Top Banner
Biostatistics Unit 4 - Probability
37

Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Dec 18, 2015

Download

Documents

Kristina Ross
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Biostatistics

Unit 4 - Probability

Page 2: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Probability

Probability theory developed from the study of games of chance like dice and cards.  A process like flipping a coin, rolling a die or drawing a card from a deck are called probability experiments.  An outcome is a specific result of a single trial of a probability experiment.

Page 3: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Probability distributions

Probability theory is the foundation for statistical inference.  A probability distribution is a device for indicating the values that a random variable may have.  There are two categories of random variables.  These are discrete random variables and continuous random variables.

Page 4: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Discrete random variable

The probability distribution of a discrete random variable specifies all possible values of a discrete random variable along with their respective probabilities

(continued)

Page 5: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Discrete random variable

Examples can be• Frequency distribution • Probability distribution (relative frequency distribution) • Cumulative frequency

Examples of discrete probability distributions are the binomial distribution and the Poisson distribution.

Page 6: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Binomial distribution

A binomial experiment is a probability experiment with the following properties.

1.  Each trial can have only two outcomes which can be considered success or failure.2.  There must be a fixed number of trials.3.  The outcomes of each trial must be independent of each other.

(continued)

Page 7: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Binomial distribution4.  The probability of success must remain the same in each trial. The outcomes of a binomial experiment are called a binomial distribution.

Page 8: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Poisson distribution

The Poisson distribution is based on the Poisson process.  1.  The occurrences of the events are independent in an interval.2.  An infinite number of occurrences of the event are possible in the interval.3.  The probability of a single event in the interval is proportional to the length of the interval.

(continued)

Page 9: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Poisson distribution4.  In an infinitely small portion of the interval, the probability of more than one occurrence of the event is negligible.

Page 10: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Continuous variable

A continuous variable can assume any value within a specified interval of values assumed by the variable.  In a general case, with a large number of class intervals, the frequency polygon begins to resemble a smooth curve.

Page 11: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Continuous variable

A continuous probability distribution is a probability density function.  The area under the smooth curve is equal to 1 and the frequency of occurrence of values between any two points equals the total area under the curve between the two points and the x-axis.

Page 12: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

The normal distribution

The normal distribution is the most important distribution in biostatistics.  It is frequently called the Gaussian distribution.  The two parameters of the normal distribution are the mean () and the standard deviation ().  The graph has a familiar bell-shaped curve.

Page 13: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Graph of a normal distribution

Characteristics of the normal distribution

1.  It is symmetrical about .

2.  The mean, median and mode are all equal.

3.  The total area under the curve above the x-axis is 1 square unit.  Therefore 50% is to the right of and 50% is to the left of .

4.  Perpendiculars of:    ± contain about 68%;     ±2 contain about 95%;    ±3 contain about 99.7%of the area under the curve.

Page 14: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

The normal distribution

Page 15: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.
Page 16: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

The standard normal distribution

A normal distribution is determined by  and .  This creates a family of distributions depending on whatever the values of  and  are.  The standard normal distribution has

=0 and =1.

Page 17: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

 Standard z score

The standard z score is obtained by creating a variable z whose value is

Given the values of and we can convert a value of x to a value of z and find its probability using the table of normal curve areas.

Page 18: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

 Finding normal curve areas

1.  The table gives areas between and thevalue of .  

2.  Find the z value in tenths in the column at left margin and locate its row.  Find the hundredths place in the appropriate column.

Page 19: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

 Finding normal curve areas

3. Read the value of the area (P) from the body of the table where the row and column intersect.  Note that P is the probability that a given value of z is as large as it is in its location.  Values of P are in the form of a decimal point and four places.  This constitutes a decimal percent.

Page 20: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Finding probabilities

a) What is the probability that z < -1.96?(1) Sketch a normal curve(2) Draw a line for z = -1.96(3) Find the area in the table(4) The answer is the area to the left of the line P(z < -1.96) = .0250

Page 21: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.
Page 22: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Finding probabilities

Page 23: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Finding probabilities

b)  What is the probability that -1.96 < z < 1.96? (1) Sketch a normal curve (2) Draw lines for lower z = -1.96, and

upper z = 1.96 (3) Find the area in the table corresponding to

each value (4) The answer is the area between the values. Subtract lower from upper P(-1.96 < z < 1.96) = .9750 - .0250 = .9500

Page 24: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.
Page 25: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Finding probabilities

Page 26: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Finding probabilities

 c)  What is the probability that z > 1.96? (1) Sketch a normal curve (2) Draw a line for z = 1.96 (3) Find the area in the table (4) The answer is the area to the right of the line; found by subtracting table value from 1.0000; P(z > 1.96) =1.0000 - .9750 = .0250

Page 27: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Finding probabilities

Page 28: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Applications of the normal distribution

The normal distribution is used as a model to study many different variables.  We can use the normal distribution to answer probability questions about random variables.  Some examples of variables that are normally distributed are human height and intelligence.

Page 29: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Solving normal distribution application problems

(1) Write the given information(2) Sketch a normal curve(3) Convert x to a z score(4) Find the appropriate value(s) in the table(5) Complete the answer

Page 30: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Example: fingerprint count

Total fingerprint ridge count in humans is approximately normally distributed with mean of 140 and standard deviation of 50.  Find the probability that an individual picked at random will have a ridge count less than 100.  We follow the steps to find the solution.

Page 31: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Example: fingerprint count

(1) Write the given information

     = 140     = 50     x = 100

Page 32: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Example: fingerprint count

Page 33: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Example: fingerprint count

(3) Convert x to a z score

               

Page 34: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.
Page 35: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Example: fingerprint count

(4) Find the appropriate value(s) in the table

    A value of z = -0.8 gives an area of .2119 which corresponds to the probability P (z < -0.8)

Page 36: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

Example: fingerprint count

(5) Complete the answer

    The probability that x is less than 100 is .2119.

    

Page 37: Biostatistics Unit 4 - Probability. Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping.

fin