Top Banner
Bioenergetics Intro/Chpt 14
43

Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Bioenergetics

Intro/Chpt 14

Page 2: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Catabolism & energy prod’n

in cells (Fig. 4, p487)

• Glycolysis

• Intermediary metabolism

• ATP production

–Mitochondrial

– Chloroplast

Page 3: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 4, p.487

Page 4: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Regulatory enzymes

• Rate limiting

• Modulators control +/-

– Allosteric

– Covalently modified

– Combination

• Pathway commitment

Page 5: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Metabolic rxns follow trends

• ~ 50 rxns

– Only 5 major types (REMEMBER?)

• Coupling

• Redox rxns impt

Page 6: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Thermodynamics (again!)

G = H - T S

G - = Exergonic = heat given off

H - = Energy released w/ bonding rxn

S + = Increased entropy (incr’d randomness)

Go’ = Std free energy (pH=7, [H2O]=55 M, [reactant]=1 M, T=25oC) = physio cond’s in cell

Page 7: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Thermodynamics (again!)

• For cellular rxn: a A + b B <= > c C + d D at equilib

– K’eq can be written

– K’eq related to Go’ (Table 14-2)

• Can predict Go’ from Keq and vice/versa (Table 14-3)

Page 8: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.
Page 9: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.
Page 10: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

In real life

• Not all reactants @ 1 M

– Go back to G

G = Go’ + RT ln ([C]c[D]d/[A]a[B]b)

– Theoretical max energy for rxn

• Actual energy available to system < theoretical

Page 11: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

In real life – cont’d

• Not all thermodynamically favorable rxns proceed at measurable speeds

– Enzyme catalysis impt

G relationship to k is inverse and exponential (REMEMBER??)

G stays the same

Page 12: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

In sequential reactions• If common reactants, products:

Go’ values are additive

– So thermo’ly unfavorable rxn can be driven by thermo’ly favorable rxn coupled to it

• Keq values are multiplied

– So see large differences in Keq of coupled rxns

• Commonly coupled to endergonic rxns:

– ATP hydrolysis: Go’ = -30.5 kJ/mole

– Coupling hydrol of n ATPs raises Keq by 108n

Page 13: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

ATP hydrolysis adds energy

• Products of hydrolysis are resonance stabilized (14-1)

– Decr’d electrostatic repulsions in ADP

– Pi O’s can share – charge

Page 14: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-1

Page 15: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

ATP hydrolysis adds energy

• Mg coordinates w/ ADP (14-2)

Page 16: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

ATP hydrolysis adds energy

• Pi or AMP often cov’ly couples w/ reactants

High energy intermediate

– Larger G when cleaved

– Glutamate (14-8)

– First step in glycolysis activates glucose

Page 17: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-8

Page 18: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Some notes…

• ATP may bind non-covalently to protein; hydrolysis provides energy for conform’l change

– Ex: Na+/K+ ATPase

• Other phosphorylated cmpds release energy w/ cleavage of Pi (Table 14-6)

– Products also often resonance stabilized (14-3, 14-4)

– BUT original source of Pi is ATP ADP + Pi

Page 19: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.
Page 20: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-3

Page 21: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-4

Page 22: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Some (more) notes…

• Thioesters impt

– Acetyl CoA example (14-6)

– Greater G for hydrolysis (14-7)

• Nucleoside triphosphates are source of nucleotides inc’d into DNA, RNA (w/ release of energy) (14-12)

Page 23: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-6

Page 24: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-7

Page 25: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-12

Page 26: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Biological Oxidation Reduction Reactions (Redox)

• Flow of e-’s changes redox state of reactants, products

– Reactant that goes from more red’d more ox’d

– e-’s accepted by another molecule, goes from more ox’d more red’d

Page 27: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxns – cont’d

• Battery as example of e- flow energy

– Two linked sol’ns w/ differences in affinities for e-

– Coupled through e- carrier

– Carrier associated w/ motor, which can give off energy (in the form of work)

Page 28: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxns – cont’d

• Cellular analogy

– Two sol’ns = two molecules w/ differing affinities for e-

– e- carrier = cofactor (molecule)

–Motor = ATP synthesis “machine” in mitochondrion which can give off energy (in the form of a chemical with high potential chemical energy)

Page 29: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxns – cont’d

• Metabolism of nutrients converts cmpds from more red’d more ox’d states

– By LEO/GER, nutrient loses electrons (e-‘s)

– e-‘s released to system BUT are NOT free in cytoplasm

– e-‘s transferred to carrier mol’s

• By LEO/GER, carrier mol’s now red’d

Page 30: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Biological Oxidation Reduction Reactions (Redox) – cont’d

• Red’d carrier mol’s bring e-‘s to mitoch

– Electron transport system

– Coupled to oxidative phosph’n

ATP prod’d

Page 31: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxn’s (cont’d)

• Rxns of e- flow (reductant [or e- donor] oxidant [or e- acceptor]) can be additive

• Imptc – free energy of system changes w/ change in red’n potential of reactants/products in rxn

E = diff in red’n potentials of reductant, oxidant

– Related to free energy of system ( G) (eq’n 14-6)

– Use to calc G’s for biol. oxn’s

Page 32: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxn’s (cont’d)

• e- flow from lower red’n potential higher red’n potential (Table 14-7)

• Eo’ additive if coupled rxns have common intermed’s

– Use to calc G’s for biol. oxn’s

Page 33: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxn’s (cont’d)

• Cells’ rxns (incl redox) involve organic cmpds

• Consider “ownership” of e- by C in a cmpd (14-13)

• Ox’n C-cont’ng cmpds often w/ bonding O to C, displacing H

–More red’d cmpds – more H’s, fewer O’s

–More ox’d compds – more O’s, fewer H’s

Page 34: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-13

Page 35: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Redox Rxn’s (cont’d)

• Oxidation may occur in 4 ways

– Electrons transfer directly

– As H+ + e-

– As combination w/ O2

– As :H- (hydride ion)

• Common mechanism w/ carriers

• “Reducing equivalents”

Page 36: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Nicotinamides -- NAD, NADP

• When ox’d: NAD+, when red’d: NADH

• One C on nicotinamide ring accepts e- as :H-

• Hydride donor also releases one H+ to system

– Overall: NAD+ + 2e- + 2H+ NADH + H+

Page 37: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-15a

Page 38: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

NAD, NADP – cont’d• NADP+ preferred by some enz’s, species

– [NAD+/NADH] >> [NADP+/NADPH]

• [NAD+] usually > [NADH]

– Commonly donates or accepts hydride?

• [NADP+] usually < [NADPH]

• Enz’s = oxidoreductases or dehdrogenases

– > 200 (Table 14-8)

• Loosely assoc’d w/ deHases

– Move between enzymes

– Recycled by cell

Page 39: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.
Page 40: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Flavin Nucleotides – FMN, FAD

• Der’d from riboflavin

• Isoalloxazine ring accepts 1 or 2 e-

– Semiquinone (partly red’d)

– Quinone (fully red’d)

• Often bound more tightly to enz’s

– “Prosthetic grps”

• Varied enz’s associate w/ flavins

– Table 14-9

Page 41: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.

Fig. 14-16

Page 42: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.
Page 43: Bioenergetics Intro/Chpt 14. Catabolism & energy prod’n in cells (Fig. 4, p487) Glycolysis Intermediary metabolism ATP production –Mitochondrial –Chloroplast.