Top Banner
Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh R. Naik, Eric Forsythe, and Jason Heikenfeld Interface Volume 10(78):20120601 January 6, 2013 ©2013 by The Royal Society
8

Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Dec 29, 2015

Download

Documents

Brian Webb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Biological versus electronic adaptive coloration: how can one inform the other?

by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh R. Naik, Eric Forsythe, and Jason Heikenfeld

InterfaceVolume 10(78):20120601

January 6, 2013

©2013 by The Royal Society

Page 2: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Hierarchical levels for biological and synthetic adaptive coloration: organism/system (a) octopus rapidly transitioning out of concealment, (b) Kent Displays' multilayer cholesteric display, (c)

Amazon Kindle e-reader using E ink film; organ/device (d) ceph...

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society

Page 3: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Fundamental approaches for reflective adaptive coloration.

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society

Page 4: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Cuttlefish, Sepia officinalis, showing (a) mottle and (b) disruptive camouflage.

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society

Page 5: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Diagram of cephalopod skin detailing the three main skin structures (chromatophores, iridophores and leucophores), two example states (a,b) and three distinct ray traces (1, 2, 3)

show the sophisticated means by which cephalopods can change reflective colour.

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society

Page 6: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Synthetic technologies for adaptive reflective coloration.

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society

Page 7: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Synthetic technologies for adaptive iridescence.

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society

Page 8: Biological versus electronic adaptive coloration: how can one inform the other? by Eric Kreit, Lydia M. Mäthger, Roger T. Hanlon, Patrick B. Dennis, Rajesh.

Spider chart comparing the important metrics to both cephalopod (green) and synthetic (blue) adaptive coloration.

Eric Kreit et al. J. R. Soc. Interface 2013;10:20120601

©2013 by The Royal Society