Top Banner
. . . . . . . . . . . . . . . . Complete Statistics . . . . . . . . . Basu’s Theorem . Summary . . Biostatistics 602 - Statistical Inference Lecture 06 Basu’s Theorem Hyun Min Kang January 29th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 1 / 21
102

Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

Mar 17, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

.

......

Biostatistics 602 - Statistical InferenceLecture 06

Basu’s Theorem

Hyun Min Kang

January 29th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 1 / 21

Page 2: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture

..1 What is a complete statistic?

..2 Why it is called as ”complete statistic”?

..3 Can the same statistic be both complete and incomplete statistics,depending on the parameter space?

..4 What is the relationship between complete and sufficient statistics?

..5 Is a minimal sufficient statistic always complete?

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 2 / 21

Page 3: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture

..1 What is a complete statistic?

..2 Why it is called as ”complete statistic”?

..3 Can the same statistic be both complete and incomplete statistics,depending on the parameter space?

..4 What is the relationship between complete and sufficient statistics?

..5 Is a minimal sufficient statistic always complete?

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 2 / 21

Page 4: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture

..1 What is a complete statistic?

..2 Why it is called as ”complete statistic”?

..3 Can the same statistic be both complete and incomplete statistics,depending on the parameter space?

..4 What is the relationship between complete and sufficient statistics?

..5 Is a minimal sufficient statistic always complete?

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 2 / 21

Page 5: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture

..1 What is a complete statistic?

..2 Why it is called as ”complete statistic”?

..3 Can the same statistic be both complete and incomplete statistics,depending on the parameter space?

..4 What is the relationship between complete and sufficient statistics?

..5 Is a minimal sufficient statistic always complete?

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 2 / 21

Page 6: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture

..1 What is a complete statistic?

..2 Why it is called as ”complete statistic”?

..3 Can the same statistic be both complete and incomplete statistics,depending on the parameter space?

..4 What is the relationship between complete and sufficient statistics?

..5 Is a minimal sufficient statistic always complete?

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 2 / 21

Page 7: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Complete Statistics

.Definition..

......

• Let T = fT(t|θ), θ ∈ Ω be a family of pdfs or pmfs for a statisticT(X).

• The family of probability distributions is called complete if• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.

• In other words, g(T) = 0 almost surely.• Equivalently, T(X) is called a complete statistic

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 3 / 21

Page 8: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Complete Statistics

.Definition..

......

• Let T = fT(t|θ), θ ∈ Ω be a family of pdfs or pmfs for a statisticT(X).

• The family of probability distributions is called complete if

• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.• In other words, g(T) = 0 almost surely.

• Equivalently, T(X) is called a complete statistic

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 3 / 21

Page 9: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Complete Statistics

.Definition..

......

• Let T = fT(t|θ), θ ∈ Ω be a family of pdfs or pmfs for a statisticT(X).

• The family of probability distributions is called complete if• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.

• In other words, g(T) = 0 almost surely.• Equivalently, T(X) is called a complete statistic

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 3 / 21

Page 10: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Complete Statistics

.Definition..

......

• Let T = fT(t|θ), θ ∈ Ω be a family of pdfs or pmfs for a statisticT(X).

• The family of probability distributions is called complete if• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.

• In other words, g(T) = 0 almost surely.

• Equivalently, T(X) is called a complete statistic

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 3 / 21

Page 11: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Complete Statistics

.Definition..

......

• Let T = fT(t|θ), θ ∈ Ω be a family of pdfs or pmfs for a statisticT(X).

• The family of probability distributions is called complete if• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.

• In other words, g(T) = 0 almost surely.• Equivalently, T(X) is called a complete statistic

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 3 / 21

Page 12: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example - Poisson distribution

.When parameter space is limited - NOT complete..

......

• Suppose T =

fT : fT(t|λ) = λte−λ

t!

for t ∈ 0, 1, 2, · · · . Let

λ ∈ Ω = 1, 2. This family is NOT complete

.With full parameter space - complete..

......

• X1, · · · ,Xni.i.d.∼ Poisson(λ), λ > 0.

• T(X) =∑n

i=1 Xi is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 4 / 21

Page 13: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example - Poisson distribution

.When parameter space is limited - NOT complete..

......

• Suppose T =

fT : fT(t|λ) = λte−λ

t!

for t ∈ 0, 1, 2, · · · . Let

λ ∈ Ω = 1, 2. This family is NOT complete

.With full parameter space - complete..

......

• X1, · · · ,Xni.i.d.∼ Poisson(λ), λ > 0.

• T(X) =∑n

i=1 Xi is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 4 / 21

Page 14: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example from Stigler (1972) Am. Stat..Problem..

......Let X is a uniform random sample from 1, · · · , θ where θ ∈ Ω = N.

IsT(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.Note that fX(x) = 1

θ I(x ∈ 1, · · · , θ) = 1θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =θ∑

x=1

1

θg(x) = 1

θ

θ∑x=1

g(x) = 0

θ∑x=1

g(x) = 0

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 5 / 21

Page 15: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example from Stigler (1972) Am. Stat..Problem..

......Let X is a uniform random sample from 1, · · · , θ where θ ∈ Ω = N. IsT(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.Note that fX(x) = 1

θ I(x ∈ 1, · · · , θ) = 1θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =θ∑

x=1

1

θg(x) = 1

θ

θ∑x=1

g(x) = 0

θ∑x=1

g(x) = 0

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 5 / 21

Page 16: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example from Stigler (1972) Am. Stat..Problem..

......Let X is a uniform random sample from 1, · · · , θ where θ ∈ Ω = N. IsT(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.Note that fX(x) = 1

θ I(x ∈ 1, · · · , θ) = 1θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =θ∑

x=1

1

θg(x) = 1

θ

θ∑x=1

g(x) = 0

θ∑x=1

g(x) = 0

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 5 / 21

Page 17: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example from Stigler (1972) Am. Stat..Problem..

......Let X is a uniform random sample from 1, · · · , θ where θ ∈ Ω = N. IsT(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.Note that fX(x) = 1

θ I(x ∈ 1, · · · , θ) = 1θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =θ∑

x=1

1

θg(x) = 1

θ

θ∑x=1

g(x) = 0

θ∑x=1

g(x) = 0

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 5 / 21

Page 18: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Example from Stigler (1972) Am. Stat..Problem..

......Let X is a uniform random sample from 1, · · · , θ where θ ∈ Ω = N. IsT(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.Note that fX(x) = 1

θ I(x ∈ 1, · · · , θ) = 1θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =θ∑

x=1

1

θg(x) = 1

θ

θ∑x=1

g(x) = 0

θ∑x=1

g(x) = 0

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 5 / 21

Page 19: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Solution (cont’d)

for all θ ∈ N, which implies• if θ = 1,

∑θx=1 g(x) = g(1) = 0

• if θ = 2,∑θ

x=1 g(x) = g(1) + g(2) = g(2) = 0.

•...

• if θ = k,∑θ

x=1 g(x) = g(1) + · · ·+ g(k − 1) = g(k) = 0.Therefore, g(x) = 0 for all x ∈ N, and T(X) = X is a complete statistic forθ ∈ Ω = N.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 6 / 21

Page 20: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Solution (cont’d)

for all θ ∈ N, which implies• if θ = 1,

∑θx=1 g(x) = g(1) = 0

• if θ = 2,∑θ

x=1 g(x) = g(1) + g(2) = g(2) = 0.

•...

• if θ = k,∑θ

x=1 g(x) = g(1) + · · ·+ g(k − 1) = g(k) = 0.Therefore, g(x) = 0 for all x ∈ N, and T(X) = X is a complete statistic forθ ∈ Ω = N.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 6 / 21

Page 21: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Solution (cont’d)

for all θ ∈ N, which implies• if θ = 1,

∑θx=1 g(x) = g(1) = 0

• if θ = 2,∑θ

x=1 g(x) = g(1) + g(2) = g(2) = 0.

•...

• if θ = k,∑θ

x=1 g(x) = g(1) + · · ·+ g(k − 1) = g(k) = 0.

Therefore, g(x) = 0 for all x ∈ N, and T(X) = X is a complete statistic forθ ∈ Ω = N.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 6 / 21

Page 22: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Solution (cont’d)

for all θ ∈ N, which implies• if θ = 1,

∑θx=1 g(x) = g(1) = 0

• if θ = 2,∑θ

x=1 g(x) = g(1) + g(2) = g(2) = 0.

•...

• if θ = k,∑θ

x=1 g(x) = g(1) + · · ·+ g(k − 1) = g(k) = 0.Therefore, g(x) = 0 for all x ∈ N, and T(X) = X is a complete statistic forθ ∈ Ω = N.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 6 / 21

Page 23: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Is the previous example barely complete?.Modified Problem..

......Let X is a uniform random sample from 1, · · · , θ whereθ ∈ Ω = N− n.

Is T(X) = X a complete statistic?.Solution..

......

Define a nonzero g(x) as follows

g(x) =

1 x = n−1 x = n + 10 otherwise

E[g(T)|θ] =1

θ

θ∑x=1

g(x) =

0 θ = n1θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− n, andT(X) = X is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 7 / 21

Page 24: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Is the previous example barely complete?.Modified Problem..

......Let X is a uniform random sample from 1, · · · , θ whereθ ∈ Ω = N− n. Is T(X) = X a complete statistic?

.Solution..

......

Define a nonzero g(x) as follows

g(x) =

1 x = n−1 x = n + 10 otherwise

E[g(T)|θ] =1

θ

θ∑x=1

g(x) =

0 θ = n1θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− n, andT(X) = X is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 7 / 21

Page 25: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Is the previous example barely complete?.Modified Problem..

......Let X is a uniform random sample from 1, · · · , θ whereθ ∈ Ω = N− n. Is T(X) = X a complete statistic?.Solution..

......

Define a nonzero g(x) as follows

g(x) =

1 x = n−1 x = n + 10 otherwise

E[g(T)|θ] =1

θ

θ∑x=1

g(x) =

0 θ = n1θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− n, andT(X) = X is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 7 / 21

Page 26: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Is the previous example barely complete?.Modified Problem..

......Let X is a uniform random sample from 1, · · · , θ whereθ ∈ Ω = N− n. Is T(X) = X a complete statistic?.Solution..

......

Define a nonzero g(x) as follows

g(x) =

1 x = n−1 x = n + 10 otherwise

E[g(T)|θ] =1

θ

θ∑x=1

g(x) =

0 θ = n1θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− n, andT(X) = X is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 7 / 21

Page 27: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Is the previous example barely complete?.Modified Problem..

......Let X is a uniform random sample from 1, · · · , θ whereθ ∈ Ω = N− n. Is T(X) = X a complete statistic?.Solution..

......

Define a nonzero g(x) as follows

g(x) =

1 x = n−1 x = n + 10 otherwise

E[g(T)|θ] =1

θ

θ∑x=1

g(x) =

0 θ = n1θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− n, andT(X) = X is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 7 / 21

Page 28: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture : Ancillary and Complete Statistics

.Problem..

......

• Let X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1), θ ∈ R.

• Is T(X) = (X(1),X(n)) a complete statistic?

.A Simple Proof..

......

• We know that R = X(n) − X(1) is an ancillary statistic, which do notdepend on θ.

• Define g(T) = X(n) − X(1) − E(R). Note that E(R) is constant to θ.• Then E[g(T)|θ] = E(R)− E(R) = 0, so T is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 8 / 21

Page 29: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture : Ancillary and Complete Statistics

.Problem..

......

• Let X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1), θ ∈ R.

• Is T(X) = (X(1),X(n)) a complete statistic?

.A Simple Proof..

......

• We know that R = X(n) − X(1) is an ancillary statistic, which do notdepend on θ.

• Define g(T) = X(n) − X(1) − E(R). Note that E(R) is constant to θ.• Then E[g(T)|θ] = E(R)− E(R) = 0, so T is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 8 / 21

Page 30: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture : Ancillary and Complete Statistics

.Problem..

......

• Let X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1), θ ∈ R.

• Is T(X) = (X(1),X(n)) a complete statistic?

.A Simple Proof..

......

• We know that R = X(n) − X(1) is an ancillary statistic, which do notdepend on θ.

• Define g(T) = X(n) − X(1) − E(R). Note that E(R) is constant to θ.

• Then E[g(T)|θ] = E(R)− E(R) = 0, so T is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 8 / 21

Page 31: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Last Lecture : Ancillary and Complete Statistics

.Problem..

......

• Let X1, · · · ,Xni.i.d.∼ Uniform(θ, θ + 1), θ ∈ R.

• Is T(X) = (X(1),X(n)) a complete statistic?

.A Simple Proof..

......

• We know that R = X(n) − X(1) is an ancillary statistic, which do notdepend on θ.

• Define g(T) = X(n) − X(1) − E(R). Note that E(R) is constant to θ.• Then E[g(T)|θ] = E(R)− E(R) = 0, so T is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 8 / 21

Page 32: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 1 : Ancillary and Complete Statistics

.Fact..

......For a statistic T(X), If a non-constant function of T, say r(T) is ancillary,then T(X) cannot be complete

.Proof..

......

Define g(T) = r(T)− E[r(T)], which does not depend on the parameter θbecause r(T) is ancillary. Then E[g(T)|θ] = 0 for a non-zero functiong(T), and T(X) is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 9 / 21

Page 33: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 1 : Ancillary and Complete Statistics

.Fact..

......For a statistic T(X), If a non-constant function of T, say r(T) is ancillary,then T(X) cannot be complete

.Proof..

......

Define g(T) = r(T)− E[r(T)], which does not depend on the parameter θbecause r(T) is ancillary.

Then E[g(T)|θ] = 0 for a non-zero functiong(T), and T(X) is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 9 / 21

Page 34: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 1 : Ancillary and Complete Statistics

.Fact..

......For a statistic T(X), If a non-constant function of T, say r(T) is ancillary,then T(X) cannot be complete

.Proof..

......

Define g(T) = r(T)− E[r(T)], which does not depend on the parameter θbecause r(T) is ancillary. Then E[g(T)|θ] = 0 for a non-zero functiong(T), and T(X) is not a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 9 / 21

Page 35: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is alsocomplete.

.Proof..

......

E[g(T∗)|θ] = E[g r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g r(T)|θ] = 0 holds for all θtoo. Because T(X) is a complete statistic, Pr[g r(T) = 0] = 1, ∀θ ∈ Ω.Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21

Page 36: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is alsocomplete.

.Proof..

......

E[g(T∗)|θ] = E[g r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g r(T)|θ] = 0 holds for all θtoo. Because T(X) is a complete statistic, Pr[g r(T) = 0] = 1, ∀θ ∈ Ω.Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21

Page 37: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is alsocomplete.

.Proof..

......

E[g(T∗)|θ] = E[g r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ,

then E[g r(T)|θ] = 0 holds for all θtoo. Because T(X) is a complete statistic, Pr[g r(T) = 0] = 1, ∀θ ∈ Ω.Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21

Page 38: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is alsocomplete.

.Proof..

......

E[g(T∗)|θ] = E[g r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g r(T)|θ] = 0 holds for all θtoo.

Because T(X) is a complete statistic, Pr[g r(T) = 0] = 1, ∀θ ∈ Ω.Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21

Page 39: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is alsocomplete.

.Proof..

......

E[g(T∗)|θ] = E[g r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g r(T)|θ] = 0 holds for all θtoo. Because T(X) is a complete statistic,

Pr[g r(T) = 0] = 1, ∀θ ∈ Ω.Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21

Page 40: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is alsocomplete.

.Proof..

......

E[g(T∗)|θ] = E[g r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g r(T)|θ] = 0 holds for all θtoo. Because T(X) is a complete statistic, Pr[g r(T) = 0] = 1, ∀θ ∈ Ω.Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21

Page 41: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Theorem 6.2.28 - Lehman and Schefle (1950)

.The textbook version..

......If a minimal sufficient statistic exists, then any complete statistic is also aminimal sufficient statistic.

.Paraphrased version..

......Any complete, and sufficient statistic is also a minimal sufficient statistic

.The converse is NOT true..

......A minimal sufficient statistic is not necessarily complete. (Recall theexample in the last lecture).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 11 / 21

Page 42: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Theorem 6.2.28 - Lehman and Schefle (1950)

.The textbook version..

......If a minimal sufficient statistic exists, then any complete statistic is also aminimal sufficient statistic..Paraphrased version........Any complete, and sufficient statistic is also a minimal sufficient statistic

.The converse is NOT true..

......A minimal sufficient statistic is not necessarily complete. (Recall theexample in the last lecture).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 11 / 21

Page 43: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Theorem 6.2.28 - Lehman and Schefle (1950)

.The textbook version..

......If a minimal sufficient statistic exists, then any complete statistic is also aminimal sufficient statistic..Paraphrased version........Any complete, and sufficient statistic is also a minimal sufficient statistic

.The converse is NOT true..

......A minimal sufficient statistic is not necessarily complete. (Recall theexample in the last lecture).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 11 / 21

Page 44: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Basu’s Theorem

.Theorem 6.2.24..

......If T(X) is a complete sufficient statistic, then T(X) is independent ofevery ancillary statistic.

.Proof strategy - for discrete case..

......

Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T

Alternatively, we can show that

Pr(T(X) = t|S(X) = s) = Pr(T(X) = t)Pr(T(X) = t ∧ S(X) = s) = Pr(T(X) = t)Pr(S(X) = s)

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 12 / 21

Page 45: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Basu’s Theorem

.Theorem 6.2.24..

......If T(X) is a complete sufficient statistic, then T(X) is independent ofevery ancillary statistic.

.Proof strategy - for discrete case..

......

Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T

Alternatively, we can show that

Pr(T(X) = t|S(X) = s) = Pr(T(X) = t)Pr(T(X) = t ∧ S(X) = s) = Pr(T(X) = t)Pr(S(X) = s)

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 12 / 21

Page 46: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Basu’s Theorem

.Theorem 6.2.24..

......If T(X) is a complete sufficient statistic, then T(X) is independent ofevery ancillary statistic.

.Proof strategy - for discrete case..

......

Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T

Alternatively, we can show that

Pr(T(X) = t|S(X) = s) = Pr(T(X) = t)

Pr(T(X) = t ∧ S(X) = s) = Pr(T(X) = t)Pr(S(X) = s)

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 12 / 21

Page 47: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Basu’s Theorem

.Theorem 6.2.24..

......If T(X) is a complete sufficient statistic, then T(X) is independent ofevery ancillary statistic.

.Proof strategy - for discrete case..

......

Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T

Alternatively, we can show that

Pr(T(X) = t|S(X) = s) = Pr(T(X) = t)Pr(T(X) = t ∧ S(X) = s) = Pr(T(X) = t)Pr(S(X) = s)

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 12 / 21

Page 48: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem

• As S(X) is ancillary, by definition, it does not depend on θ.

• As T(X) is sufficient, by definition, fX(X|T(X)) is independent of θ.• Because S(X) is a function of X, Pr(S(X)|T(X)) is also independent

of θ.• We need to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T .

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 13 / 21

Page 49: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem

• As S(X) is ancillary, by definition, it does not depend on θ.• As T(X) is sufficient, by definition, fX(X|T(X)) is independent of θ.

• Because S(X) is a function of X, Pr(S(X)|T(X)) is also independentof θ.

• We need to show thatPr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T .

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 13 / 21

Page 50: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem

• As S(X) is ancillary, by definition, it does not depend on θ.• As T(X) is sufficient, by definition, fX(X|T(X)) is independent of θ.• Because S(X) is a function of X, Pr(S(X)|T(X)) is also independent

of θ.

• We need to show thatPr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T .

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 13 / 21

Page 51: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem

• As S(X) is ancillary, by definition, it does not depend on θ.• As T(X) is sufficient, by definition, fX(X|T(X)) is independent of θ.• Because S(X) is a function of X, Pr(S(X)|T(X)) is also independent

of θ.• We need to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T .

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 13 / 21

Page 52: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 53: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 54: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ)

(3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 55: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s).

Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 56: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0

∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 57: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 58: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .

Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 59: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =∑t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)∑t∈T

Pr(T(X) = t|θ) (2)

=∑t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .Therefore, S(X) is independent of T(X).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 14 / 21

Page 60: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(0, θ).

• Calculate E[X(1)

X(n)

]and E

[X(1)+X(2)

X(n)

].A strategy for the solution..

......

• We know that X(n) is sufficient statistic.• We know that X(n) is complete, too.• We can easily show that X(1)/X(n) is an ancillary statistic.• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21

Page 61: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(0, θ).

• Calculate E[X(1)

X(n)

]and E

[X(1)+X(2)

X(n)

]

.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.• We know that X(n) is complete, too.• We can easily show that X(1)/X(n) is an ancillary statistic.• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21

Page 62: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(0, θ).

• Calculate E[X(1)

X(n)

]and E

[X(1)+X(2)

X(n)

].A strategy for the solution..

......

• We know that X(n) is sufficient statistic.

• We know that X(n) is complete, too.• We can easily show that X(1)/X(n) is an ancillary statistic.• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21

Page 63: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(0, θ).

• Calculate E[X(1)

X(n)

]and E

[X(1)+X(2)

X(n)

].A strategy for the solution..

......

• We know that X(n) is sufficient statistic.• We know that X(n) is complete, too.

• We can easily show that X(1)/X(n) is an ancillary statistic.• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21

Page 64: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(0, θ).

• Calculate E[X(1)

X(n)

]and E

[X(1)+X(2)

X(n)

].A strategy for the solution..

......

• We know that X(n) is sufficient statistic.• We know that X(n) is complete, too.• We can easily show that X(1)/X(n) is an ancillary statistic.

• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21

Page 65: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xni.i.d.∼ Uniform(0, θ).

• Calculate E[X(1)

X(n)

]and E

[X(1)+X(2)

X(n)

].A strategy for the solution..

......

• We know that X(n) is sufficient statistic.• We know that X(n) is complete, too.• We can easily show that X(1)/X(n) is an ancillary statistic.• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21

Page 66: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Showing that X(1)/X(n) is Ancillary

fX(x|θ) =1

θI(0 < x < θ)

Let y = x/θ, then |dx/dy| = θ, and Y ∼ Uniform(0, 1).

fY(y|θ) = I(0 < y < 1)

X(1)

X(n)=

Y(1)

Y(n)

Because the distribution of Y1, · · · ,Yn does not depend on θ, X(1)/X(n) isan ancillary statistic for θ.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 16 / 21

Page 67: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Showing that X(1)/X(n) is Ancillary

fX(x|θ) =1

θI(0 < x < θ)

Let y = x/θ, then |dx/dy| = θ, and Y ∼ Uniform(0, 1).

fY(y|θ) = I(0 < y < 1)

X(1)

X(n)=

Y(1)

Y(n)

Because the distribution of Y1, · · · ,Yn does not depend on θ, X(1)/X(n) isan ancillary statistic for θ.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 16 / 21

Page 68: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Showing that X(1)/X(n) is Ancillary

fX(x|θ) =1

θI(0 < x < θ)

Let y = x/θ, then |dx/dy| = θ, and Y ∼ Uniform(0, 1).

fY(y|θ) = I(0 < y < 1)

X(1)

X(n)=

Y(1)

Y(n)

Because the distribution of Y1, · · · ,Yn does not depend on θ, X(1)/X(n) isan ancillary statistic for θ.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 16 / 21

Page 69: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Showing that X(1)/X(n) is Ancillary

fX(x|θ) =1

θI(0 < x < θ)

Let y = x/θ, then |dx/dy| = θ, and Y ∼ Uniform(0, 1).

fY(y|θ) = I(0 < y < 1)

X(1)

X(n)=

Y(1)

Y(n)

Because the distribution of Y1, · · · ,Yn does not depend on θ, X(1)/X(n) isan ancillary statistic for θ.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 16 / 21

Page 70: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Showing that X(1)/X(n) is Ancillary

fX(x|θ) =1

θI(0 < x < θ)

Let y = x/θ, then |dx/dy| = θ, and Y ∼ Uniform(0, 1).

fY(y|θ) = I(0 < y < 1)

X(1)

X(n)=

Y(1)

Y(n)

Because the distribution of Y1, · · · ,Yn does not depend on θ, X(1)/X(n) isan ancillary statistic for θ.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 16 / 21

Page 71: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).

• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 72: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 73: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]

= E[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 74: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]

E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 75: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]

=E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 76: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 77: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 78: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Applying Basu’s Theorem

• By Basu’s Theorem, X(1)/X(n) is independent of X(n).• If X and Y are independent, E(XY) = E(X)E(Y).

E[X(1)] = E[X(1)

X(n)X(n)

]= E

[X(1)

X(n)

]E[X(n)

]E[X(1)

X(n)

]=

E[X(1)]

E[X(n)]

=E[θY(1)]

E[θY(n)]

=E[Y(1)]

E[Y(n)]

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 17 / 21

Page 79: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 80: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 81: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 82: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 83: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 84: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 85: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(1)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(1)(y) =

n!(n − 1)!

fY(y) [1− FY(y)]n−1 I(0 < y < 1)

= n(1− y)n−1I(0 < y < 1)

Y(1) ∼ Beta(1,n)

E[Y(1)] =1

n + 1

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 18 / 21

Page 86: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 87: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 88: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 89: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 90: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 91: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 92: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(n)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(n)(y) =

n!(n − 1)!

fY(y) [FY(y)]n−1 I(0 < y < 1)

= nyn−1I(0 < y < 1)

Y(n) ∼ Beta(n, 1)

E[Y(n)] =n

n + 1

Therefore, E[X(1)

X(n)

]=

E[Y(1)]

E[Y(n)]= 1

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 19 / 21

Page 93: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 94: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 95: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 96: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 97: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 98: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 99: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 100: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Obtaining E[Y(2)]

Y ∼ Uniform(0, 1)

fY(y) = I(0 < y < 1)

FY(y) = yI(0 < y < 1) + I(y ≥ 1)

fY(2)(y) =

n!(n − 2)!

[1− FY(y)]n−2 fY(y) [FY(y)] I(0 < y < 1)

= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =2

n + 1

Therefore, E[X(1)+X(2)

X(n)

]=

E[Y(1)+Y(2)]

E[Y(n)]=

E[Y(1)]+E[Y(2)]

E[Y(n)]= 3

n

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 20 / 21

Page 101: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Summary

.Today..

......

• More on complete statistics• Basu’s Theorem

.Next Lecture..

......• Exponential Family

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 21 / 21

Page 102: Biostatistics 602 - Statistical Inference Lecture 06 Basu ... · Complete Statistics. . . . . . . . . Basu’s Theorem. Summary.. Biostatistics 602 - Statistical Inference Lecture

. . . . . .

. . . . . . . . . .Complete Statistics

. . . . . . . . .Basu’s Theorem

.Summary

Summary

.Today..

......

• More on complete statistics• Basu’s Theorem

.Next Lecture..

......• Exponential Family

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 21 / 21