Top Banner
Biosensors and Their Applications
18

Biosensors and Their Applications3A978-1... · Their Applications Edited by Victor C. Yang University of Michigan Ann Arbor, Michigan and That T. Ngo AMDL,lnc. Tustin, California

Feb 16, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Biosensors andTheir Applications

  • Biosensors and Their Applications

    Edited by

    Victor C. Yang University of Michigan Ann Arbor, Michigan

    and

    That T. Ngo AMDL,lnc. Tustin, California

    SPRINGER SCIENCE+BUSINESS MEDIA, LLC

  • ISBN 978-1-46l3-6875-5 ISBN 978-1-4615-4181-3 (eBook) DOI 10.1007/978-1-4615-4181-3

    ©2ooo Springer Science+Business Media New York Originally published by Kluwer Academic / Plenum Publishers in 2000 Softcover reprint of the hardcover 1 st edition 2000

    http://www.wkap.nJJ

    10987654321

    A C.I.P. record for this book is available from the Library of Congress

    AlI rights reserved

    No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

  • Contributors

    S. Alegret • Sensor and Biosensor Group, Department de Quimica, UniversitatAutonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

    Jun-ichi Anzai • Faculty of Pharmaceutical Sciences, Tohoku University,Aramaki, Aoba-ku, Sendai 980-8578, Japan.

    S. R. Beckett • School of Biomedical Sciences, Medical School, Queen's MedicalCentre, Nottingham NG7 2UH, United Kingdom.

    L. J. Blum • Laboratoire de Genie Enzymatique, UPRESA CNRS 5013, Univer-site Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France.

    Ruben G. CarboneO • Department of Chemical Engineering, North CarolinaState University, Raleigh, North Carolina 27695.

    Geun Sig Cha • Department of Chemistry, Kwangwoon University Seoul 139-701, Korea.

    Chiyui Chan • Biosensor and Bioelectronics Laboratory, Department of Chemis-try, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon,Hong Kong.

    Deborah Charych • Lawrence Berkeley National Laboratory, Materials SciencesDivision, Center for Advanced Materials, Berkeley, California 94720. Presentaddress: Chiron Technologies, Life Sciences Center, Emeryville, California 94608

    Qiang Chen • Cygnus Inc. Redwood City, California 94063-4719.

    P. R. Coulet • Laboratoire de Genie Enzymatique, UPRESA CNRS 5013,Universite Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France.

    C. Dominguez • Departmento de Microsistemas y Technologia de Silicio,Instituto de Microelectronica de Barcelona, Centre Nacionale de Microelectronica,08193, Bellaterra, Barcelona, Spain.

    C. Duan • Department of Chemistry, University of Michigan, Ann Arbor,Michigan 48109.

    v

  • vi CONTRIBUTORS

    M. W. Ducey • Department of Chemistry, University of Michigan, Ann Arbor,Michigan 48109.

    Bin Fu • Diagnostic Division, Bayer Corporation, Tarrytown, New York 10591.

    C. A. GalIm-Vidai • Centro de Investigaciones Quimicas, Universdad Autonomadel Estado de Hidalgo, 42076 Pachuca, Hidalgo, Mexico.

    Rail W. Glaser • Institut fUr Molekularbiologie, Friedrich Schiller Universitiit,D-07708 Jena, Germany.

    G. G. Guilbault • Laboratory of Sensor Development, Department of Chemistry,University College Cork, Cork, Ireland.

    Adam Heller • Department of Chemical Engineering, University of Texas atAustin, Austin, Texas 78712.

    Tomonori Hoshi • Faculty of Pharmaceutical Sciences, Tohoku University,Aramaki, Aoba-ku, Sendai 980-8578, Japan.

    Teruaki Katsube • Department of Information and Computer Science, Faculty ofEngineering, Saitama University, Urawa, Saitama 338, Japan.

    Eugenii Katz • Institute of Chemistry, The Hebrew University of Jerusalem,Jerusalem 91904, Israel.

    Gregory L. Kenausis • Laboratory for Surface Science and Technology, ETHZurich, Zurich CH-8092, Switzerland.

    Gotthard Kunze • Institute of Plant Genetics and Crop Plant Research, D-06466Gatersleben, Germany.

    Alex W. K. Kwong • Biosensor and Bioelectronics Laboratory, Department ofChemistry, Hong Kong University of Science and Technology, Clearwater Bay,Kowloon, Hong Kong.

    Maria L. Lung • Department of Biology, Hong Kong University of Science andTechnology, Clearwater Bay, Kowloon, Hong Kong.

    C. A. Marsden • School of Biomedical Sciences, Medical School, Queen'sMedical Centre, Nottingham NG7 2UH, United Kingdom.

    Mark E. Meyerhoff • Department of Chemistry, University of Michigan, AnnArbor, Michigan 48109.

    J. Muiioz • Departmento de Microsistemas y Technologia de Silicio, Instituto deMicroelectronica de Barcelona, Centre Nacional de Microelectronica, 08193Bellaterra, Barcelona, Spain.

  • CONTRIBUTORS vii

    Yuji Murakami • School of Materials Science, Japan Advanced Institute ofScience and Technology, Hokuriku, Tatsunokuchi, Ishikawa 923-12, Japan.

    Hakhyun Nam • Department of Chemistry, Kwangwoon University, Seoul 139-701, Korea.

    That T. Ngo • AMDL, Inc., Tustin, California 92680-7017.

    C. K. O'Sullivan • Laboratory of Sensor Development, Department of Chemistry,University College Cork, Cork, Ireland.

    Tetsuo Osa • Faculty of Pharmaceutical Sciences, Tohoku University, Aramaki,Aoba-ku, Sendai 980-8578, Japan.

    Klaus Riedel • Dr. Bruno Lange GmbH Berlin, D-40549 Diisseldorf 11,Germany.

    Reinhard Renneberg • Biosensor and Bioelectronics Laboratory, Department ofChemistry, Hong Kong University of Science and Technology, Clearwater Bay,Kowloon, Hong Kong.

    Ajit Sadana • Chemical Engineering Department, University of Mississippi,University, Mississippi 38677-9740.

    Joseph S. Schoeniger • Sandia National Laboratories, Livermore, California94551-0969.

    S. Shoji • Department of Electronics, Information and CommunicationEngineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.

    Anup K. Singh • Sandia National Laboratories, Livermore, California 94551-0969.

    A. M. Smith • Department of Chemistry, University of Michigan, Ann Arbor,Michigan 48109.

    R. Smith • Department of Chemistry, University of Michigan, Ann Arbor,Michigan 48109.

    Eiichi Tamiya • School of Materials Science, Japan Advanced Institute of Scienceand Technology, Hokuriku, Tatsunokuchi, Ishikawa 923-12, Japan.

    Hidekazu Uchida • Department of Information and Computer Science, Facultyof Engineering, Saitama University, Urawa, Saitama 338, Japan.

    A. Waterfall • School of Biomedical Sciences, Medical School, Queen's MedicalCentre, Nottingham NG7 2UH, United Kingdom.

  • viii CONTRIBUTORS

    Bilha Willner • Institute of Chemistry, The Hebrew University of Jerusalem,Jerusalem 91904, Israel.

    [tamar WiDner • Institute of Chemistry, The Hebrew University of Jerusalem,Jerusalem 91904, Israel.

    Rosie B. Wong • Agricultural Research Division, American CyanamideCompany, Princeton, New Jersey 08543-0400.

    Victor C. Yang • College of Pharmacy, University of Michigan, Ann Arbor,Michigan 48109-1065.

    Xian-En Zhang • Wuhan Institute of Virology, Chinese Academy of Sciences,Wuchang, Wuhan 430071, P. R. China.

  • Preface

    A biosensor is an analytical device made up of a biological sensing element and atransducer. The sensing element detects the presence of an analyte via a specificinteraction and generates a signal whose intensity is either directly or inverselyproportional to the number of interactions between the analyte and the sensingelement over a given period of time. The transducer in turn receives the signalcoming from the sensing element and produces a digital electronic signal that isdirectly proportional to the intensity of the signal received. In order to achieveeffective communication, the sensing element and the transducer must be intimatelyconnected. Therefore methodologies that bring them into close contact play animportant role in the successful construction of a biosensor.Many types of sensing elements have already been incorporated into biosensors,

    and these are listed below in the order of increasing molecular weight or molecularcomplexity:

    ••

    ••••••••

    Simple low-molecular-weight carbohydrates, peptides, fragments of nucleicacids, and coenzyme derivativesSynthetic polymers and polyelectrolytesHybrids of biomolecule and synthetic polymers and biochromic polydi-acetylene membranesEnzymesModified enzymes, "wired" enzymes, and holoenzymesAntibodiesReceptorsTissuesOrganellesCellsMicroorganisms

    We also have today a rapidly expanding range of choices for transducers, such as:

    ••

    Optical [absorption, fluorescence (polarization, energy transfer, time-resolved, phase-resolved, evanescent wave) and bio- and chemiluminescence]AmperometricPotentiometric

    ix

  • x

    •••••

    Surface photovoltaicPiezoelectricalSurface plasmon resonanceConductometricColorimetric

    PREFACE

    The commonly used methodologies that bring the biosensing element and thetransducer together are as follows:

    Covalent attachment of the sensing elements to the surface of the transducer,e.g., covalent immobilization of thiol-bearing sensing molecules to the goldsurface of the transducer.Adsorption of a polymeric network containing the sensing elements, e.g.,adsorption of cross-linked enzymes or cross-linked enzymes and "inert"proteins (bovine serum albumin).Immobilization of the sensing elements on the surface of the transducer viaa pair of linking molecules, e.g., the avidin-biotin system.Attachment of an apoenzyme to its prosthetic group anchored onto thesurface of the transducer, e.g., immobilization of apo-glucose oxidase ontothe FAD group anchored on the surface of a gold electrode.

    The unique reaction kinetics taking place at the interface between the surface ofthe transducer and the solution also requires careful consideration. In most instancesthe reaction kinetics is diffusion-controlled. In some cases, where the signal producedby the sensing element is not strong enough, it must be amplified through the use ofa device such as a liposome.The various chapters in this volume review the aspects of biosensors that have

    not been covered or have been dealt with only superficially in earlier books onbiosensors and describe recent novel advances to stimulate further research anddevelopment in this rapidly expanding field.

    Victor C. YangThat T. Ngo

  • Contents

    1. Biochromic Polydiacetylene Synthetic Membranes

    Deborah Charych

    1.1. Introduction .1.2 Assembling the System . . . .1.3 Membranelike Structures in Biosensing .1.4 Sensors and Biosensors Based on Conjugated Polymers.

    1.4.1. Basic Properties . . . . . . . . . . . . .1.4.2. Conjugated Polymer-Based Sensors .1.4.3. Polydiacetylenes and Chromic Effects1.4.4. PDA-Based Biosensors .

    1.5 ConclusionReferences .

    2. Analysis of the Kinetics of Antigen-Antibody Interactionsand Fractal Dimension in Biosensors

    Ajit Sadana

    2.1. Introduction .2.2. Theory..............

    2.2.1. Single-Fractal Analysis .2.2.2. Dual-Fractal Analysis .

    2.3. Results.....2.4. Conclusions..References .

    3. Avidin- Biotin Mediated Biosensors

    Jun-ichi Anzai, Tomonori Hoshi, and Tetsuo Osa

    124556682121

    25262626273232

    3.1. Introduction 353.2. Avidin-Biotin System. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 363.3. Immobilization of Enzymes Through Avidin-Biotin Complexation 38

    xi

  • xii

    3.4. Layer-by-Layer Structure of Enzyme Multilayers .3.5. Conclusions.References .

    4. Layered Functionalized Electrodes for ElectrochemicalBiosensor Applications

    ltamar Willner, Eugenii Katz, and Bilha Willner

    CONTENTS

    404445

    4.1. Introduction 474.2. Monolayer Enzyme Electrodes. . . . . . . . . . . . . . . . . . . . . . . 514.3. Electrical Contact of Monolayer and Multilayer Enzyme Electrodes 544.4. Electrically Contacted Reconstituted Enzyme Electrodes . . . 644.5. Integrated Layered NAD(P) + -Dependent Enzyme Electrodes 704.6. Layered Antigen Monolayer Electrodes for Electrochemical

    Probing of Antigen-Antibody Interactions ..... . . . . . . 754.7. Layered Photoisomerizable Antigen Monolayer Electrodes for

    Reversible Probing of Antigen-Antibody Interactions. . 804.8. Layered Oligonucleotide Electrodes for Electrochemical

    Probing of DNA. . . . . . . . 844.9. Conclusions and Perspectives 88References . . . . . . . 91

    5. Biosensors Based on "Wired" Peroxidases

    Qiang Chen, Adam Heller, and Gregory L. Kenausis

    5.1. Introduction 995.2. "Wiring" of Horseradish Peroxidase. . . . . . . . . . . . . . . . 1005.3. Thermostable Soybean Peroxidase 1045.4. Bienzyme Systems . . . . . 1045.5. Applications 107

    5.5.1. NAD(P)H Sensing 1075.5.2. Avidin and Biotin . 1085.5.3. Oligonucleotide Sensing 1085.5.4. Characterization of Electrodes Generating and

    Consuming HzO z . . . . . . . . . 1105.5.5. Organic-Phase Peroxide Sensors 110

    References . . . . . . . . . . . . . . . 110

    6. Nonseparation Electrochemical Enzyme Immunoassay UsingMicroporous Gold Electrodes

    M. W Ducey, A. M. Smith, R. Smith, C. Duan, and M. E. Meyerhoff

    6.1. Introduction 113

  • CONTENTS

    6.2. Experimental...6.2.1. Apparatus6.2.2. Reagents .6.2.3. Preparation of Microporous Gold Electrodes and

    Immobilization of Binding Proteins . . . . . . . . .6.2.4. Nonseparation Sandwich-Type Electrochemical Enzyme

    Immunoassays . . . . . . . . . . . . . . . . . . . . . . .6.2.5. Nonseparation Competitive Electrochemical Enzyme

    BindingjImmunoassay .6.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . .

    6.3.1. Noncompetitive Electrochemical Enzyme Immunoassayfor Proteins and Microorganisms . . . . . . . . . . . .

    6.3.2. Competitive Electrochemical Enzyme Binding Assayfor Small Molecules .

    6.4. Future Directions6.5. Conclusions.References .

    7. Liposomes as Signal-Enhancement Agents in ImmunodiagnosticApplications

    Anup K Singh, Joseph S. Schoeniger, and Ruben G. Carbonell

    xiii

    117117117

    118

    120

    120121

    121

    124126128129

    7.1. Introduction 1317.2. Amplification of an Enzyme Immunoassay Using Liposomes 134

    7.2.1. Preparation of Enzyme- and Antibody-Bearing Liposomes 1357.2.2. Preparation of Enzyme-Antibody Conjugate 1357.2.3. Characterization of Liposomes with Immobilized HRP

    and Antibody 1357.2.4. Sandwich ELISA with Liposomes and Enzyme-Antibody

    Conjugate 1357.2.5. Results and Discussion . . . . . . . . . . . . . . . . . . . . . 136

    7.3. Amplification of Fluoroimmunoassay Using Liposomes . . . . . . 1387.3.1. Preparation of Antibody-Bearing Fluorescent Liposomes 1397.3.2. Preparation of Fluor-Antibody Conjugate 1397.3.3. Fluoroimmunoassay with Liposomes and

    Fluorescein-Antibody Conjugate. . . . . . 1397.3.4. Results and Discussion . . . . . . . . . . . . 139

    7.4. Application of Ganglioside-Bearing Liposomes as SensitiveProbes for Potent Neurotoxins 1417.4.1. Preparation and Characterization of GTlb Liposomes 1417.4.2. Fluoroimmunoassay with GTlb Liposomes 1427.4.3. Results and Discussion 142

    7.5. Conclusions. 142References . . . 144

  • xiv CONTENTS

    8. Recent Development in Polymer Membrane-Based PotentiometricPolyion Sensors

    Bin Fu, Mark E. Meyerhoff, and Victor C. Yang

    8.1. Introduction .8.2. Development of Polymer Membrane-Based Polyion Sensors

    8.2.1. Extraction Chemistry .8.2.2. Response Slope .

    8.3. Applications of Polyion Sensors . . . . . . .8.3.1. Measuring the Blood Heparin Levels .,8.3.2. Probing Binding Reactions .8.3.3. Detecting Protease Activities .

    8.4. Conclusions.References . . . . . . . . . .

    Piezoelectric Immunosensors: Theory and Applications

    C. K O'Sullivan and G. G. Guilbault

    9.1. Introduction .9.2. Quartz Crystal Microbalance-Theory .9.3. Quartz Crystal Microbalance-Applications

    9.3.1. Clinical Analysis .....9.3.2. Environmental Analysis .9.3.3. Food Analysis .

    9.4. Quartz Crystal Microbalance-Commercial Sources .9.5. Quartz Crystal Microbalance-Conclusions and Future Directions ..References . . . . . . . . . . . . . . . . . . . . .

    10. Surface Photovoltage-Based Biosensor

    Yuji Murakami, Eiichi Tamiya, Hidekazu Uchida, Teruaki Katsube

    147148148150153153155155157157

    159159163163165167171171172

    10.1.10.2.10.3.10.4.

    10.5.

    Introduction .Measurement Principle . . . . . . . . .Enzyme Sensor . . . . . . . . . . . . . .Surface Photovoltage Immunosensor .10.4.1. A Highly Sensitive Immunosensor10.4.2. Sample Preparation and Measurement ...Microbial Biological Oxygen Demand Sensor . . . .10.5.1. Surface Photovoltage-Based Microbial Biological

    Oxygen Demand Sensor .

    175175176178178181182

    182

  • CONTENTS

    10.5.2. Immobilization Method of T cutaneum on the Device10.5.3. Optimization of the System . . . . .10.5.4. Comparison with BODs and BODs

    10.6. ConclusionReferences .. . . . . . . . . . . . . . . . . . . . . .

    11. Surface Plasmon Resonance Biosensors

    Ralf W Glaser

    xv

    184188189192192

    11.1. Introduction......... 19511.2. Related Techniques. . . . . 19711.3. Immobilization of Ligands 19811.4. Qualitative Characterization of Molecular Interactions 19911.5. Measurement of Analyte Concentration 20011.6. Determination of Kinetic and Thermodynamic Interaction Constants. 20111.7. Nonexponential Binding Behavior. . . . . . 20311.8. Consistency and Choice of the Right Model 20511.9. Studying Interactions in Solution 20811.10. Mass Transport Limitation 20811.11. Conclusions 210References . . . . 210

    12. Luminescent Biosensors

    L. J. Blum and P. R. Coulet

    12.1. Introduction 21312.2. Enzyme Reactions . . . 214

    12.2.1. Basic Reactions 21412.2.2. Extension Through Oxidoreductases as Auxiliary Enzymes 215

    12.3. Design of the Sensing Layer . . . . . . . . . . . . . . . . . . 21612.3.1. Basic Procedures for Enzyme Immobilization ... 21612.3.2. Coimmobilization of Multienzyme Systems on the

    Same Membrane ..... 21712.3.3. Compartmentalization . . 21712.3.4. Cosubstrate Confinement 217

    12.5. Sensor Design 21812.6. Applications 218

    12.6.1. Determination of Other Analytes with Auxiliary Enzymes 22012.6.2. Stability . . . . . . 222

    12.7. Conclusions and Trends 222References .. . . . . . . . . . . 222

  • xvi

    13. Micromachining for Biosensors and Biosensing Systems

    S. Shoji

    CONTENTS

    13.1. Introduction .13.2. Etching .

    13.2.1. Wet Etching .13.2.2. Dry Etching . . . . . . . . . . .

    13.3. Free-Standing Microstructure Fabrication .13.3.1. Surface Micromachining .13.3.2. Lost Wafer Process .

    13.4. High Aspect Ratio Microstructure Fabrication .13.4.1. LIGA .13.4.2. HEXSIL .

    13.5. Microchannel Fabrication .13.5.1. Application of Bulk Micromachining .13.5.2. Application of Surface Micromachining

    13.6. Bonding . . . . . . . . . . . . . . . . . . . .13.6.1. Gluing .13.6.2. Low-Temperature Glass Bonding .13.6.3. Eutectic Bonding ..13.6.4. Fusion Bonding . . . . . . . . . . . . . . . . .13.6.5. HF Bonding . . . . . . . . . . . . . . . . . . .13.6.6. Anodic Bonding . . .

    13.7. ConclusionReferences . . . . . .

    · ..... 225· ..... 226· ..... 227· ..... 229· ..... 229

    229230231231232233233235236236237237239239

    · ........ 239· ........ 240· ........ 240

    14. Simultaneous Determination of Glucose and Analogous Disaccharidesby Dual-Electrode Enzyme Sensor System

    Xian-En Zhang

    14.1. Introduction 24314.2. Dual-Electrode Enzyme Sensor System. . . . . . . . . . . . . . . . . . .. 245

    14.2.1. Preparation of the Oxygen-Electrode-Based SequenceElectrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    14.2.2. Preparation of the Hydrogen-Peroxide-Electrode-BasedSequence Electrode . . . . . . . . . . . . . . . . . . . . . . . 246

    14.2.3. Preparation of the Carbon-Paste (CP)-Electrode-BasedSequence Electrode . . . . . . . . . . . . . . . . . . . . . 246

    14.2.4. Preparation of Disposable Sequence Electrode Strips . . . 24714.2.5. FIA Configuration and Measuring Procedure . . . . . . . 247

    14.3. Simultaneous Determination of Glucose and Sucrose . . . . . . . . . .. 24814.4. Simultaneous Determination of Glucose and Maltose . . . . . .. 25014.5. Simultaneous Determination of Glucose and Lactose . . . . . . .. 25314.6. Discussion. . . . . . . . .. 253References . . . . . . . . .. 254

  • CONTENTS

    15. Application of Biosensors to the Measurement ofNeurotransmitter Function

    C. A. Marsden, S. R Beckett, and A. Waterfall

    15.1. Introduction . .15.2. In Vivo Microdialysis . . . . . . . . . . . . . .

    15.2.1. The Microdialysis Probe. . . . . . . .15.2.2. Factors Affecting in J1vo Microdialysis Measurements .

    15.3. Voltammetric Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . .15.3.1. Voltammetric Measurements .15.3.2. Electrodes . .15.3.3. Detectable Compounds. . .15.3.4. Application. . . . . . . .

    15.4. Antibody Microprobes . .15.4.1. Probe Design .15.4.2. Experimental Use .

    15.5. Conclusions and the Future .References ., . . . . . . . . . . . . . . . . . .

    16. Biosensors for Agrochemicals

    Rosie B. Wong

    16.1. Introduction .16.2. Insecticides .

    16.2.1. Organophosphates, Carbamates, and Organochlorines ..16.2.2. Pyrethroids Immunosensors . . .

    16.3. Herbicides. . . . . . . . . . . . . . . . . . . . . . .16.3.1. Triazines . . . . . . . . . . . . . . . . . . .16.3.2. Phenylacetic Acids .16.3.3. Substituted Ureas and Sulfonylureas .16.3.4. Imidazolinones .

    16.4. Fungicides .16.4.1. Dithiocarbamate Enzyme Sensor16.4.2. Benzimidazole Immunosensor .

    16.5. Future TrendsReferences .

    17. Thick-Film Biosensors

    C. A. Galan- Vidal, J. Muiioz, C. Dominguez, and S. Alegret

    17.1. Introduction .17.2. Thick-Film Technology .

    17.2.1. Screen-Printing Technique .

    xvii

    257261261262263265266267270270271273276277

    283284284287287287289290292294294295295296

    299300301

  • xviii

    17.2.2. Materials17.2.3. Trends

    17.3. ApplicationsReferences .. . . . .

    CONTENTS

    301304305307

    18. Alternative Polymer Matrices for Potentiometric Chemical Sensors

    Hakhyun Nam and Geun Sig Cha

    18.1. Introduction .18.2. Sensor Membranes for All-Solid-State Electrodes18.3. Silicone Rubber Matrix-Based ISE Membranes ..

    18.3.1. One-Component Room Temperature Vulcanizing-TypeSilicone Rubber (RTV-SR) Matrix .

    18.3.2. RTV-SR Membrane-Based lon-Selective Electrodes .18.3.3. A pCOz Sensor with the Valinomycin-Based RTV-SR

    Membrane. . . . . . . . . . . . . . . . . . . . . . . .18.4. Polyurethane-Based ISE Membranes .

    18.4.1. Polyurethane Matrix .18.4.2. lon- and Biosensor Membranes Based on PU-Blended

    Matrices .18.4.3. Biocompatible ISE Membranes .

    18.5. Concluding RemarksReferences .. . . . . . . . . . . . . . . . . . . .

    19. Rapid Measurement of Biodegradable Substances in WaterUsing Novel Microbial Sensors

    Reinhard Renneberg, Alex W K. Kwong, Chiyui Chan, Gotthard Kunze,Maria L. Lung, and Klaus Riedel

    311311313

    313314

    320323323

    324326327328

    19.1. Introduction 33319.2. Application of Microbial Sensors in Pollution Control 33519.3. Prehydrolysis of Macromolecules . . . . . . . . . . . . . 33819.4. Effect of Salt on the Value of SensorBOD . . . . . . . . 33919.5. Analysis of Wastewater from a University in Hong Kong. 34119.6. A Novel Approach Using the Salt-Tolerant Yeast Arxula . 344References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

    Index 351

  • Biosensors andTheir Applications