Top Banner
Biomechanics Module Newton’s laws Musculoskeletal levers and mechanical advantage Classification of force systems Vector addition and resolution
53
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Biomechanics module full

Biomechanics Module

Newton’s laws

Musculoskeletal levers and mechanical advantage

Classification of force systems

Vector addition and resolution

Page 2: Biomechanics module full

Newton’s Laws

Law of Inertia

Law of Acceleration

Law of Action-Reaction

Biomechanics Module

2

Page 3: Biomechanics module full

Law of Inertia (equilibrium)

3 Hall, Basic Biomechanics, 5th ed

Biomechanics Module

Page 4: Biomechanics module full

Law of Inertia (equilibrium)

Biomechanics Module

4

Page 5: Biomechanics module full

Law of Acceleration

5

Biomechanics Module

Page 6: Biomechanics module full

Law of Acceleration

6

Biomechanics Module

Page 7: Biomechanics module full

Law of Acceleration

7

Biomechanics Module

Page 8: Biomechanics module full

10

pounds

Law of Acceleration

Biomechanics Module

8

B

Page 9: Biomechanics module full

Newton’s Laws

Law of Inertia

Law of Acceleration

Law of Action-Reaction

Biomechanics Module

9

Within object

Between objects

Page 10: Biomechanics module full

Law of Action-Reaction

For every action, there is an equal and opposite

reaction

(Forces occur in pairs)

Between two objects

10

Biomechanics Module

Page 11: Biomechanics module full

Law of Action-Reaction

For every action, there is an equal and opposite

reaction

(Forces occur in pairs)

Between two objects

Objects must be in contact

11

Biomechanics Module

Page 12: Biomechanics module full

Law of Action-Reaction

For every action, there is an equal and opposite

reaction

12

Biomechanics Module

Page 13: Biomechanics module full

Law of Action-Reaction

Ground reaction force

13

Hall, Fig 12-1

Body

weightGRF =

Biomechanics Module

Page 14: Biomechanics module full

Musculoskeletal Levers

Why is Charlie Brown up in the air?

14

Biomechanics Module

Page 15: Biomechanics module full

Musculoskeletal Levers

Why is Charlie Brown up in the air?

15

Biomechanics Module

Page 16: Biomechanics module full

Musculoskeletal Levers

(Force A)(MAA) vs (Force B)(MAB)

Charlie Brown is up in the air if: (Charlie’s force)(MA) < (Linus’ force)(MA)

16

Force A

Force Bfulcrum,

pivot point

MAA MAB

Biomechanics Module

Page 17: Biomechanics module full

Musculoskeletal Levers

Interaction between the forces or loads on the

segment and the joint

Levers: two forces and a pivot point (fulcrum, axis) Internal force (muscle)

External load (gravity etc)

Pivot point (joint)

(N.B. not consistent w/ Levangie)

17

Biomechanics Module

Page 18: Biomechanics module full

Musculoskeletal Levers

First class lever

Second class lever

Third class lever

Differentiated by the relative position of the internal force, external

load, and pivot point

18

Biomechanics Module

Page 19: Biomechanics module full

Musculoskeletal Levers

First class lever

19

Internal

force

fulcrum,

pivot point

Biomechanics Module

Page 20: Biomechanics module full

Musculoskeletal Levers

Second class lever

20

Internal

force

fulcrum,

pivot point

Biomechanics Module

Page 21: Biomechanics module full

Musculoskeletal Levers

Third class lever

21

Internal

force

fulcrum,

pivot point

Biomechanics Module

Page 22: Biomechanics module full

Mechanical advantage

22

Biomechanics Module

Page 23: Biomechanics module full

Mechanical advantage

23

Ext Int

fulcrum,

pivot point

External MA Internal MA=

First Class Lever

Mech Adv = 1 if

fulcrum in middle

Ext

Biomechanics Module

Page 24: Biomechanics module full

Mechanical advantage

24

External MA Internal MA<

Int

fulcrum

Second Class Lever

Mech Adv > 1

Ext

Biomechanics Module

Page 25: Biomechanics module full

Mechanical advantage

25

External MA Internal MA>

Int

fulcrum

Third Class Lever

Mech Adv < 1

Ext

Biomechanics Module

Page 26: Biomechanics module full

Classification of force systems

Linear same segment

same plane

same line

26

Biomechanics Module

Page 27: Biomechanics module full

Classification of force systems

Linear same segment

same plane

same line

Concurrent same segment

same plane

common point of application

27

Biomechanics Module

Page 28: Biomechanics module full

Classification of force systems

Linear same segment

same plane

same line

Concurrent same segment

same plane

common point of application

Parallel same segment

same plane

parallel to each other

28

Biomechanics Module

Page 29: Biomechanics module full

Fun with Forces

Vector addition Composition

Tip to tail

Parallelogram

Vector resolution Graphical

Trigonometric

Application to human movement Parallel forces

Perpendicular forces

Biomechanics Module

29

Page 30: Biomechanics module full

Vector addition

Composition Works with collinear vectors

Same direction (addition)

Opposite direction (“subtraction”)

30

Hall, Fig 3-11, 3-12

Biomechanics

+ =

+ =

Page 31: Biomechanics module full

Vector addition

Addition (composition)

31

Hall, Fig 3-11, 3-12

Works with collinear vectors

Biomechanics

Page 32: Biomechanics module full

Vector addition

Addition (composition)

32

Hall, Fig 3-11, 3-12

Works with collinear vectors

Biomechanics

Page 33: Biomechanics module full

Vector Addition

Tip to tail Concurrent vectors (vectors which can intersect)

33

Hall, Fig 3-13

Biomechanics

+ =

+ =

=

=

Page 34: Biomechanics module full

Vector addition

Addition – tip to tail

34

Hall, Fig 3-13

Biomechanics

Page 35: Biomechanics module full

Vector addition

Addition – tip to tail

35

Hall, Fig 3-13

Biomechanics

Page 36: Biomechanics module full

Vector Addition

Addition – parallelogram

36

Hall, Fig 3-13

Biomechanics

+ =

+ =

=

=

Page 37: Biomechanics module full

Vector addition

Addition – parallelogram

37

Hall, Fig 3-13

Biomechanics

Page 38: Biomechanics module full

Vector addition

Addition – parallelogram

38

Hall, Fig 3-13

Biomechanics

Page 39: Biomechanics module full

Vector Resolution

Resolving a vector into perpendicular components

Methods: Graph paper

Trigonometry

39

Biomechanics

Page 40: Biomechanics module full

Vector Resolution

Graphically

40 Hall, Fig 3-15

Biomechanics

Page 41: Biomechanics module full

Vector Resolution

Graphically

41 Hall, Fig 3-15

Biomechanics

Page 42: Biomechanics module full

Vector Resolution

Graphically

42 Hall, Fig 3-15

Biomechanics

Page 43: Biomechanics module full

Vector Resolution

Trigonometric

43

Hall, Fig 3-15

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

60

°

30°

opposite

oppositeadjacent

adja

cent

Page 44: Biomechanics module full

Vector Resolution

Trigonometric

44

Hall, Fig 3-15

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

60°

30°

opposite

oppositeadjacent

adja

cent

Page 45: Biomechanics module full

Vector Resolution

Trigonometric

45

Hall, Fig 3-15

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

60°

30°

opposite

oppositeadjacent

adja

cent

8.7

5.0

10

Page 46: Biomechanics module full

Vector Resolution

Trigonometric

46

Hall, Fig 3-15

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

60°

30°

opposite

oppositeadjacent

adja

cent

10

Page 47: Biomechanics module full

Vector Resolution

Trigonometric

47

Hall, Fig 3-15

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

60°

30°

opposite

oppositeadjacent

adja

cent

8.7

5.0

8.7

5.0

10 10

Page 48: Biomechanics module full

Vector Resolution

Trigonometric

48

Hall, Fig 3-15

55

°

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

20cos(55) = 11.4

20sin

(55)

= 1

6.4

Page 49: Biomechanics module full

Vector Resolution

Trigonometric

49

Hall, Fig 3-15

55°

45°

30°

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

Hypotenuse = 100

Page 50: Biomechanics module full

Vector Resolution

Trigonometric

50

Hall, Fig 3-15

55°

45°

30°

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

Hypotenuse = 100

82

57

71

71

87

50

Page 51: Biomechanics module full

Vector Resolution

Trigonometric How does angle change the composition?

51

Angle Sin Cos

0 0 1

30 0.50 0.87

45 0.71 0.71

55 0.82 0.57

60 0.87 0.5

90 1 0

Biomechanics

90° 60° 45° 30° 0°

Page 52: Biomechanics module full

Application to human movement

Resolve force into:

Perpendicular force

Rotation

Parallel force

Compression

Position dependent

52

perpendicular

parallel

Biomechanics Module

Page 53: Biomechanics module full

End of Biomechanics Module

Don’t forget to take the quiz

Biomechanics Module

53