)

Moreover, consider the maps

ψ(1,2) : An → An−n1−n2 × An2+n1 ,

(G3, . . . ,Gr,G2,G1) 7→ (G3, . . . ,Gr, H(1,2)(G2,G1))

andϕ(1,2) : An−n1−n2 × An2+n1 → An,

((G3, . . . ,Gr),H) 7→

ϕ(1,2)n−1 (G3, . . . ,Gr,H)

...

ϕ(1,2)0 (G3, . . . ,Gr,H)

where for 0 ≤ k < n

ϕ(1,2)k : An−n1−n2 × An2+n1 → A,

((G3, . . . ,Gr),H) 7→∑

k3+···+kr+τ=k

G3,k3 · · ·Gr,krHτ − fk

Page 40: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

34 2. HENSEL LIFTING

with H = (Hn2+n1−1, . . . ,H0) and Hn2+n1 = 1. Then

F (1)(Gr, . . . ,G1) = ϕ(1,2) ◦ ψ(1,2)(G3, . . . ,Gr,G2,G1)

and by the chain rule it follows with δ ∈ {−1, 1}

det (JF (1)) = δ det(Jϕ(1,2)◦ψ(1,2)

)= δ det

((Jϕ(1,2) ◦ ψ(1,2)

)Jψ(1,2)

).

Finally we obtain

det(Jψ(1,2)

)= det

([In−n1−n2

JH(1,2)

])= det (JH(1,2))

(2.35)= det(Syl(G2, G1)) = res(G2, G1) .

Therefore res(Gi, Gj) divides det(JF (1)) for all 1 ≤ i < j ≤ r.From Syl(Gi, Gj) it follows easily that deg(res(Gi, Gj)) = ni + nj − 1 (remember that

Gi and Gj are monic). Since the res(Gi, Gj) are clearly pairwise relatively prime weobtain

deg(det(JF (1))) ≥∑

1≤i<j≤r(ni + nj − 1) = (r − 1)n−

∑1≤i<j≤r

1 = (r − 1)n− 1

2(r − 1)r .

On the other hand, for k = 1, . . . , r, the term with highest degree in F(1)n−k is

∏s∈S Gs,ns−1

for a subset S ⊂ {1, . . . , r} with |S| = k (again the Gi are monic). For k > r the degree

of F(1)n−k is at most r. Hence

deg(det(JF (1))) ≤r∑

k=1

(k − 1) + (n− r)(r − 1) =r−1∑k=1

k + (n− r)(r − 1)

=1

2(r − 1)r + n(r − 1)− r(r − 1)

= (r − 1)n− 1

2(r − 1)r

and we conclude det(JF (1)) = δ∏

1≤i<j≤r res(Gi, Gj).

With the help of this lemma we can state the first generalization of the Hensel lifting

theorem.

Proposition 2.60. Let A be a complete Noetherian local ring with maximal ideal mand f ∈ A[X] a non-zero polynomial such that lc(f) /∈ m. Let g1, . . . , gr ∈ A[X] bepairwise strongly relatively prime polynomials such that

f ≡r∏i=1

gi mod m .

Then there exists unique pairwise strongly relatively prime polynomials gi ∈ A[X],i = 1, . . . , r, such that

f =r∏i=1

gi and gi ≡ gi mod m , 1 ≤ i ≤ r . (2.36)

Page 41: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.5. HENSEL LIFTING 35

Proof. With the system (2.34) the proof is largely analog to the previous proof of ourHensel lifting theorem 2.56. Assume again without loss of generality that f and g1, . . . , grare monic. Considering the previous notation the only thing that remains to show isthat det(JF (1)(gr, . . . , g1)) is a unit and that the lifted polynomials are pairwise stronglyrelatively prime.

Since the gi are pairwise strongly relatively prime res(gi, gj) is a unit for 1 ≤ i < j ≤ rby theorem 2.47 and thus det(JF (1)(gr, . . . , g1)) is a unit by lemma 2.59. Therefore bycorollary 2.43 to the Newton iteration we can obtain a unique (gr, . . . , g1) ∈ Anr+...+n1

such that

F (1)(gr, . . . , g1) = 0, ‖(gr, . . . , g1)− (gr, . . . , g1)‖m < 1 and det(J(1)F (gr, . . . , g1)) unit.

If we write gi = (gi,ni−1, . . . , gi,0) for i = 1, . . . , r we can define the unique polynomials

gi :=

ni−1∑j=0

gi,jXj +Xni ∈ A[X] , 1 ≤ i ≤ r

which satisfy (2.36). Furthermore, by lemma 2.59 it follows that

δ∏

1≤i<j≤rres(gi, gj) = det (JF (1)(gr, . . . , g1)) , δ ∈ {−1, 1}

is a unit. Therefore g1, . . . , gr are pairwise strongly relatively prime by theorem 2.47

Now we are ready to handle the general case. Unless otherwise stated we continue the

notation of the previous case. Suppose we have pairwise strongly relatively prime monic

polynomials g1, . . . , gr ∈ A[X] with mi := deg(gi), m :=∑r

i=1mi and positive integers

e1, . . . , er such that

f ≡∏

geii mod m

and assume that there exists an index i with ei ≥ 2. To simplify the notation define the

polynomials

Hi :=(mi−1∑j=0

Gi,jXj +Xmi

)ei∈ A[Gr, . . . ,G1][X]

and write Hi =∑ni−1

k=0 Hi,kXk +Xni with ni := miei. Then (again with Gi,mi = 1)

Hi,k =∑

k1+...+kei=k

Gi,k1 . . . Gi,kei ∈ A[Gr, . . . ,G1] , 0 ≤ k < ni

for i = 1, . . . , r. Now we can extend our previous system (2.34) to

F (2) :=

F

(2)n−1...

F(2)0

∈ A[Gr, . . . ,G1]n (2.37)

Page 42: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

36 2. HENSEL LIFTING

where (again with Hi,ni = 1)

F(2)k :=

∑k1+...+kr=k

H1,k1H2,k2 · · ·Hr,kr − fk , 0 ≤ k < n .

But in contrast to the previous case the system F (2) is overdetermined since

deg(f) = n =r∑i=1

ni =r∑i=1

miei >r∑i=1

mi .

Therefore we have to show that there exists a consistent subsystem of F (2) such that

the Jacobian of this subsystem is invertible for (gr, . . . , g1).

In preparation of the proof we take a closer look at F (2). Consider the map

ϕ : Am → An,

gr...

g1

7→ϕ(r)(gr)

...

ϕ(1)(g1)

where

ϕ(i) : Ami → Ani , g 7→

Hi,ni−1(g)

...

Hi,0(g)

for 1 ≤ i ≤ r. Then

F (2) = F (1) ◦ ϕ

and by the chain rule

JF (2) = (JF (1) ◦ ϕ) Jϕ . (2.38)

To determine a consistent subsystem of F (2) it is therefore sufficient to consider F (1) ◦ϕand (JF (1) ◦ ϕ) Jϕ respectively.

Theorem 2.61 (Generalized Hensel lifting). Let A be a complete Noetherian localring with maximal ideal m and f ∈ A[X] a non-zero polynomial such that lc(f) /∈ m.Let g1, . . . , gr ∈ A[X] be pairwise strongly relatively prime polynomials and e1, . . . , erpositive integers such that

f ≡r∏i=1

geii mod m

and ei 6≡ 0 mod m, i = 1, . . . , r. Then there exists unique pairwise strongly relativelyprime polynomials g1, . . . , gr ∈ A[X] such that

f =r∏i=1

geii and gi ≡ gi mod m , 1 ≤ i ≤ r .

Proof. We make again use of the previous introduced notation and assume again that,without loss of generality, f and g1 . . . , gr are monic. If we can show that the system(2.37) has a consistent subsystem G such that det(JG(gr, . . . , g1)) is a unit, the proof islargely identical to the proof of the previous corollary. The only thing that remains toshow is that the lifted polynomials are pairwise strongly relatively prime and unique.

Page 43: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.5. HENSEL LIFTING 37

For i = 1, . . . , r set hi := (hi,ni−1, . . . , hi,0) := ϕ(i)(gi) and define the polynomialshi :=

∑ni−1k=0 hi,kX

k +Xni . Then we have hi = geii and by (2.38)

JF (2)(gr, . . . , g1) = JF (1)◦ϕ(gr, . . . , g1)

= JF (1)(hr, . . . ,h1)Jϕ(gr, . . . , g1) .

Since the gi are strongly relatively prime the hi are also strongly relatively prime. Thusit follows that

det(JF (1)(hr, . . . ,h1)) = δ∏

1≤i<j≤rres(hi, hj) , δ ∈ {−1, 1}

is a unit by theorem 2.47 and lemma 2.59 and in particular that JF (1)(hr, . . . ,h1) isinvertible. Now by construction

Jϕ(gr, . . . , g1) =

Jϕ(r)(gr). . .

Jϕ(1)(g1)

where Jϕ(i)(gr) ∈ Ani,mi for i = 1, . . . , r. Since the gi are assumed to be monic we have

∂Hi,ni−k∂Gi,mi−j

=

ei , k = j

0 , k < j

∗ , else

for 1 ≤ i ≤ r, 1 ≤ k ≤ ni and 1 ≤ j ≤ mi. Therefore it follows that

Jϕ(i) =

ei

∗ . . ....

. . . ei...

. . . ∗...

. . ....

∗ . . . ∗

.

Consider JF (1)(hr, . . . ,h1)Jϕ(gr, . . . , g1) as an element in (A/m)n,m. Due to the factthat A/m is a field we can apply vector space theory:

Since JF (1)(hr, . . . ,h1) is invertible it has full rank and by our previous observationrank(Jϕ(gr, . . . , g1)) = m. Thus

rank(JF (2)(gr, . . . , g1))(2.38)

= rank(JF (1)(hr, . . . ,h1)Jϕ(gr, . . . , g1)) = m

and we can determine a consistent subsystem G with det(JG)(gr, . . . , g1) 6∈ m. This alsoimplies that det(JG)(gr, . . . , g1)) is a unit in A.

Hence we can analogous to the previous proof apply the Newton iteration on the systemG to determine polynomials g1, . . . , gr ∈ A[X] such that f =

∏ri=1 g

eii and gi ≡ gi mod m

for i = 1, . . . , r. If we define hi := gei =∑ni−1

k=0 hi,kXk+Xni and hi := (hi,ni−1, . . . , hi,0)

Page 44: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

38 2. HENSEL LIFTING

for i = 1, . . . , r we have that

det(JF (1)(hr, . . . , h1)) = δ∏

1≤i<j≤rres(hi, hj) , δ ∈ {−1, 1}

is a unit. Therefore hr, . . . , h1 are pairwise strongly relatively prime by theorem 2.47and thus the gi are also pairwise strongly relatively prime.

Finally we have to show that the gr, . . . , g1 are unique. As gi ≡ gi mod m fori = 1, . . . , r we also have hi ≡ hi mod m for i = 1, . . . , r. Since also f =

∏ri=1 hi and

f ≡∏ri=1 hi mod m it follows that hr, . . . , h1 are unique by our previous proposition

2.60 and thus gr, . . . , g1 are also unique.

We have seen that we can uniquely lift a factorization in a complete Noetherican local

ring A. A downside is that since each element in A is a possibly infinite series it is not

possible to compute exactly in A. But the situation can be rescued.

Corollary 2.62. Let A be a Noetherian ring with maximal ideal m andf ∈ A[X] a non-zero polynomial such that lc(f) /∈ m. Let g1, . . . , gr ∈ A[X] be polyno-mials and e1, . . . , er positive integers such that

f ≡r∏i=1

geii mod m and gcd(gi mod m, gj mod m) /∈ m for 1 ≤ i < j ≤ r

and ei 6≡ 0 mod m, i = 1, . . . , r. Then there exists for all positive integers D polynomials

g(D)1 , . . . , g

(D)r ∈ A[X] such that the g

(D)i are pairwise strongly relatively prime in A/mD,

f ≡r∏i=1

(g

(D)i

)eimod mD and g

(D)i ≡ g mod m for 1 ≤ i ≤ r. (2.39)

Furthermore, the g(D)1 , . . . , g

(D)r are unique, i.e., for all g∗1, . . . , g

∗r ∈ A[X] with

f ≡∏ri=1(g∗i )

ei mod mD and g∗i ≡ g mod m, for 1 ≤ i ≤ r, we have

g∗i − g(D)i ≡ 0 mod mD , i = 1, . . . , r . (2.40)

Moreover, there exists unique strongly relatively prime polynomials g1, . . . , gr ∈ Am[X]such that

f =r∏i=1

geii and gi ≡ gi mod m for 1 ≤ i ≤ r

where Am is the completion of A with respect to m with maximal ideal m.

Proof. By corollary 2.55 the gi are pairwise strongly relatively prime in Am. Thereforeby theorem 2.61 there exists unique strongly relatively prime polynomials

gi =

ni∑j=0

g(i)j Xj ∈ Am[X] , 1 ≤ i ≤ r,

such that f =∏ri=1 g

eii and gi ≡ gi mod m for 1 ≤ i ≤ r. If we write for i = 1, . . . , r

g(i)j = (g

(i)j,1 + m, g

(i)j,2 + m2, . . . ) , 0 ≤ j ≤ ni ,

Page 45: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

2.5. HENSEL LIFTING 39

then the statements (2.39) and (2.40) are satisfied by the polynomials

g(D)i := g

(i)ni,D

Xni−1 + . . .+ g(i)0,D ∈ A[X] , 1 ≤ i ≤ r

for all positive integers D. The g(D)i are unique and pairwise strongly relatively prime

due to the fact that the gi are unique and pairwise strongly relatively prime.

Remark 2.63. The proof still relies on computations in Am to compute in each iterationstep the inverse of the Jacobian JG

(gk−1

)of the consistent subsystem G from the

proof of theorem 2.61. But we already showed in our Newton iteration algorithm thatthe inversion of JG

(gk−1

)can be replaced by the computation of J (k) ∈ Am,mm such

that ‖J (k)JG(gk−1

)− Im‖m ≤ 2−2k and this in fact nothing else than the inversion of

JG(gk−1

)in A/m2k !

The proof of the previous corollary is constructive and together with remark 2.63

yields the following Hensel lifting algorithm. But before we start we need to intro-

duce some additional notation. For positive integers n denote by [n] the set {1, . . . , n}and for C = (ci,·)1≤i≤n ∈ An,m and an index set I ⊂ [n] denote by CI the matrix

(ci,·)i∈I ∈ A|I|,m. Moreover, for an ideal J ⊂ A denote by C mod J the reduction of

each element in C modulo J .

Algorithm 2.64 Hensel lifting

Input: Noetherian ring A with maximal ideal m, D ∈ N>0 and f, g1, . . . , gr ∈ A[X] andintegers e1, . . . , er such that lc(f) 6≡ 0 mod m, ei 6≡ 0 mod m, f ≡

∏ri=1 g

eii mod m and

gcd(gi mod m, gj mod m) /∈ m for 1 ≤ i < j ≤ r.Output: g1, . . . , gr ∈ A[X] such that f ≡

∏ri=1 g

eii mod mD. Furthermore the gi are

unique and pairwise strongly relatively prime in A/mD.

// Normalize input polynomialsCompute lead f inv such that lead f inv · lc(f) ≡ 1 mod mD

f := lead f inv · fn := deg(f)for i := 1, . . . , r do

// save coefficients for output polynomialslead gi := lc(gi) mod mCompute lead gi inv such that lead gi inv · lead gi ≡ 1 mod m

g(0)i := lead gi inv · gi mod m

ni := deg(g(0)i )

end form :=

∑ri=1 ni

// Create coefficient arraysfor i := 1, . . . , r do

g(0)i := [g

(0)i,ni−1, . . . , g

(0)i,0 ]

end for/∗ next page ∗/

Page 46: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

40 2. HENSEL LIFTING

// Preparation for Newton iterationCreate F (2) ∈ A[Gr, . . . ,G1]n as defined in (2.37)Create the corresponding Jacobian JF (2) ∈ A[Gr, . . . ,G1]n,m

/∗ continue Hensel lifting algorithm ∗/if m 6= n then //F (2) overdetermined

Determine I ⊂ [n], |I| = m, s.th. rank(

(JF (2))I (g(0)r , . . . , g

(0)1 ))

= m in A/m

G := F(2)I

JG := (JF (2))Ielse

G := F (2)

JG := JF (2)

end if// Newton Iterationd := dlog2Defor k := 1, . . . , d do

Compute J (k) ∈ Am,m such that J (k)JG(g(k−1)r , . . . , g

(k−1)1 ) ≡ Im mod m2k(

g(k)r , . . . , g

(k)1

):=(g

(k−1)r , . . . , g

(k−1)1

)− J (k)G

(g

(k−1)r , . . . , g

(k−1)1

)mod m2k

end for// Create output polynomialsfor i := 1, . . . , r do

gi :=∑ni−1

k=0 lead gi · g(d)i,kX

k + lead giXni

end forreturn g1, . . . , gr

Theorem 2.65. The Hensel lifting algorithm 2.64 works correctly and needs at mostO((log2(D) + 1) deg(f)3) arithmetic operations.

Proof. The correctness of the algorithm follows from corollary 2.62, remark 2.63, theproof of theorem 2.61 and the correctness of the Newton iteration algorithm 2.41. Sincethe dominant step is the Newton iteration it follows that the algorithm needs at mostO((log2(D) + 1) deg(f)3) arithmetic operations.

Page 47: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Chapter 3

Evaluations of multivariatepolynomials

Before we start with this chapter, we have to fix some notation. We denote for a

finite set S by card(S) the cardinality of S. For a field k consider the polynomial

f ∈ k[X1, . . . , Xn]. We denote by deg(f) the total degree of f and for a family I ⊂{X1, . . . , Xn} of indeterminates we denote by degI(f) the (total) degree of f with respect

to I. Moreover, we denote for an indeterminate Xi by lcXi(f) the leading coefficient of

f with respect to Xi. Similarly we denote for polynomials g, h ∈ k[X1, . . . , Xn, Y ] by

resY (g, h) and SylY (g, h) the resultant / Sylvester matrix of g and h where g and h are

considered as polynomials in k[X1, . . . , Xn][Y ].

Example 3.1. Let f = 3X2Y 2Z3 − 2XY 4Z ∈ Q[X,Y, Z]. Then

deg(f) = 7, degY (f) = 4 and lcY (f) = −2XZ .

3.1 Effective Hilbert irreducibility

Our goal in this section is to derive an effective version of Hilbert’s Irreducibility theorem.

We will follow the original publication from Kaltofen [10]. We show that a certain

bivariate image of an irreducible polynomial f ∈ k[X1, . . . , Xn] remains irreducible with

a controllable high probability.

We start with the fundamental Schwartz-Zippel lemma. This lemma will be used in

nearly every proof of this chapter.

Lemma 3.2 (Schwartz-Zippel lemma). Let A be an integral domain, f a non-zeropolynomial in A[X1, . . . , Xn] with total degree D. Let S ⊂ A be a finite subset. Thenthe probability

Prob(f(a1, . . . , an) = 0 | a1, . . . , an ∈ S

)≤ D

card(S).

Proof. We prove the lemma by induction over the number of indeterminates. Let n = 1and f ∈ A[X1]. Since an univariate polynomial with degree D has at most D roots it

41

Page 48: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

42 3. EVALUATIONS OF MULTIVARIATE POLYNOMIALS

follows Prob(f(a1) = 0 | a1 ∈ S

)≤ D/card(S).

Now assume the hypothesis holds for all polynomials in A[X1, . . . , Xn−1] and let f be apolynomial in A[X1, . . . , Xn]. Set d = degXn(f) and fd = lcXn(f) ∈ A[X1, . . . , Xn−1].Then deg(fd) ≤ D − d and by our induction hypothesis

Prob(fd(a1, . . . , an−1) = 0 | a1, . . . , an−1 ∈ S

)≤ D − d

card(S).

If we have fd(a1, . . . , an−1) 6= 0 for a1, . . . , an−1 ∈ S it follows thatdeg f(a1, . . . , an−1, Xn) = d and thus that there are at most d roots of f(a1, . . . , an−1, Xn)in S. Hence, by our induction hypothesis

Prob( f(a1, . . . , an) = 0 | fd(a1, . . . , an−1) 6= 0, an ∈ S ) ≤ d

card(S).

We can now conclude that for arbitrary a1, . . . , an ∈ S with a := (a1, . . . , an)

Prob(f(a) = 0

)= Prob

(f(a) = 0 | fd(a1, . . . , an−1) = 0

)Prob

(fd(a1, . . . , an−1) = 0

)+ Prob

(f(a) = 0 | fd(a1, . . . , an−1) 6= 0

)Prob

(fd(a1, . . . , an−1) 6= 0

)≤ Prob

(fd(a1, . . . , an−1) = 0

)+ Prob

(f(a) = 0 | fd(a1, . . . , an−1) 6= 0

)≤ D − d

card(S)+

d

card(S)

=D

card(S)

Remark 3.3. Note that the probability only depends on the degree of f and on thecardinality of S and not on the number of indeterminates!

Lemma 3.4 ([10]). Let k be a field and f ∈ k[X1, . . . , Xn, Y ] an irreducible polynomialwith ∂f/∂Y 6= 0, d = degY (f) and D = degX1,...,Xn(f). Pick random elements a1, . . . , anfrom a finite subset S ⊂ k. Then

Prob(f(a1, . . . , an, Y ) square free ∧ lcY (f)(a1, . . . , an) 6= 0

)≥ 1− (2d+ 1)D

card(S).

Proof. Since f is irreducible and ∂f/∂Y 6= 0 we have gcd(f, ∂f/∂Y ) = 1. Therefore theresultant

rf (X1, . . . , Xn) := resY

(f,∂f

∂Y

)= det

(SylY

(f,∂f

∂Y

))6= 0

by corollary 2.51. Since every term of rf is a product of d+(d−1) coefficients fi of f withdegree at most D it follows deg(rf ) ≤ (2d−1)D. We write ∂f/∂Y = kfkY

k−1 + . . .+f1

with fi ∈ k[X1, . . . , Xn], kfk 6= 0 and deg(fi) ≤ D, 1 ≤ i ≤ k.

We claim that if we select elements a1, . . . , an ∈ S such that(lcY (f)kfkrf )(a1, . . . , an) 6= 0 then f(Y ) := f(a1, . . . , an, Y ) is square free. Assumethis were not the case. Then gcd(f , ∂f/∂Y ) 6= 1 and thus resY (f , ∂f/∂Y ) = 0 by corol-lary 2.51. But resY (f , ∂f/∂Y ) = rf (a1, . . . , an) 6= 0, a contradiction. Hence f is squarefree if (lcY (f)kfkrf )(a1, . . . , an) 6= 0.

Page 49: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

3.1. EFFECTIVE HILBERT IRREDUCIBILITY 43

Since deg(lcY (f)kfkrf ) ≤ D +D + (2d− 1)D = (2d+ 1)D it follows that

Prob(

(lcY (f)kfkrf )(a1, . . . , an) 6= 0 | a1, . . . , an ∈ S)≥ 1− (2d+ 1)D

card(S)

by the Schwartz-Zippel lemma 3.2.

Before we prove the main theorem of this section we prove that the substitutions rarely

allow that a gcd of higher degree occurs.

Lemma 3.5 ([10]). Let k be a field, f1, . . . , fr ∈ k[X1, . . . , Xn] polynomials withdeg(fi) ≤ D for 1 ≤ i ≤ r and gcd(f1, . . . , fr) = 1. Furthermore, assume thatf1(0, . . . , 0) 6= 0. Then there exists a polynomial ∆ ∈ k[Z2, . . . , Zn] with deg(∆) ≤ 2D2

such that for any elements b2, . . . , bn ∈ k with ∆(b2, . . . , bn) 6= 0 we have

gcd1≤i≤r

(fi(X1, b2X1, . . . , bnX1)) = 1 .

Proof. Since f1(0, . . . , 0) 6= 0 it follows that X1 doesn’t divide f1(X1, Z2X1, . . . , ZnX1).Furthermore, we have gcd(f1, . . . , fr) = 1 by assumption. Thus it follows

gcd1≤i≤r

(fi(X1, Z2X1, . . . , ZnX1)) = 1

in k[X1, Z2, . . . , Zn]. Therefore there exists, by Bezout’s identity, polynomialss1, . . . , sr ∈ k(Z2, . . . , Zn)[X1] with deg(si) < D such that

1 =r∑i=1

sifi(X1, Z2X1, . . . , ZnX1) .

This yields a linear system over k(Z2, . . . , Zn) in 2D equations and rD unknowns. ByCramer’s rule we can find a solution in 1

∆(Z2,...,Zn)k[Z2, . . . , Zn] where ∆ is a determinant

of a m×m-Matrix, m ≤ 2D, of coefficients of powers of X1 in fi(X1, Z2X1, . . . , ZnX1).Hence deg(∆) ≤ 2D2 and b2, . . . , bn ∈ k with ∆(b2, . . . , bn) 6= 0 implies

1 =

r∑i=1

si(b2, . . . , bn, X1)fi(X1, b2X1, . . . , bnX1)

and thus gcd1≤i≤r(fi(X1, b2X1, . . . , bnX1)).

Moreover, substitutions of the form Xi 7→ Xi+ai have no influence on the irreducibility

of polynomials.

Lemma 3.6. Let f ∈ k[X1, . . . , Xn, Y ] be a non-zero polynomial over a field k. Forelements a1, . . . , an ∈ k the polynomial

f(X1 + a1, . . . , Xn + an, Y )

is irreducible if and only if f is irreducible.

Proof. The statement follows immediately from the fact that the map

k[X1, . . . , Xn, Y ]→ k[X1, . . . , Xn, Y ],Xi 7→ Xi + aiY 7→ Y

(3.1)

Page 50: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

44 3. EVALUATIONS OF MULTIVARIATE POLYNOMIALS

is a k-algebra automorphism.

In preparation of the proof of the effective Hilbert irreducibility theorem we state the

following application of the Hensel lifting theorem.

Proposition 3.7. Let g ∈ k[X1, . . . , Xn, Y ] be an irreducible polynomial. Assume thatg(0, . . . , 0, Y ) is square free and lcY (g)(0, . . . , 0) 6= 0. Define for elements b2, . . . , bn ∈ k

gb(X1, Y ) := g(X1, b2X1, . . . , bnX1, Y ) .

Then there exists for each factor hb ∈ k[[X1]][Y ] of gb with lcY (hb) = lcY (gb) a factorh ∈ k[[X1, . . . , Xn]][Y ] of g with lcY (h) = lcY (g) such that

h(X1, b2X1, . . . , bnX1, Y ) = hb(X1, Y ) .

Proof. Remember that k[[X1, . . . , Xn]] is a complete Noetherian local ring withmaximal ideal m = (X1, . . . , Xn). Let hb(X1, Y ) ∈ k[[X1]][Y ] be a factor of gb withlcY (hb) = lcY (gb). Notice that

gb(0, Y ) = g(0, . . . , 0, Y ) ≡ g mod m (3.2)

and that lcY (g)(0, . . . , 0) 6= 0 implies lcY (g) /∈ m. Furthermore, hb(0, Y ) is a non-zerofactor of g(0, . . . , 0, Y ). We write g(0, . . . , 0, Y ) = hb(0, Y )hb where hb is the corre-sponding cofactor. Since g(0, . . . , 0, Y ) is square free hb(0, Y ) and hb are relativelyprime. Therefore we can obtain by corollary 2.62 to the Hensel lifting a unique factorh ∈ k[[X1, . . . , Xn]][Y ] of g with h(0, . . . , 0, Y ) = hb(0, Y ) and lcY (h) = lcY (g).

We claim thath(X1, b2X1, . . . , bnX1, Y ) = hb(X1, Y ) .

This can be seen as follows. Since gb(0, Y ) = g(0, . . . , 0, Y ) we can also consider thefactorization gb(0, Y ) = hb(0, Y )hb and apply on this factorization the Hensel lift-ing theorem. Since the lifted polynomials are unique we obtain as the lifted poly-nomial hb. Assume now that h(X1, b2X1, . . . , bnX1, Y ) 6= hb(X1, Y ). Then wouldh(X1, b2X1, . . . , bnX1, Y ) be another factor of gb with

h(X1, b2X1, . . . , bnX1, Y ) ≡ hb(0, Y ) mod X1

in contradiction to the uniqueness of the lifted polynomials!

Now we can state the effective Hilbert irreducibility theorem under the additional

constraint that for f ∈ k[X1, . . . , Xn, Y ] we have ∂f/∂Y 6= 0. This is always satisfied

if degY (f) ≥ 1 and char(k) = 0. The proof is based on the original paper by Kaltofen

[10].

Theorem 3.8. Let k be a field, f ∈ k[X1, . . . , Xn, Y ] an irreducible polynomial with∂f/∂Y 6= 0 and δ the total degree of f . Pick random elements a1, . . . , an, b2, . . . , bn froma finite subset S ⊂ k. Then the probability

Prob(f(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y ) irreducible in k[X1, Y ]

)≥ 1− 4δ2δ

card(S).

Page 51: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

3.1. EFFECTIVE HILBERT IRREDUCIBILITY 45

Proof. By lemma 3.4 the probability that f(a1, . . . , an, Y ) is square free andlcY (f)(a1, . . . , an) 6= 0 is at least 1 − (2d+ 1)D/card(S) where D := degX1,...,Xn(f)and d := degY (f). Fix a1, . . . , an such that this is the case and set

g(X1, . . . , Xn, Y ) := f(X1 + a1, . . . , Xn + an, Y ) .

Notice that g is irreducible if and only if f is irreducible by lemma 3.6. For elementsb2, . . . , bn ∈ S set

gb(X1, Y ) := g(X1, b2X1, . . . , bnX1, Y )

= f(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y ) .

We have to prove that gb is irreducible in k[X1, Y ] with a probability of at least1− 4δ2δ/card(S).

First we determine the probability that gb remains irreducible in k(X1)[Y ].By our assumption g(0, . . . , 0, Y ) = f(a1, . . . , an, Y ) is square free andlcY (g)(0, . . . , 0) = lcY (f)(a1, . . . , an) 6= 0. Therefore by proposition 3.7 there exists foreach factor hb ∈ k[[X1]][Y ] of gb with lcY (hb) = lcY (gb) a factor h ∈ k[[X1, . . . , Xn]][Y ]of g with lcY (h) = lcY (g) such that

h(X1, b2X1, . . . , bnX1, Y ) = hb(X1, Y ) .

Thus it is sufficient to show that for each factor h ∈ k[[X1, . . . , Xn]][Y ] of g the polyno-mial hb(X1, Y ) := h(X1, b2X1, . . . , bnX1, Y ) does not divide gb in k[X1][Y ]. A sufficientcondition is that degX1

(hb) > D = degX1(gb). Then gb remains irreducible in k(X1)[Y ].

We show that this is the case if a certain polynomial π ∈ k[Z2, . . . , Zn] with degree atmost 2D(2d−1 − 1) does not vanish at b2, . . . , bn ∈ S. We fix the lead coefficients of thefactors since lcY (g) and lcY (gb) are units in k[[X1, . . . , Xn]] and k[[X1]] respectively andwe are only interested in non-associated factors.

Let h ∈ k[[X1, . . . , Xn]][Y ] be a factor of g with lcY (h) = lcY (g) and let h be thecorresponding cofactor such that g = hh. We write with X := (X1, . . . , Xn)

h =r∑i=0

∑α∈Nn

hi,αXαY i and h =

s∑i=0

∑α∈Nn

hi,αXαY i

where s < d and s + r = d. We claim that there must exist a coefficient hi,α of h or acoefficient hi,α of h for an index i with

D < |α| ≤ 2D and(hi,α 6= 0 or hi,α 6= 0

).

Assume this were not the case. Then

g =

(r∑i=0

∑|α|≤D

hi,αXαY i

)(s∑i=0

∑|α|≤D

hi,αXαY i

)+

d∑i=0

∑|β|≥2D+1α1+α2=β

hi,α1 hi,α2XβY i .

Since degX(g) ≤ D the right sum vanishes and h and h can be considered as elementsof k[X1, . . . , Xn][Y ]. Then g is reducible in k[X1, . . . , Xn][Y ] in contradiction to f irre-ducible. Hence we can assume without loss of generality that there exists an α ∈ Nn andan integer i such that hi,α 6= 0 with D < |α| ≤ 2D and 0 ≤ i ≤ r. Then we can define

Page 52: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

46 3. EVALUATIONS OF MULTIVARIATE POLYNOMIALS

the polynomial

δi,α :=∑|β|=|α|

hi,βXβ 6= 0

which is the coefficient of Y i in h of degree 2D ≥ |α| > D in X.

If b2, . . . , bn ∈ S satisfy

δi,α(X1, b2X1, . . . , bnX1) 6= 0

we can guarantee that hb has a non-zero coefficient of order 2D ≥ |α| > D in X1.Therefore hb cannot be a polynomial dividing gb in k[X1][Y ]. Thus the polynomialπ(Z2, . . . , Zn) can be chosen as the product of the δi,α(1, Z2, . . . , Zn) 6= 0 over all possiblefactor candidates of h. Since g has at most d irreducible factors in k[[X1, . . . , Xn]][Y ]and we do not need to consider complementary factor combinations there are at most

d−1∑i=1

(d− 1

i

)= 2d−1 − 1

factors to refute. Hence deg(π) ≤ 2D(2d−1 − 1) and we know that π(b2, . . . , bn) 6= 0guarantees that gb has no factor hb in k[[X1]][Y ] with degX1

(hb) ≤ degX1(gb). Therefore

gb is irreducible in k(X1)[Y ] if π(b2, . . . , bn) 6= 0.

Finally we must refute a possible content in k[X1][Y ]. Let li(X1, . . . , Xn) be the coeffi-cient of Y i in g(X1, . . . , Xn, Y ), deg(li) ≤ D. Then ld = lcY (g) and thus ld(0, . . . , 0) 6= 0.Since f is irreducible we have gcd0≤i≤d(li) = 1. By lemma 3.5 there exists a polynomial∆ ∈ k[Z2, . . . , Zn] with deg(∆) ≤ 2D2 such that for b2, . . . , bn ∈ S with∆(b2, . . . , bn) 6= 0 it follows that gcd0≤i≤d(li(X1, b2X1, . . . , bnX1)) = 1. For suchb2, . . . , bn ∈ S it follows that gb cannot have a non-trivial content with respect to Y , i.e.,a factor in k[X1].

We conclude that we have to avoid zeros of π∆. For randomly chosen b2, · · · , bn ∈ Swe have π∆(b2, · · · , bn) 6= 0 with a probability of at least 1− (deg(π) + deg(∆))/card(S)by the Schwartz-Zippel lemma 3.2. Together with the probability that f(a1, . . . , an, Y ) issquare free and lcY (f)(a1, . . . , an) 6= 0 it follows that gb is irreducible with a probabilityof at least(

1− (2d+ 1)D

card(S)

)(1− 2D(2D−1 − 1) + 2D2

card(S)

)≥ 1− 4δ2δ − 3d

card(S)≥ 1− 4δ2δ

card(S)

where δ := dD = deg(f).

For every non-zero polynomial f the condition ∂f/∂Y 6= 0 is satisfied if k is a field

of characteristic 0. For characteristic p > 0 one can prove that without the assumption

about the derivative the theorem is still correct if k is a perfect field, in particular if

every element of k is a pth power. But our black box factorization algorithm succeeds

only with a controllably high probability if k is an field of characteristic zero. Therefore

we only state the general theorem and skip the proof.

Page 53: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

3.2. FACTOR DEGREE PATTERN 47

Theorem 3.9 (Effective Hilbert irreducibility theorem). Let k be a perfect field,f ∈ k[X1, . . . , Xn, Y ] an irreducible polynomial with degree δ. Pick random elementsa1, . . . , an, b2, . . . , bn from a finite subset S ⊂ k. Then

Prob(f(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y ) irreducible in k[X1, Y ]

)≥ 1− 4δ2δ

card(S).

Proof. If char(k) = 0 this is theorem 3.8. If char(k) > 0 see [10].

3.2 Factor degree pattern

In the previous section we determined the probability that for randomly chosen elements

a1, . . . , an, b2, . . . , bn the image f(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y ) of an irreducible

polynomial f ∈ k[X1, . . . , Xn, Y ] remains irreducible. The question that now arises is

what happens with the image f(a1 + X1, a2 + b2X1, . . . , an + bnX1, Y ) of a reducible

polynomial?

Consider the factorization f = ge11 · · · gerr of f in pairwise non-associated irreducible

factors gi with di = deg(gi) ≥ 1 and ei ≥ 1. We call the lexicographically ordered

n-tuple ((di1 , ei1), . . . , (dir , eir)) the factor degree pattern of f .

The images gi(a1 +X1, a2 + b2X1, . . . , an+ bnX1, Y ) remain irreducible if they depend

on Y by the effective Hilbert irreducibility theorem 3.9. But they have not necessarily the

same degree and they can become associated. Thus the interesting question is whether

the factor degree pattern of the image f(a1 + b1X1, . . . , an + bnX1, Y ) coincides with

the factor degree pattern of f(X1, . . . , Xn, Y ). Since we can only apply the effective

Hilbert irreducibility theorem on those factors that depend on Y we need the following

notation. The primitive part of a polynomial f with respect to some indeterminate Y

is the polynomial divided by the gcd of all coefficients with respect to Y (the content)

and denoted by ppY (f). If the content of a f is an unit then f is called primitive.

Theorem 3.10 (Factor degree pattern [12]). Let f ∈ k[X1, . . . , Xn, Y ] be a polynomialover a perfect field k. Denote by δ the total degree of f and pick random elementsa1, . . . , an, b2, . . . , bn from a finite subset S ⊂ k and set

f2 := f(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y ) .

Then

Prob(

ppY (f) and ppY (f2) have the same factor degree pattern)≥ 1− 4δ2δ + δ3

card(S).

Proof. Let f =∏ri=1 g

eii be a factorization of f in pairwise non-associated irreducible

factors gi with δi = deg(gi) and ei ≥ 1 for i = 1, . . . , r. First consider the factors gi withdegY (gi) > 0. By the effective Hilbert irreducibility theorem 3.9

gi,2 := gi(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y )

Page 54: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

48 3. EVALUATIONS OF MULTIVARIATE POLYNOMIALS

remains irreducible in k[X1, Y ] with a probability of at least 1 − 4δi2δi/card(S). It

remains to determine the probability that deg(gi,2) = δi and that the gi,2 are pairwisenon-associated.

We start with the degree. Let A := (A1, . . . , An) and B := (B2, . . . , Bn) be twofamilies of indeterminates and define

hi(X1, Y,A,B) := gi(A1 +X1, A2 +B2X1, . . . , An +BnX1, Y ) .

Notice that hi(X1, Y, a1, . . . , an, b2, . . . , bn) = gi,2. Clearly degX1,Y (hi) = δi fori = 1, . . . , r and thus there exists in each hi a non-zero coefficient πi(B2, . . . , Bn) ofa monomial Xj

1Yk with j + k = δi. Then deg(πi) ≤ δi and πi(b2, . . . , bn) 6= 0 implies

deg(gi,2) = δi. The probability that πi(b2, . . . , bn) 6= 0 is at least

1− deg(πi)/card(S) ≥ 1− δi/card(S)

by the Schwartz-Zippel lemma 3.2.

Now we have to determine the probability that the gi are pairwise non-associated. Weclaim that the hi are pairwise non-associated in k(A,B)[X1, Y ]. Assume this were notthe case. Then there exists integers i and j, i 6= j, and polynomials si, sj ∈ k[A,B]with gcd(si, sj) = 1 such that sihi = sjhj . Since deg si ≥ 1 it follows that si divides hj

and thus hj is reducible in k[X1, Y,A,B]. We write hj = h(1)j h

(2)j . But then would

gj(X1, . . . , Xn, Y ) = hj(X1, Y, 0, X2 −B2X1, . . . , Xn −BnX1, B2, . . . , Bn)

= (h(1)j h

(2)j )(X1, Y, 0, X2 −B2X1, . . . , Xn −BnX1, B2, . . . , Bn)

be a non-trivial factorization of gj in k[X1 . . . , Xn, Y ] in contradiction to gj irreducible.Therefore the hk are pairwise non-associated in k(A,B)[X1, Y ].

Hence there exists in hi and hj , i 6= j, coefficients h(α1,α2)i and h

(α1,α2)j of Xα1

1 Y α2 suchthat

h(α1,α2)j hi − h(α1,α2)

i hj 6= 0

(otherwise hi and hj would be associated). In particular there exists two additional

coefficients h(β1,β2)i and h

(β1,β2)j of Xβ1

1 Y β2 in hi and hj such that

τi,j := h(α1,α2)j h

(β1,β2)i − h(α1,α2)

i h(β1,β2)j 6= 0 .

τi,j is a polynomial in k[A,B] and τi,j(a1, . . . , an, b2, . . . , bn) 6= 0 implies that gi,2 andgj,2 are not associated. Since deg(τi,j) ≤ δi + δj the probability that gi,2 and gj,2 are notassociated is at least 1− (δi + δj)/card(S) by the Schwartz-Zippel lemma 3.2.

Finally we consider the case degY (gi) = 0. Then gi,2 is a divisor of the content of f2

with respect to Y. Thus it is sufficient that gi,2 is not identical zero. A condition forthis is that the total degree of gi,2 gets preserved. By the same arguments as in the firstcase this happens with a probability of at least 1− δi/card(S).

Page 55: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

3.2. FACTOR DEGREE PATTERN 49

In summary it follows that that the factor degree pattern is preserved with a proba-bility not less than

1−

(r∑i=1

4δi2δi

card(S)︸ ︷︷ ︸irreducible

+r∑i=1

δicard(S)︸ ︷︷ ︸

degree preserved

+∑

1≤i<j≤r

δi + δjcard(S)︸ ︷︷ ︸

non-associated

)

≥1− 1

card(S)

(4δ2δ + δ +

δ(δ − 1)

)≥1− 4δ2δ + δ3

card(S)

With this theorem we can probabilistically guarantee that the factor degree patterns

of f and f(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y ) coincide if f is primitive with respect

to Y. But what happens if f is not primitive? The idea is that we modify f in such a

way that the image is primitive with a high probability and has the same factor degree

pattern as f . The following lemmas show that we can in fact define such an image of f .

Lemma 3.11. Let f ∈ k[X1, . . . , Xn, Y ] be a polynomial over a field k with total degreeδ and pick random elements c1, . . . , cn from a finite subset S ⊂ k. Then

Prob(

lcY (f(X1 + c1Y, . . . ,Xn + cnY, Y )) ∈ k)≥ 1− δ

card(S).

Proof. For indeterminates C1, . . . , Cn we define

f(C1, . . . , Cn, X1, . . . , Xn, Y ) := f(X1 + C1Y, . . . ,Xn + CnY, Y )

and π := lcY (f) ∈ k[C1, . . . , Cn]. Then deg(π) ≤ δ and if π(c1, . . . , cn) 6= 0 forc1, . . . , cn ∈ S it follows lcY (f(X1 + c1Y, . . . ,Xn + cnY, Y )) ∈ k and by the Schwartz-Zippel lemma 3.2 it follows the statement.

Moreover, substitutions of the form Xi 7→ Xi+biY +ai have no influence on the factor

degree pattern of f .

Lemma 3.12. Let f ∈ k[X1, . . . , Xn, Y ] be a non-zero polynomial over a field k. Forelements ai, bi ∈ k, i = 1, . . . , n

f(X1 + b1Y + a1, . . . , Xn + bnY + an, Y )

and f have the same factor degree patterns.

Proof. The statement follows immediately from the fact that the map

k[X1, . . . , Xn, Y ]→ k[X1, . . . , Xn, Y ],Xi 7→ Xi + biY + aiY 7→ Y

(3.3)

is a k-algebra automorphism.

Page 56: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

50 3. EVALUATIONS OF MULTIVARIATE POLYNOMIALS

Therefore we can construct for a multivariate polynomial f a bivariate polynomial

f2 such that the factor degree patterns of f and f2 coincide with a controllable high

probability.

As a final result we state the substitution which is used in our factorization algorithm

and the probability that the factor degree patterns coincide for this substitution.

Corollary 3.13. Let f ∈ k[X1, . . . , Xn, Y ] be a non-zero polynomial over a perfect fieldk. Denote by δ the total degree of f and pick randomly chosen elements a1, . . . , an,b2, . . . , bn, c1, . . . , cn and aY , bY from a finite subset S ⊂ k and set

f2 = f(a1 +X1 + c1Y, a2 + b2X1 + c2Y, . . . , an + bnX1 + cnY, aY + bYX1 + Y )

Then

Prob(f and f2 have the same factor degree pattern

)≥ 1− δ + 4δ2δ + δ3

card(S). (3.4)

Furthermore, for the factorization∏ri=1 g

ei2,i of f2 with g2,i ∈ k[X1, Y ] we have

Prob( deg(g2,i(X1, 0)) = deg(g2,i) for i = 1, . . . , r and

gcd(g2,i(X1, 0), g2,j(X1, 0)) = 1 for 1 ≤ i < j ≤ r

)≥ 1− δ2

card(S). (3.5)

Proof. First set f1(X1, . . . , Xn, Y ) := f(X1 + c1Y, . . . ,Xn + cnY, Y ). By lemma 3.11 wehave lcY (f1) ∈ k with a probability of at least 1−δ/card(S) and therefore f1 is primitivein Y with the same probability. Assume now that is true. By lemma 3.12 the factordegree patterns of f and f1 coincide and if we set

f2(X1, Y ) := f1(a1 +X1, a2 + b2X1, . . . , an + bnX1, Y )

= f(a1 +X1 + c1Y, a2 + b2X1 + c2Y, . . . , an + bnX1 + cnY, Y )

it follows that the factor degree patterns of f1 and f2 coincide with a probability of atleast 1− (4δ2δ + δ3)/card(S) by theorem 3.10. Hence

Prob(f and f2 have the same factor degree pattern

)≥ 1− δ + 4δ2δ + δ3

card(S).

Again assume that this is true and write f2 =∏ri=1 g

ei2,i for the factorization of f2. Then

g2,i = gi(a1 +X1 + c1Y, a2 + b2X1 + c2Y, . . . , an + bnX1 + cnY, Y )

where gi is the corresponding factor of f . For i = 1, . . . , r define

h2,i(X1, Y, AY , BY ) := gi(a1+X1+c1Y, a2+b2X1+c2Y, . . . , an+bnX1+cnY,AY +BYX1+Y ) .

For g2,i := h2,i(X1, Y, aY , bY ) ∈ k[X1, Y ] it follows easily that the g2,i are irreducibleand pairwise not associated. Therefore

∏ri=1 g

ei2,i is the factorization of f2 and the factor

degree patterns of f2 and f2 coincide. This shows statement (3.4).

Now we want to show statement (3.5). By our previous construction we haveg2,i(X1, 0) = h2,i(X1, 0, aY , bY ) for 1 ≤ i ≤ r. Set πi(BY ) := lcX1(h2,i) for i = 1, . . . , rand

σi,j(AY , BY ) := resX1(h2,i(X1, 0, AY , BY ), h2,j(X1, 0, AY , BY ))

Page 57: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

3.2. FACTOR DEGREE PATTERN 51

for 1 ≤ i < j ≤ r. Then πi(bY ) 6= 0 implies deg(g1,i) = deg(g2,i) and σi,j(aY , bY ) 6= 0implies resX1(g2,i(X1, 0), g2,j(X1, 0)) 6= 0 and thus gcd(g2,i(X1, 0), g2,j(X1, 0)) = 1 bycorollary 2.51. Therefore it is sufficient to determine the probability that

r∏i=1

πi(bY )∏

1≤i<j≤rσi,j(aY , bY ) = 0 .

Set δi := deg(g2,i) for i = 1, . . . , r. Now deg(πi) ≤ δi for i = 1, . . . , r and deg(σi,j) ≤ 2δiδjfor 1 ≤ i < j ≤ r. Therefore

deg( r∏i=1

πi∏

1≤i<j≤rσi,j

)≤

r∑i=1

δi +∑

1≤i<j≤r2δiδj ≤ (δ1 + · · ·+ δr)

2 ≤ δ2 .

Hence it follows statement (3.5) by the Schwartz-Zippel lemma 3.2.

Remark 3.14. The proof of statement (3.5) is based on [12], proof of theorem 6.1.

Page 58: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das
Page 59: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Chapter 4

Black box factorization

Finally we describe the black box factorization algorithm proposed by Kaltofen and

Trager [13].

Algorithm 4.1 Black box polynomial factorization

Input:

A non-zero polynomial f ∈ k[X1, . . . , Xn] given by a black box Bf , where k is a field

of characteristic 0, and the total degree d of f . We also assume that we have an

efficient polynomial time factorization algorithm for k[X1, X2]. Furthermore a failure

probability ε� 1 is part of the input.

Output:

Assume f =∏ri=1 h

eii is the factorization of f in irreducible, pairwise non-associated

polynomials hi ∈ k[X1, . . . , Xn] with multiplicity ei ≥ 1. First we return positive

integers e1, . . . , er such that ei = ei for i = 1, . . . , r and r = r with a probabil-

ity of at least 1 − ε. Second we return the following output program. The pro-

gram accepts as input n arbitrary elements p1, . . . , pn ∈ k and returns the values

h1(p1, . . . , pn), . . . , hr(p1, . . . , pn) ∈ k:

-p1, . . . , pn ∈ k

h1(p1, . . . , pn)-

h2(p1, . . . , pn)-...

hr(p1, . . . , pn)-

Notice that the hi are determined only up to a multiple in k. The constructed

program once and for all chooses an associate for each factor hi and, for repeated

invocations with different arguments, returns the value of that associate. Notice also

that the failure probability applies to the construction and not to the execution of

53

Page 60: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

54 4. BLACK BOX FACTORIZATION

the program. That is, with probability of at least 1−ε the output program is correct;

a correct program always produces the true values of the factors.

Step 1:

Pick randomly chosen elements a1, . . . , an, b2, . . . , bn, c1, c3, . . . , cn from a sufficiently

large finite subset S ⊂ k and compute by standard interpolation the following inter-

polation polynomial:

f2(X1, X2) := f(X1 + c1X2 + a1, b2X1 +X2 + a2, b3X1 + c3X2 + a3,

. . . , bnX1 + cnX2 + an)

Step 2:

Factor f2(X1, X2) in k[X1, X2] such that

f2(X1, X2) =r∏i=1

g2,i(X1, X2)ei .

With a probability not less than 1 − ε we have r = r and ei = ei for all 1 ≤ i ≤ r.

Assume that this is all true. Otherwise an incorrect output program will be produced.

Step 3:

Assign

g1,i(X1) := g2,i(X1, 0) , 1 ≤ i ≤ r .

Check whether gcd(g1,i, g1,j) = 1, 1 ≤ i < j ≤ r, and deg(g2,i) = deg(g1,i), 1 ≤ i ≤ r.If one check fails, return “failure”. Then we have found that our chosen elements in

step 1 were unlucky.

Now set

f1(X1) := f2(X1, 0) = f(X1 + a1, b2X1 + a2, . . . , bnX1 + an) =

r∏i=1

g1,i(X1)ei .

We use the g1,i to uniquely enumerate the factors of f . Our associated choices (see

output specifications) then satisfy

hi(X1 + a1, b2X1 + a2, . . . , bnX1 + an) = g1,i(X1) .

Step 4:

This step constructs the output program for the evaluation of the hi at p1, . . . , pn

as described in the output specifications. First, the information computed so far

is “hardwired” into that program. Then the following steps 4.1, 4.2, and 4.3 are

appended to the program.

Page 61: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

55

Step 4.1:

By standard interpolation compute

f(X1, Y ) := f(X1 + a1, Y (p2 − b2(p1 − a1)− a2) + b2X1 + a2,

. . . , Y (pn − bn(p1 − a1)− an) + bnX1 + an).

Notice that f(p1 − a1, 1) = f(p1, . . . , pn) and f(X1, 0) = f1(X1).

Step 4.2:

By Hensel lifting we obtain a factorization

f(X1, Y ) ≡r∏i=1

gi(X1, Y )ei mod Y d+1 with gi(X1, 0) = g1,i(X1) (4.1)

For all 1 ≤ i ≤ r test whether gi divides f . If at least one test fails return “failure”.

We have then discovered that the factor degree pattern of f and f2 disagree.

Step 4.3:

For i := 1, . . . , r do:

return gi(p1 − a1, 1) as hi(p1, . . . , pn)

Step 5:

return (e1, . . . , er) and the program constructed in step 4.

Remark 4.2. The Black box polynomial factorization algorithm is a Monte Carlo algo-rithm.

First we prove the correctness, analyze the failure probability of the algorithm and

then we prove the running time of the algorithm.

Theorem 4.3 (Correctness and failure probability). The black box polynomial factor-ization algorithm 4.1 works correctly and if the cardinality of the set S in step 1 ischosen

card(S) ≥ 6 deg(f)2deg(f)/ε,

then the algorithm succeeds with probability not less than 1−ε and the resulting programalways correctly evaluates all irreducible factors of f .

Proof. Denote by δ the total degree of f . By corollary 3.13 the factor degree patternsof f and f2 coincide in step 2 with a probability of at least 1− (δ+ 4δ2δ + δ3)/card(S).By the same corollary it follows that the probability that one of the checks in step 3returns “failure” is less than δ2/card(S). Assume all this is true. Notice that thendeg(g2,i) = deg(g1,i) for i = 1, . . . , r and this implies lcX1(f2) ∈ k and thus alsolcX1(f) ∈ k. Since k[Y ] is a Noetherian domain with maximal ideal (Y ) we can ap-ply our Hensel lifting algorithm 2.64 to the factorization

f(X1, Y ) ≡ f1(X1) ≡r∏i=1

g1,i(X1)ei mod Y

Page 62: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

56 4. BLACK BOX FACTORIZATION

such that we obtain the factorization (4.1). If we now choose card(S) such that

δ + 4δ2δ + δ3 + δ2

ε=

4δ2δ + δ(1 + δ) + δ(δ2)

ε≤ 6δ2δ

ε≤ card(S)

we can guarantee that the output program is correct (and step B returns never a failure)with a probability of at least 1− ε.

Theorem 4.4. The black box polynomial factorization algorithm 4.1 can construct itsoutput program in polynomially many arithmetic steps as a function of n and deg(f) andan additional single polynomial factorization in k[X1, X2]. It requires O(deg(f)2) calls tothe black box for f . The output program can be executed in O((log(deg(f))+1) deg(f)3)arithmetic steps and O(deg(f)2) calls to the black box for f .

Proof. Each bivariate interpolation of f2 and f requires O(deg(f)2) black box eval-uations. Then the algorithm needs to factor f2 which can be accomplished by ourassumption in polynomial time in the size of deg(f) and the size of the coefficientsof f . The dominating additional work of the output program is step 4.2, which can beaccomplished in O((log(deg(f))+1) deg(f)3) arithmetic operations by theorem 2.65.

Page 63: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Chapter 5

Closing remarks

In Mathematics it often occurs that after a novel idea gets introduced one notices that

it is in fact just a rediscovery. A very specific case of this is Hensel lifting. It was

introduced in computer algebra by Zassenhaus in 1969, who referred to the in 1908

published Hensel’s Lemma. In this thesis it has been shown that the Hensel lifting is in

fact a special case of Newton Iteration, an over 300 years old technique. But we have

to note that the necessary algebraic concepts were first introduced in the 19th and 20th

century. I hope that the link between Hensel lifting and Newton iteration was for the

reader as fascinating as it was for me.

As for the black box factorization algorithm I believe it is not only a theoretically

efficient solution for the problem of factoring multivariate polynomials but also very

suitable for use in practice. For example the output program can be easily distributed,

due to the small space requirement of a black box, to a network of asynchronous parallel

processors and therefore evaluated in parallel. This enables for instance the computation

of the sparse representation of the factors in parallel. Moreover, I want to remark

that the algorithm can also be adapted for finite coefficient fields with sufficiently high

characteristic. We just have to take into account that the failure probability is bounded

below by the characteristic of the field.

Also with the black box approach Kaltofen and Trager were able to solve the gcd and

the numerator / denominator problem for multivariate polynomials in random polyno-

mial time [13]. This suggests that the black box approach could prove beneficial for

other computational problems as well.

57

Page 64: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das
Page 65: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

Bibliography

[1] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polyno-

mial interpolation. Proc. 20th Annual ACM Symp. Theory Comp., pages 301–309,

1988.

[2] E. R. Berlekamp. Factoring polynomials over finite fields. Bell Systems Tech. J.,

46:1853–1859, 1967. Republished in revised form in: E. R. Berlekamp, Algebraic

Coding Theory, Chapter 6, McGraw-Hill Publ., New York 1968.

[3] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp.,

24:713–735, 1970.

[4] N. Bourbaki. Algebra II Chapters 4-7, chapter IV, pages 31–32. Elements of math-

ematics. Springer-Verlag, 1989.

[5] N. Bourbaki. Commutative Algebra Chapters 1-7, page 392. Elements of mathe-

matics. Springer-Verlag, 1989.

[6] N. Bourbaki. Commutative Algebra Chapters 1-7, pages 200–205 and 392. Elements

of mathematics. Springer-Verlag, 1989.

[7] D. Eisenbud. Commutative Algebra: With a View Toward Algebraic Geometry,

pages 181–182. Number 150 in Graduate Texts in Mathematics. Springer-Verlag,

1995.

[8] K. Hensel. Theorie der algebraischen Zahlen, chapter 4. Teubner, Leipzig, 1908.

[9] D. Hilbert. Uber die Irreduzibilitat ganzer rationaler Funktionen mit ganzahligen

Koeffizienten. J. reine angew. Math., 110:104–129, 1892.

[10] E. Kaltofen. Effective Hilbert Irreducibility. Information and Control, 66:123–137,

1985.

[11] E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate

integral polynomial factorization. SIComp, 14(2):469–489, 1985.

[12] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Mi-

cali, editor, Randomness and Computation, volume 5 of Advances in Computing

Research, pages 375–412. JAI Press Inc., 1989.

59

Page 66: Black box factorization of multivariate polynomials · Anschlieˇend wird das Konzept der Resultante und der Sylvester Matrix zweier Polynome pr asentiert. Mit diesem wird dann das

60 BIBLIOGRAPHY

[13] E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for

their evaluations: Greatest common divisors, factorization, separation of numera-

tors and denominators. J. Symbolic Comput., 9(3):301–320, 1990.

[14] L. Kronecker. Grundzuge einer arithmetischen Theorie der algebraischen Grossen.

J. reine angew. Math, 92:1–122, 1882.

[15] S. Landau. Factoring polynomials over algebraic number fields. SIAM J. Comp.,

14:184–195, 1985.

[16] A. K. Lenstra and H. W. Lenstra. Factoring polynomials with rational coefficients.

Math. Ann., pages 515–534, 1982.

[17] I. Newton. Arithmetica Universalis, 2nd ed. 1728. Reprinted in The Mathematical

Works of Isaac Newton, vol. 2, D. T. Whiteside, ed., Johnson Reprint Corp., New

York, 1967.

[18] B. L. van der Waerden. Modern Algebra. F. Ungar Publ. Co., New York, 1953.

[19] J. von zur Gathen and J. Gerhard. Modern Computer Algebra - Third Edition,

chapter 6. Cambridge University Press, 2013.

[20] J. von zur Gathen and J. Gerhard. Modern Computer Algebra - Third Edition,

chapter 9. Cambridge University Press, 2013.

[21] H. Zassenhaus. On Hensel factorization I. J. Number Theory, 1:291–311, 1969.